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RESIDUES OF CHERN CLASSES

TATSUO SUWA

To the memory of Katsuo Kawakubo

ABSTRACT. If we have a finite number of sections of a complex vector bundle F
over a manifold M, certain Chern classes of E are localized at the singular set .S,
i.e., the set of points where the sections fail to be linearly independent. When S is
compact, the localizations define the residues at each connected component of S by
the Alexander duality. If M itself is compact, the sum of the residues is equal to the
Poincaré dual of the corresponding Chern class. This type of theory is also developed
for vector bundles over a possibly singular subvariety in a complex manifold. Explicit
formulas for the residues at an isolated singular point are also given, which expresses
the residues in terms of Grothendieck residues relative to the subvariety.

Let FE be a complex vector bundle of rank r over a manifold M. If we have
a section s of E, the top Chern class ¢"(E) of E is “localized” at the zero set, or
“the singular set”, S of s. More presicely, there is a canonical class ¢"(E, s) in the
relative cohomology H2"(M, M \ S) which lifts the class ¢"(E) in H>"(M). If S is
compact, by the Alexander duality, ¢"(E,s) defines the “residue” in the homology
of each connected component of S. If M itself is compact, we have the residue
formula which says that the sum of the residues is equal to the Poincaré dual of
c"(E).

The residue at an isolated singular point is expressed as a Grothendieck
residue when M is a complex manifold of dimension n = r and when E and s
are holomorphic, see for example [Su2, Theorem 3.1]. Special cases of this include
the Poincaré-Hopf index of a holomorphic vector field as a section of the tangent
bundle and the multiplicity (or Milnor number) of a holomorphic function with its
differential considered as a section of the cotangent bundle. In the global situation,
the residue formula leads to the Poincaré-Hopf theorem, in the first case, and to the

“multiplicity formula” (or the “Milnor number formula”) [I], see also [F, Example
14.1.5} and [HL, VI 3], in the second case.
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dieck residues relative to subvarieties.
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In this note, we consider the case where we are given an ¢-tuple s of sections
of the bundle E. In this case, if we denote by S the set of points where the members
of s fail to be linearly independent, there is a canonical localization ¢!(E,s) in
H?(M, M\ S) of the Chern classe ¢'(E), foreach i =r—£+1,...,r. Again, if S is
compact, by the Alexander duality, c*(E,s) defines the residue in the homology of
each connected component of § and, if M is compact, we have the residue formula
(Theorem 2.3 below). We give an explicit formula for the residue at an isolated
singular point when M is a complex manifold of dimension n =r —£¢+1 and E and
s are holomorphic. It is also expressed by a Grothendieck residue (Theorem 5.2 and
Section 6).

The definition of residues and the residue formula are readily generalized to
the case of vector bundles over singular subvarieties in complex manifolds (Theorem
3.3). We also have a similar expression for the residue at an isolated singular point
of a variety as a Grothendieck residue relative to the subvariety (Theorem 5.7 and
Section 6).

The above localization theory fits nicely into the framework of the theory
of integration on the Cech-de Rham cohomology, which we recall in Section 1. The
computation of the residues is also done in this framework. We give, in Section 4,
some fundamental material necessary for this purpose.

For an application, we refer to [IS], where the multiplicity of a function on a
singular variety is defined and the aforementioned multiplicity formula is generalized
to the case of functions on singular varieties. The multiplicity at an isolated singular
point can be computed using the formulas in this note.

I would like to thank M. Oka, M. Saito and H. Yamada for helpful conver-

sations.

1. Chern classes in the Cech-de Rham cohomology

For the background on the Cech-de Rham cohomology, we refer to [BT]. The
integration theory in this cohomology theory is developed in [L1-2]. For the Chern-
Weil theory of characteristic classes of vector bundles, we refer to, for example,
[BB], [Bo] and [GH]. See also [Sul] for the material in this section. We freely use
the notation and facts there.

(A) Cech-de Rham cohomology and dualities

Let M be a (connected) oriented C'*° manifold of dimension m. For an open
set U in M, we denote by A?(U) the space of complex valued €' ¢g-forms on U. For
an open covering Y = {U, }o of M, we denote by A*(U) the Cech-de Rham complex
associated to the covering U with differential D and by HI(A*(U)) its cohomology
[Sul, Ch.II, 3]. We have a canonical isomorphism

(1.1) HY(M,C) > HI(A*(U)),
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where H?(M,C) denotes the de Rham cohomology of M. We also have the “cup
product”

HI(A*(U)) x HT(A*(U)) — HT7(A*(U)

compatible, via (1.1), with the usual cup product in the de Rham cohomology.
If M is compact, taking a “system of honey-comb cells” {R,}, adapted to
U, we may define the integration

/ : H™(A*(U)) — C,
M

which is compatible, via (1.1), with the usual integration on the de Rham cohomol-
ogy. The composition of the cup product and the integration induces the Poincaré
duality

P:HY(M,C) ~ HI(A*(U)) S H™ 1 A*U))Y =~ Hp_o(M,C).

Note that the isomorphism P is given by the cap product with the fundamental
class [M].

Now let S be a closed set in M. Letting Uy = M \ S and U; a neighborhood
of S'in M, we consider the covering U = {Up, Uy} of M. In this case, an element
o in AY(U) may be written as o = (09, 01,001) With oy and o1 g-forms on Uy and
Uy, respectively, and og; a (¢ — 1)-form on Uy, = Up NU;y. If we set

AU, Uy)={0 € A1 (U) | 00 =0},
A*(U,Up) forms a subcomplex of A*(U) and we have a canonical isomorphism
HY(A*(U,Up)) ~ HY (M, M\ S;C).

Suppose S is compact (M may not be). Let R; be a compact manifold of
dimension m with C* boundary 0R; in U;, containing S in its interior Int R;, and
set Rp = M \ Int R;. Then {Ry, R} is a system of honey-comb cells adapted to U.
In this situation, we have the integration on A™(U,U,) defined by

/0'=/ 01+/ 001,
M R,y Rox

where Ry; = Ry N Ry = —0R; (OR; with opposite orientation). This induces the
integration

/ L H™(A*(U, Up)) — C.

M

The cup product A?(U) x A™~4(U) — A™(U), induces a pairing
AU, Uy) x A™71(Ur) — A™(U, Vo)
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given by ((0,01,001),71) — (0,01 A 71,001 A 71). This, followed by the integration,
gives a pairing
Aq(u,Uo) X Am—q(Ul) — C.
If we further assume that U; is a regular neighborhood of S, this induces the
Alexander duality
A:HY(M,M\ S;C) ~ HY(A*U,Up)) > H™ 4(U;,C)Y ~ Hpp—y(S,C).

In the above isomorphism, a class [o] = [(0,01,001)] in HI(A*(U,Uy)) cor-
responds to the class [C] in H,,_4(S, C) such that

(1.2) / 0'1/\7'1-{-/ 001/\7'12/71,

for all 7 in A™~9(U;) with dr; = 0.

If M is compact, the following diagram is commutative :
HYM,M\ $;C) —— HYM,C)
(1.3) llA zlp

Hpg($,C) —"— Hno(M,C),
where ¢ and j denote, respectively, the inclusions S «— M and (M, 0) — (M, M\S).

(B) Representatives of Chern classes
Let M be a C* manifold of dimension m, as above, and let E be a C*

complex vector bundle of (complex) rank r on M. For a connection V for E and for
¢t =1,...,r, we denote by c'(V) the ¢-th Chern form defined by V. Recall that it

is defined by ¢*(V) = (%)z oi(k), where o;(x) denotes the i-th symmetric form
of the curvature matrix & of V and is a closed 2i-form on M. Its class [¢'(V)] in
H?(M,C) is the i-th Chern class ¢!(E) of E.

' If we have p + 1 connections Vy,...,V, for E there is a (2 — p)-form
c!(Vo,...,V,) alternating in the p + 1 entries and satisfying

P
(1.4) > (1) (Vo,..., V0, V) + (—1)Pd (Yo, ..., V,) =0,
v=0

cf. [Bo]. Here we use a different sign convention, see [Sul, Ch.II, (7.10)].

Let U = {Uq}o be an open covering of M. For each a, we choose a con-
nection V, for E on Uy, and for the collection V, = (V4 )4, we define the element
c(V,) in A%(U) by

CZ(V*)ao...ap = cl(vaoa v avap)-
Then we have D ¢'(V,) = 0 by (1.4). Moreover, it is shown that the class of ¢!(V,)
in H2'(A*(U)) does not depend on the choice of the collection of connections V.
Comparing with the class defined by a global connection, we see that the class
[¢’(V4)] corresponds to the class ¢(E) in H*(M,C) under the isomorphism (1.1).
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2. Localization of Chern classes

Let E be a C* complex vector bundle of rank r over an oriented C'*
manifold M of dimension m as in the previous section. Let s = (s1,...,8¢), 1 <
£ < r, bea (C>® {-frame of E on some open set U, namely, a set of £ C'® sections
of E linearly independent at each point of U. In the sequel, an r-frame is simply
called a frame. We say that a connection V for E is trivial with respect to s
(simply, s-trivial), if V(s;) =0 for: = 1,...,£. Note that if Vy,...,V, are s-trivial
connections, we have the vanishing (see, for example, [Sul, Ch.II, Proposition 9.1})

(2.1) ¢(Vo,...,Vp)=0 for i>r—£+1.

Let S be a closed set in M and suppose we have a C* {-frame s of E on
M\ S. Then, from the above fact, we will see that there is a “localization” ¢!(E,s)
in H*(M, M \ S;C) of the Chern class ¢!(E) in H*(M,C), for i > r — £+ 1.

Letting Uy = M \ S and U; a neighborhood of S, we consider the covering
U = {Up, U1} of M. Recall the Chern class ¢'(E) is represented by the cocycle
¢'(Vy) in A*(U) given by

ci(V*) = (Ci(VO), Ci(vl)a Ci(voa _vl))a

where Vo and V; denote connections for E on Uy and Uj, respectively. If we take
as Vo an s-trivial connection, then ¢!(Vy) = 0 and the cocycle is in A% (U, Up).
Thus it defines a class in the relative cohomology H?'(M,M \ S;C), which we
denote by c'(E,s). It is sent to the class ¢'(E) by the canonical homomorphism
j* « HE(M,M \ $;C) — H%*(M,C). It does not depend on the choice of the
connection V; or on the choice of the s-trivial connection V4 [Sul, Ch.III, Lemma
3.1]. We call ¢'(E,s) the localization of ¢'(E) at S with respect to s.

In the above situation, suppose that S is a compact set admitting a regular
neighborhood. Then we have the Alexander duality

A:H*(M,M\ S;C) 5 Hp—2:(S,C).

If we let (Sx)x be the connected components of S, we have

m 21 S C) @Hm 21 S)\7C)

Thus, for each A, ¢!(E,s) defines a class in H,,—2;(Sx,C), which we call the residue
of s at S with respect to ¢! and denote by Res,i(s, E; Sy). It is also called a residue
of c!(E) for brevity.

For each A, we choose a neighborhood Uy of Sy in Uy, so that the Uy’s are
mutually disjoint, and let Ry be an m-dimensional manifold with C'*° boundary
in Uy containing Sy in its interior. We set Ry = M \ Int Ry. Thus {Ry, R)} is a
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system of honey-comb cells adapted to the covering {M \ Si,Ux}. Then the residue
Res.i(s, E; Sx) is represented by an (m — 2¢)-cycle C in Sy such that

/7‘1:/ ci(Vl)/\T—+-/ Ci(VO,Vl)/\T
C Ry Rgx

for every closed (m — 2i)-form 7 on Uy (cf. (1.2)). In particular, if 2 = m, the
residue is a number given by

(2.2) Res (s, E; Sy) = /

ci(V1)+/ Ci(VO,Vl).
R,\ ROA

From the commutativity of (1.3), we have the “residue formula” :

Theorem 2.3. If M is compact, fort =r -4+ 1,...,r, we have

D (ia)«Resi(s, E; S)) = ¢(E) ~ [M]  in Hp_2:(M,C),

where 1) denotes the inclusion Sy — M and the sum is taken over the connected
components of S.

Remarks 2.4. 1. From the fact that ¢'( E,s) does not depend on V), we see that, for
i=r—4£+2,...,r, we have ¢'(E,s) = ¢/(E,s'), where s’ denotes an (r—i+1)-frame
made of r — 2 + 1 arbitrary members of s. Thus the case ¢ = r — £ 4+ 1 will be of
essential interest.

2. It is rather a strong hypothesis to assume the existence of an #-frame on M \ S,
unless m = 2(r — £+ 1). It is more reasonable to assume, taking some triangulation
or cellular decomposition of M compatible with S, the existence of an -frame on the
2(r — £+ 1)-skeleton of M \ S, see [St]. We may still define a canonical localization
c'(E,s) in H®(M, M \ S;C) and the residue Res.(s, E; Sy) in Hy,—2:(Sy,C), for
: =r — £+ 1, by modifying the above arguments, see [BLSS] and [L3].

3. We may also define the localization c¢!(E,s) via obstruction theory. In this
case, c'(E,s) is in the integral cohomology H*(M, M \ S;Z), which shows that the
above residue Res.i(s, E; S)) is in fact in the integral homology (and is an integer,
if 22 = m).

3. Chern classes on singular varieties

We refer to [Sul, Ch.IV, 2, Ch.VL, 4| for details of the material in this

section.

Let V be an analytic variety of pure dimension n in a complex manifold
W of dimension n + k. We denote by Sing(V') the singular set of V and set V' =
V'\ Sing(V'). First, suppose V is compact and let U be a regular neighborhood of V
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in W. Let U = {U,}« be an open covering of U. Taking a system {Rq}o of honey-
comb cells adapted to U such that V is transverse to each Rog-ia, = RoyNNR,,,
we may define the integration

/ . H*™(A*(U)) — C.
Vv

We have H*"(A*(U)) ~ H?**(U,C) and the above integration is compatible with
the integration fV : H 2"([7 ,C) — C induced from the integration of 2n-forms on
U over the 2n-cycle V.

Also the bilinear pairing

AYU) x AZ9UY) — A2(U) — C

defined as the composition of the cup product and the integration over V induces
the “Poincaré homomorphism”

P: HY(V,C) ~ HY(A*(U)) — H*™ 1Y(A*(U))" ~ Hap—_o(V,C),

which is not an isomorphism in general. Note that in [Br| the above homomor-
phism P, as well as the Alexander homomorphism defined below, are defined by a
combinatorial method in homology and cohomology with integral coefficients. The
homomorphism P is given by the cap product with the fundamental class [V].

Now suppose V may not be compact. Let S be a compact set in V admitting
a regular neighborhood in W such that there is an open set U in V with S C U
and U\ S C V'. Let U; be a regular neighborhood of § in W with Uy NV C U and
Uy a tubular neighborhood of U \ S in W with C* projection p: Uy — U\ 5. We
consider the covering Y = {ﬁo, ﬁl} of U = Uy U Uy, which may be assumed to be a
regular neighborhood of U. We also define the subcomplex A*(U, Uy) of A*(U) as
in Section 1 (A). Then we see that

HYA*U,Ty)) ~ HI(U,U \ S;C).

Let R, be a compact real 2(n+ k) dimensional manifold with C*° boundary
i{l U, such that S is in iiﬁs interior and that OR; is transverse to U. We set Ry =
R,NU, Ry =0R; =0R; NU and Ry; = —R1g9. Then we have the integration on

A*™U,Uy) given by
/U=/ 01+/ 001
U Ry Ro1

for 0 = (0,01,001) in A%™(U, (70). This again induces the integration on the coho-
mology

/ L H2(A*(U, Ty)) — C.
U

7



The cup product induces the pairing A%(U, Uy) x A2"~4(T;) — A?™(U,U,), which,

followed by the integration, gives a bilinear pairing
AYU,T,) x A29(0;) — C.
This induces the “Alexander homomorphism”
A:HYU,U\ S;C) ~ HI(A*(U,Typ)) — H> 4(U,,C)Y ~ Hyp_o(S,C),

which is not an isomorphism in general.

The homomorphism A sends the class [0] in HI(A*(U,Ty)) to the class [C]

in Hypn—q(S,C) such that
[oore]-
U c

forall 7 =7, in Azn_q(ﬁl) with dr;y = 0.

Suppose V is compact and let S be a compact set in V which admits a
regular neighborhood in W and contains Sing(V'). Then the following diagram is
commutative [Sul, Ch.VI, Proposition 4.4] :

HYV,V\S;C) — HYV,C)

(3.1) lA lp

H2n_q(5, (C) % H2n—q(Va C),

where ¢ and j denote, respectively, the inclusions § < V and (V,0) — (V,V \ 5).

Remark 3.2. In the above, the assumption that U \ S is in the regular part V' =
V' \ Sing(V) is not necessary. However, with this condition, to define a cochain
o = (09,01,001) in AYU), we only need to define og on U \ S, since there is a C*
retraction p: Uy — U\ S.

Again, let V be a variety of dimension n in a complex manifold W. First
suppose V is compact and let U and U be as above. For a complex vector bundle
E over U, we have the i-th Chern class ¢'(E) in H?*(A*(U)) ~ H?*(V,C). The
corresponding class in H?(V,C) is denoted by c¢*(E|y). We also have the class
P(c'(E)) =c(E) ~ [V]in Hopn—2:(V,C).

Next, let S be a compact set in V' (V may not be compact) admitting a
regular neighborhood in W such that there is an open set U in V with S C U and
U\S CV' Let U, Up, U = {ﬁo,ﬁl} and U = Uy UU, be as above. For a complex
vector bundle E over U, the Chern class c'(E) is represented by the cocycle ¢'(V,)
in A%(U) given by

(Vi) = (¢(Vo), ¢ (V1),¢'(Vo, V1)),
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where V and V, denote connections for E on Uy and U, respectively. Note that
it is sufficient if Vg is defined only on Uy = U \ S (see Remark 3.2). Suppose that
we have a C® /-frame s = (s1,...,5¢) on Uy and let V, be s-trivial. Then we
have the vanishing c!(Vy) = 0, for ¢ > r — £ + 1, and the above cocycle ¢(V,) is
in A2i(u,(70). Thus it defines a class ¢(E|v,s) in H*(U,U \ S;C). As in [Sul,
Ch.III, Lemma 3.1], we can show that the class ¢(E|y,s) does not depend on the
choice of the special connection V or the connection V;. We have the Alexander
homomorphism

A:H¥(U,U\ S;C) = Hyn_2i(S,C).

If we let (Sx)a be the connected components of S, we have

H2n—2i(57 C) = @ H2n-—2i(s)\) (C)
A

Thus, for each A, ci(E|V,s) defines a class in Hj,—2;(Sx,C), which we call the
residue of s at Sy with respect to ¢! and denote by Resi(s, E|y;Sy). It is also
called a residue of ¢'(E|y).

For each A, we choose a neighborhood Uy of Sy in (71, so that the Uy’s are
mutually disjoint. Let Ry be an (n + k)-dimensional manifold with C*° boundary
in Uy containing Sy in its interior such that the boundary OR, is transverse to V.
We set Rogx = —8Rx N V. Then the residue Res,: (s, E|v; Sa) is represented by a
2(n — 1)-cycle C in Sy such that

/T] :/ Ci(vl)AT+/ Ci(VO,vl)/\T
C RA RO)\

for every closed 2(n — i)-form 7 on Ux. In particular, if i = n, the residue is a
number given by

Resa(s, ElviS) = [ (V) + [ €i(Va, 7).
Ry R

(BN

From the commutativity of (3.1), we have the residue formula :

Theorem 3.3. Let V be a compact variety of dimension n in a complex manifold
W and E a complex vector bundle over a neighborhood of V in W. Let (Sy)x be
a finite number of compact connected sets in V such that each S admits a regular
neighborhood disjoint one another and that | J, Sx contains Sing(V'). Then, for an
L-frames of E on V\|J, Sy andfori>r —£+1,

Y (63)«Resci(s, Elv; Sy) = ¢(BE) ~ [V]  in Han2:(V,C),
A

where 1y, : Sy — V denotes the inclusion.

Note that the residues Res.:(s, E|y; Sy) are in fact in the integral homology
(and are integers, if : = n) and the above formula holds in the integral homology

(cf. Remark 2.4.1).



4. Some local analytic geometry and others

(A) Lemmas
We denote by O,y the ring of germs of holomorphic functions at the origin
0 in C"** and, for germs ay,...,a, in Ok, we denote by V(ay,...,a,) the germ

of variety defined by ay,...,a,. The following is proved similarly as [LS, Lemma 3]
and [Sul, Ch.IV, Lemma 4.4]. Here we give a more detailed proof for later use.

Lemma 4.1. Let V be a germ of variety of dimension n at 0 in C**t* and let
g1,--.,9N be germs in the ring Opyk. Suppose V(g1,...,gn) NV = {0}. Then
there exists an N x n matrix C = (c¢;j) of complex numbers such that, for germs

fi= E, 16ij9i, 3 =1,...,n, we have V(fi,..., fa) NV = {0}.

Proof. Since dim V' = n, it suffices to show the following for £ =1,...,n :

(*) If there exists an N x (£ — 1) matrix (¢;;) such that dim V(fy,..., fec1) NV =
n—+£¢+1, for f; = Ef\;1 ¢ijgi, J = 1,...,£ =1, then there exist complex numbers
¢ie, 1 =1,...,N, such that dimV(fi,...,fe) NV =n—{, for f, = Ef\il CieGi.

In the above, when £ = 1, V(fi,..., fe—1) is understood to be (the germ
at 0 of) C"**. To show (*), let V(f1,...,fe—1)NV = U, Ve be the irreducible
decomposition. Since V(g1,...,95)NV = {0}, for each ¢, there exist a point z4 in
V, and g; with g;(z,) # 0. Let H, denote the hyperplane in CN = {(&,...,¢n)}
defined by Ef\il gi(z4)€& = 0. Let (cis,...,cne) be a point in CN \ U, Hq and set

fr= E 1 ¢iegi- Then, Vi ¢ V(fy), for each :. We have

V(fi,.. o, )NV = (Ve NV (£2))-

Since each Vj is irreducible and V gZ V(fe), dimV,NV(f,) = dimV, —1. Therefore,

we have (*) and the lemma. O

Note that the above holds when k& = 0, in which case V is the germ of the
total space C™.

Let r and £ be integers with 1 < £ < r and denote by M(r) the space of
r X r matrices with the standard topology homeomorphic with C™. Let T be the set

of {-tuples of integers (¢1,...,7¢) with 1 <43 <---<ip<r. Let N = 2 . Thus

7 contains N elements. We endow Z with the lexicographic order. For a matrix A
in M(r), its £-th exterior power A4 is an N x N matrix whose entries are given by
det Ay, the £ X £ minor of A consisting of the rows corresponding to I = (¢1,...,1¢)
and of the columns corresponding to J = (j1,...,J¢)-

Lemma 4.2. For a matrix A and a neighborhood of A, there exists a matrix A' in
the neighborhood such that the matrix C consisting of the first n columns of A*A’
satisfies the condition of Lemma 4.1.

10



Proof. Recall that, for each j = 1,...,n, (¢1j,...,¢cnj) is determined so that it
avoids a finite number of hyperplanes in CV. Suppose the j-th column (det Ar;)s
satisfies the equation Zfil a;&; = 0 for one of the hyperplanes, with J = (j1,...,7¢)
the index corresponding to j. Suppose «;, # 0 and let Iy be the index corresponding
to ig. If det Aj,; = 0, then there is a matrix A' in the given neighborhood of A
such that det A7 ; # 0. We may choose A’ so that if some column of AfA does
not satisfy a linear equation, the corresponding column of A*A’ does not satisfy the

equation either. So we may assume that det Ay, ; # 0 from the beginning. We may
write

Qi ... Agj,
@i, -det Ajyy =) detBi,  B;= ,
)

where the sum is taken over ¢ which is not in . In the above, we arrange the B;’s
so that, if ¢ < ¢/, a;j,,...,ai;, do not appear in By. Let ¢ be the smallest 7 such
that det B; # 0. By changing aj,,...,a;j, a little, we see that there is a matrix A’
in the given neighborhood of A such that the above equation does not hold for A’.
We may choose A’ so that if some column of A?A does not satisfy a linear equation,
the corresponding column of AYA’ does not satisfy the equation either. Continuing
this process, we prove the lemma. [

(B) Grothendieck residues relative to a subvariety

Let U be a neighborhood of 0 in C" and let fi,...,f, be holomorphic
functions on U with V(fi,..., fn) = {0}. Thus there exists a positive number  such
that f~1(Ds) is a compact set in U, where f denotes the map (f1,..., fn): U — C"

and Dj; the closed polydisk of radius é. For a holomorphic n-from w on U, the usual
Grothendieck residue is defined by

w _ 1 " w
| = ) L

where T' denotes the n-cycle in U given by

F=T.={peUl|filp)=c¢ei 1=1,...,n}

for €; with 0 < ¢; < 4. It is oriented so that darg(fi) A--- A darg(fn) > 0 (see,
for example, [GH, Ch.5]). Note that, for various € = (e1,...,€y), the cycles I's are
homologous to one another and the above integral is well-defined. Moreover, for

almost all €, ', is a C° manifold. In the sequel, we set ¢ = -++ = ¢, = € for
simplicity.

Now let U be a neighborhood of 0 in C*** and V' a subvariety of dimension
n in U which contains 0 as at most an isolated singular point. Also, let fi,..., fa

11



be holomorphic functions on U with V(fi,..., fn) NV = {0}. For a holomorphic
n-from w on U, the Grothendieck residue relative to V is defined by

w (Y N[ _w
Res(’[fl,...,fn]v‘(zw:) /I‘fl"'fn’

where I' denotes the n-cycle expressed as above with U = U NV ([LS], [Sul, Ch.IV,
8]).

If V is a complete intersection defined by hy = -+ = hy = 0 in U, by an
iterated use of the projection formula, we see that

ANdhi A---ANdh
R, w :R w 1 k .
eso[fla---,fn]v €50 [fl,---,fn,hla"')hk

(C) Determinants of matrices of forms

Let = (w;;) be an r x r matrix with differential forms w;; in its entries.
We define the determinant of {2, denoted by det(f2) or || as usual, by

det 2 = Z SEN 0 * We (1)1 *** Wa(r)r
o€ES,

where S, denotes the symmetric group of degree r and the products of forms are
exterior products. Note that if the entries w;; are forms of even degree, possibly
except for the ones in a single column, the products in the above are commutative
and we may treat det () in the same way as a usual matrix of numbers. Also, for
n = 1,...,r, we define 0,(Q2) to be the coefficient of t* in det(I + t£2). Let A
denote the set of n-tuples of integers (ay,...,a,) with 1 < a3y < -+- < a, <.
For an element A = (a4,...,a,) in A, we denote by Q4 the n x n matrix whose
(i,7)-entry is the (a;,a;)-entry of Q. Then we have

(4.3) on() =) det Q4.
AcA

5. Residue at an isolated singularity

(A) Residue on a manifold

Let py be a point in a complex manifold M of dimension n and let E be
a holomorphic vector bundle of rank r over a neighborhood U of py in M, with

1<n<r. Let £ =r—n+1 and suppose we have £ holomorphic sections s1,..., sy
of £ on U which are linearly independent at each point of Uy = U \ {pp}. Thus
s = (81,...,8¢) is a holomorphic ¢-frame on U, and, in this situation, we have the

residue Rescn (s, E;po) in Ho({po},C) = C (in fact in Z, cf. Remarks 2.4). In the

following, we compute this residue.

12



We may assume that E is trivial over U and let e = (ey,...,e,) be a
holomorphic frame of E on U. We write s; = Z;=1 fijej, 1 = 1,...,¢, with f;;
holomorphic functions on U. Let F' be the £ x r matrix whose (¢, j)-entry is f;;. We
set

T={(ir,..ie) | 1< i1 < <ig <1}

as in Section 4 (A). For an element I = (¢1,...,%) in Z, let Fr denote the £ x £
matrix consisting of the columns of F' corresponding to I and set f; = det F. If
we write ey = e;; A--- Ae;,, we have

81/\-'-/\812ij6[.

IeT

Noting that the set of common zeros of the fr’s consists only of py, we have,
from Lemmas 4.1 and 4.2 :

Lemma 5.1. We may choose a holomorphic frame e = (ey,...,e,) of E so that
there exist n elements IV, ... I(™) in T with the property

{pelU| fro(p) == fim(p) =0} = {po}.
Note that we may assume that I, ..., I(® are the first n elements in Z
with the lexicographic order. Let e = (ey,...,€e,) be a frame of E on U as in
Lemma 5.1. Let us write I(®) = iga),...,iga)), a=1,...,n, and let F(® be the

(«

r X r matrix obtained by replacing the ¢; )_th row of the r x r identity matrix by

the j-th row of F, j = 1,...,¢. Note that det F(® = f;.). Let F(® denote the
adjoint matrix of F(® and set

0@ — plo) . gpla)

which is an r X r-matrix whose entries are holomorphic 1-forms.

Recall that (Section 4, (C)), for an n-tuple of integers A = (ai,...,ax)
with 1 < a; < -+ < a, < r, we denote by @f) the n X n matrix whose (1, j)-
entry is the (a;, a;)-entry of 0(®), For a permutation p of degree n, we denote by
i)

O 4(p) the n x n-matrix whose i-th column is that of G)Ef( and, for the collection

0 = {0}, we set

o.(0) = % Z Z sgn p - det © 4(p).

" AEA pEeS,
Note that 0,(©) is a holomorphic n-form on U.

13



Theorem 5.2. In the above situation, we have

on(0©
Rescn (s, E;po) = Resy, [fm), - ( ,)fI(")] .

Proof. This is done similarly as for [Su2, Theorem 3.1]. The techniques are origi-
nally due to [L2]. On Uy, we let V, be an s-trivial connection for E and, on U;, we
let V; be the connection for E trivial with respect to the frame e. Since ¢*(V;) =0
and Ry = —OR;, from (2.2) we have

(5.3) Rescn (s, E;p) = —/ c"(Vo,V1).
R,
We consider the covering U = {U(®}?_, of U, defined by

U ={pecl| fray(p) #0},

and work on the Cech-de Rham cohomology with respect to . On U(®, we may
replace, in the frame e, (€ a),...,€,a)) by (51, ..,5¢) to obtain a frame e(® for E.
1 4

We denote by V(® the connection for E on U(® trivial with respect to the frame
e(®, Then the connection matrix 8(®) of V() with respect to the frame e is given

by

9@ — gp@™ g _p@ gpe) - 1 ge)
I(a)

Let U be the covering of Uy as above and define a cochain 7 in A?"~2(Y)
by
Tay o, = Cn(VO, Vl, V(al), “ee ,V(“q)),

which is a (2n — ¢ — 1)-form on U(®%) = gle) n...A U@, Since Vy and V()
are all s-trivial, we have

(5.4) Vo, VD) vy =
for ¢ > 1. Now we compute D7. First for ¢ = 1, we have, by (5.4),

(D7)e = dc™(Vo, Vq, V) = —c*(Vq, V) 4 ¢(Vg, VI¥) — c*(Vy, V4)
= —c"(Vl, V("‘)) — Cn(VO, Vl)
For ¢ =2,...,n, we have, by (5.4),

1 ——
(DT)Q1...aq = Z(*—l)i+lcn(V0, Vl,v(al), caey V("i), cee, V(aq))
=1
+ (—1)T1de™(Vo, Vi, Vi) vy
— —cn(vl’ V(al), e v(aq)) + Cn(V(), V(oq), . ,V(a"))
= —c"(Vy, Vi), . V()

14



Thus we have

{ (D1)q = —c"(V1, V(®) — c*(Vy, V4),
(DT)al...aq = ——c"(vl, V(Oll)7 . ,V(aq)), for qg>2.
We set

Ry ={peUllfro®@)* + - +|frm()|* < ne*}

for a small positive number €. Denoting by ¢ the inclusion map dR; — Uy, we
let *U be the covering of R, by the open sets Ry N U™, Then, as a system
{R(®1}n__ of honey-comb cells adapted to *U, we take

R® ={p€dR:| |fre(P)| > |f1(p)| forall B}

and, for a g-tuple (a;...q,) with 1 < @; < --- < @, < n, we set R(®1+%) =
Re)n...NnR(®) whichisa (2n — ¢)-dimensional manifold with boundary oriented
as an intersection of honey-comb cells.

Considering the integration

/ : A2"_1(L*U) — C,
ORy
we see that

0= Dt
SR,

o Z/m ¢ VoV )‘Z Z /Rm...aq)c"(vl,v<“1>,...,v<aq>).

Hence we get, by (5.3),
ReSc"(s7 E;pO) == Z Z / cn(vl,V(al)’.”’V(aq)).
g=1 1< < <ag<n R(e1...eq)

Now we compute the (2n — ¢)-form ¢*(V;, V(@) . V(®)) For this, let
\Y denote the connection for the bundle E x R? over U(“1 O‘q) x R? given by V=
(1- )Vl +3°¢_, t, V(). Then the connection matrix 8 of V with respect
to the frame e is given by

j = (1 —~ i:t,,) 6, + zq:ty gl
v=1 v=1

15



where 6, is the connection matrix of V; with respect to the frame e and is equal to
zero. The curvature matrix & of V with respect to the frame e is then given by

q q
(5.5) E=df—OA0=> dt, N6+ £,d00) — Y 1,8, 600) Aglw),

v=1 v=1 v,u=1

By definition,

. v—1\"
c"(Vl,V(‘”),...,V("q)) = W*Cn(V) = ( o ) W*Un("%)a

where 0,(K) denotes the n-th symmetric form of & and m, the integration along
the fibers of the projection 7 : U@ x A? — U(@1@) with A? the standard
g-simplex in RY.

We claim that

M(Vy, Ve vled)y=0, if 1<q¢<n-—1

In fact, when we compute 7, det &4 (cf. (4.3)), only the term involving dt; A- - - Adt,
matters. Its coefficient is a holomorphic (2n — g)-form on an open set of M, which
is zero if ¢ < n.

Thus we have

Resn (s, E; po) = / (Vy, VD, ... v,
R(L...n)

To compute c”(Vl,V(l),...,V(")), fix A and let p be a permution of degree n.
Then, by (5.5), the term in det K4 involving dt; A --- A dt, is given by
(—1)™5 "> sgap-dty A+ Adta Adet8a(p),
p

where 64(p) is defined similarly as for ©@ 4(p). Therefore we obtain
*(Vy, VD, v = Z Z sgnp-c-det8a(p),
A p

where

¢ = (~1)"F" (m)n/ndtl--.dtn:(_nﬂ"%l <\/__1>n 1

27 2T n!’

Noting that det84(p) = (—1)"ﬁ det © 4(p) and that the n-cycle T' ap-
I In
pearing in the Grothendieck residue with respect to fra),..., fin) is given by

n(n—1

I'=(-1)"72 R(" we obtain the formula. O
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(B) Residue on a singular variety

Let V be a subvariety of dimension n in a complex manifold W of dimension
n+k, as before. Let py be an isolated singular point in V and let E be a holomorphic
vector bundle of rank r, 1 < n < r, over a neighborhood U of pp in W. Let
¢ = r —n+41 and suppose we have £ holomorphic sections s1,...,s; of E on U such
that 5

{pEU|81A---/\Sg(p):0}ﬂV={p0}.

Thus s = (81,...,8¢) is an f-frame of E on Uy = U \ {po}, U = U NV, and we have
the residue Rescx (s, E|v;po) in Ho({po},C) = C (in fact in Z, cf. Remarks 2.4). In
the following, we compute this residue. We may assume that E is trivial on U and
let e = (e1,...,€,) be a holomorphic frame of E on U. We write s; = E;zl fij €5,
¢ =1,...,4, with f;; holomorphic functions on U. If we let F and ¢ be as in (A),
we have

slA---ASg:ZerI.

I€T
From Lemmas 4.1 and 4.2, we have :
Lemma 5.6. We may choose a holomorphic frame e = (ey,...,¢e,) of E so that
there exist n elements IV, ... I(") in T with the property
{peU|fraP)=-=frm(P)=0}NV ={po}.
Note that we may assume that (1) ... I(™ are the first n elements in 7
with the lexicographic order. Once we choose a frame e = (e1,...,€e,) of E on U as

in Lemma 5.6, the rest goes exactly the same way as in (A). The only difference is
that, in (A), U is a neighborhood of py in a manifold M, while in this subsection, it
is a neighborhood of pg in a possibly singular variety V. In both cases, Uy = U\ {po }
is non-singular, where everything is performed. Thus by similar notation as in (A),
we have :

Theorem 5.7. In the above situation,

n(©
ReScn(S,E|V;p0) = Respo [f[(l)a ( )fI( )jl .
geensy ) |y

6. Special cases

We consider the situations of Section 5. Thus py will be either
(I) a point in a complex manifold M of dimension n, or
(II) an isolated singular point of a subvariety V of dimension n in a complex man-
ifold.

Let U be a neighborhood of pg in M or in V as in Section 5. In what follows,
in the case (II), we denote Res, (s, E|v;po) simply by Res,, (s, E;po) and omit the
suffix V in the residue symbol so that the residues are expressed same way in the
both cases.
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(1) The case £ =1 and r = n, with n arbitrary.
Let e = (eq,...,€,) be an arbitrary frame of E in a neighborhood of py and
write s; = ., fie;. Then we have

Res., (s, E;po) = Resy, [dflf/\/}df"] )
15¢++5Jn

In fact, in Theorem 5.2 or 5.7, we have f;iy = fi, ¢ = 1,...,n, and we
readily see that 0,(0Q) = df; A --- A df, (see also [Su2, Theorem 3.1}).

(2) The case n =1 and £ = r, with r arbitrary.

Let e = (eq,...,€e,) be an arbitrary frame of E in a neighborhood of py and
write s; = Z]r-zl fijej, e =1,...,r. Let F = (fi;) and set f = det F. Then we
have

Res.1(s, E;po) = Resy, [(j{} .

In fact, in Theorem 5.2 or 5.7, we have f;1) = f and we easily see that
0,(0) =df.

Note that Res.1(s, E; py) coincides with the residue Res.1(s,det E; pg) of the
section s = 1 A --- A s, of the line bundle det E = A"E at py.

(3) The case £ = 2 and r = n + 1 with n arbitrary.

Let s = (s1,52) be a 2-frame on Uy = U \ {po} and e = (e1,...,€nt1) @
frame on U or U satisfying the condition of Lemma 5.1 or Lemma 5.6, respectively.
We write s; = 27:11 fijej, 1 = 1,2, as in Section 5. We may suppose that I =
(l,a+1),a=1,...,n, so that

_ | fir fretr
Jreer = fa1 fret1
and that
{p| fivp) == fiex(p) =0} = {po},
in the case (I) or
{pl| fiom) == fie(P) =0}V ={po},
in the case (II). In the sequel, we introduce the following notation :
0ii = fi fij 9. — fii dfij ‘
Y fai fai|] Y fai dfa

Thus fr«) = ¢1,a+1- With these notation, we claim that

o(©
Rescn (s, E;po) = Resy, [fm), . ( v)fI(")]
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with
1 n-+1
O'n(6) :;L—(Zz 912 Ao A 91’,'_1 A de(:'—-l) A 91,1‘_*_1 A A 91,n+1

+ Y (DM Adpii A A ABG A AR A A B ).
2<i<j<n+1
To show this, we compute and see that the rows of the matrix ©(® are
zero except for the first and the (a 4 1)-st, where we have —(0a41.1,. .., 0a+1,n+1)
and (611,...,01 nt+1), respectively. For ¢ = 1,...,n + 1, let A; denote the n-tuple
obtained from (1,...,n 4+ 1) by removing ¢. Then we have

n+1

on(0) = % Z Z sgn p - det © 4,(p).

T i=1 pES,

Denoting by (@Ez_))ab the (a,b) entry of the matrix G)(Aai), we compute

1 n
(6.1) Y sgnp-detOu(p)= Y. sgno-sgnp-(05)epr) (05 Vanyp(n-
pES, o,pESn '

First we compute the right hand side of (6.1) for ¢ = 1. The rows of @E:l) are zero

except for the a-th, where we have (612,...,61 n+1). Hence we have
(6.2) Z sgnp-det@q,(p) =nl-012 A Ay pia.
PES,

Next we compute the right hand side of (6.1) for¢ = 2,...,n+1. Fora =1,...,:1-2,
the rows of G)E:',) are zero except for the first and the (a + 1)-st, where we have

—(6a+1,1, N ,9a+1,,-, e ,0a+1,n+1) and (011, e ,911;, ‘e ,61’n+1), respectively. Here
“”” means that the symbol under it is to be removed. The rows of the matrix
@5;'__1) are zero except for the first, where we have —(0;1,...,65,...,6; nt1). For
a=t,...,n, the rows of @E:i) are zero except for the first and the a-th, where we
have —(8a+1,15--+50a+1,is- -+, 0at1,n+1) and (611,...,6014,...,01 nt1), respectively.
Thus the terms in (6.1) are zero except for o = (1,...,7—1), the cyclic permutation

of order 7 — 1, whose signature is (—1)!. Then we compute and see that, for ¢ =

2,...,n+1,

) sgnp-det ©.4,(p)
PESH

1—1
= (=1 =11 1A Ab i1 ABij AByjpa A ABLi A A Byt
j=1

n+1
+ Z 911/\"'/\91,'/\---/\91,]'_1 /\9,']'/\91,]'_}_1/\---/\91,"_*_1).
j=i+1
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Finally, using (6.2) and the above, we get the formula.

The formula in (2) or (3) can be used to compute the multiplicity of a
holomorphic function on a possibly singular curve of arbitrary codimension or on a
possibly singular hypersurface of arbitrary dimension, respectively, see [IS].

Example 6.3. In the situation of (3), let n = 2 and suppose that py is a non-
singular point. Let (z1,22) be a coordinate system around py. If 51 = z1e1 — 2z2€e3
and s3 = 2z9e; + 2z1€2, we have

Resqz(s, E; po) = Resy, [32122 62121 2/\ d22] — Res,, [3dz1 A dzz] —3

21, %23 21,22
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