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GEOMETRY OF HIGHER ORDER DIFFERENTIAL EQUATIONS OF FINITE
TYPE ASSOCIATED WITH SYMMETRIC SPACES

KEIZO YAMAGUCHI AND TOMOAKI YATSUI

Introduction

This is a half survey article on the geometry of higher order differential equations of finite
type associated with symmetric spaces.

Historically, geometric study of differential equations, especially ordinary differential equa-
tions, was initiated by Sophus Lie [Lie91]. For linear ordinary differential equations, Laguerre
and Forsyth studied the differential invariants of these equations by transforming them to the
canonical forms (cf. [Wil06]).

For higher order equations, after Lie, the classification of the second order ordinary differen-
tialequations by point transformations was achieved by Tresse [Tre96] and E. Cartan [Car24]
studied the case when the equation is associated with paths in projective geometry by his method
of the equivalence. The third order equations were studied by S.S.Chern [Ch50], following the
method of E.Cartan (cf. [SY98]). Then N.Tanaka [Tan82] studied the equivalence problem
for the system of second order ordinary differential equations by point transformations and for-
mulated this geometry in terms of the pseudo-product structures. Furthermore he constructed
normal Cartan connections on these systems and utilized the connections to the normal form
problem and the integration problem of these systems [Tan79] [Tan&9].

For the geometrization problem for the equivalence of ordinary differential equations with
some historical comments, we refer the reader to the excellent survey article [DKM99].

In this paper we adopt the point of view initiated by N.Tanaka. Let us consider a system of

higher order differential equations of finite type of the following form :
akya @ 1 m
m:Fil ik(xl,...,x,l,y,---,y ,...,p?,...,p?l jk—l)
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where p’i = axf{”;i . Namely let us consider a system R of k-th order equations such that ev-
ery k-th derivative is éxpressed in terms of the derivatives of the lower order. If we regard R as a
submanifold of the k-jet space J* with coordinates (xi,..., %, y",- - ,y”’,...,pf, e ,p?l W
then R is diffeomorphic to J*°!. Moreover R specifies an n-dimensional subspace E(x) of
C*!(x) at each point x of J**!, where C*~! is the canonical differential system on J*! (for
the precise definitions, see §1). Thus R defines a differential system E on J*! such that
C! = E® F, where F = Ker(n¥~)), and nf=} : J*! — J¥2 is the projection. E is completely
integrable when the system R is integrable. The triplet (J¥™1; E, F) is called the pseudo-product
structure associated with R.

Our basic strategy to study higher order differential equations R of finite type is to utilize the
‘rich’ geometry of the differential system C*~! = E @ F naturally associated with R. We further
pursue this approach to an important class of higher order differential equations of finite type,
which is called of type (I, 5).

Now let us proceed to describe the contents of each section. In §1, we will explain the pseudo-
product structure (R; E, F') associated with a system R of higher order differential equations of



finite type and give an overview on the Tanaka theory for regular differential systems. Especially
we will review the symbol algebra m(x) = @pd) gp(x) of a regular differential system (M, D)
and the notion of the (algebraic) prolongation g(m) (resp. g(m, go)) of m (resp. (m, go)), for a
given fundamental graded Lie algebra m = @p<0 a,, Where gy is a subalgebra of the (gradation
preserving) derivation algebra go(m) of m. g(m) represents the Lie algebra of infinitesimal
automorphisms of the standard differential system (M(m), D,,) of type m, which is the local
model differential system of type m. As an example we will calculate the symbol algebra
®*(n, m) of the canonical differential system (J*, C*) in §1.3 and will show that this algebra has
the following description:

€ (n, m)=C g ®C & ---dC_y,

where €_g.1y = W, €, = WRSHPH(V*), €, = VOW®S*(V*). Here V and W are vector spaces
of dimension n and m respectively and the bracket product of €(n,m) = C¥(V, W) is defined
accordingly through the pairing between V and V* such that V and W ® S¥(V*) are both abelian
subspaces of €_;. Here S*(V*) denotes the k-th symmetric product of V*.

Corresponding to the splitting C¥-! = E @ F of the pseudo-product structure, we have the
splitting in the symbol algebra €*1(n, m);

€ =codf,

where ¢ = V,f = W ® S¥1(V*). In §2 we first consider the prolongation g*(n, m) of (€~} (n, m),
o), where §; is the subalgebra of go(C*!(n, m)) consisting of elements which preserves both e
and f. g¥(n, m) is called the pseudo-projective GLA (graded Lie algebra) of order k of bidegree
(n,m). We will give the explicit description of these algebras in §2.1. gk(n, m) gives the Lie
algebra of infinitesimal automorphisms of the (local) model k-th order differential equation R,
of finite type, where

IIA

akya . .
Ry={—2— =0 (Isasmlgi<---Si<n);.
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Generalizing the structure of a*(n, m), we will now introduce the important class of pseudo-
product GLA of the irreducible type. Namely, starting from a reductive GLAIl =1L ;@&
and a faithful irreducible [-module S, we define the pseudo-product GLA g = @pez g, of type
(1,S) as follows: Let [ = [_; @ [y ® [; be a finite dimensional reductive GLA of the first kind
such that

(1) The ideal T=1 @[, ]®l of lisa simple Lie algebra.
(2) The center 3(1) of [ is contained in ;.

Let S be a finite dimensional faithful irreducible I-module. We put
Sa={seS | -s=0}
and
S,=ad(.))?"'s_, forp<0
We form the semi-direct product g of [ by S, and put
g=S @], [(5,51=0
G =L%k20), g1=11065,
g, =S, (p<-Dh.
Then g = EBP 7 3p enjoys the following properties (Lemma 2.1);

(1) S = EB;_ISP,whereS_# ={seS|[1,s]=0}

Q) m= @p<0 g, is generated by g_;.



(3) S, is naturally embedded as a subspace of W @ S¥*P(I* )
through the bracket operation in m, where W = § _,,.

Thus m is a graded subalgebra of €#~1(V, W), which has the splitting g_; = [.; & S_;, where
V =1,and W= S_,. Hence mis a symbol algebra of u-th order differential equations of finite
type, which is called the typical symbol of type (I, S).

This class of higher order (linear) differential equations of finite type were first appeared in
the work of Y.Se-ashi [Sea88], who discussed the linear equivalence of this class of equations
and gave the complete system of differential invariants of these equations, generalizing the
classical theory of Laguerre-Forsyth for linear ordinary differential equations.

We will ask the following questions for the pseudo-product GLA g = @p 7 8p of type (1, S):

(A) When is g the prolongation of mor (m,gqg) ?

(B) Find the fundamental invariants for equations of type m.

Utilizing the Tanaka-Morimoto theory of normal Cartan connections
[Tan79], [Mor93], these questions will be answered by calculating the first and second gener-
alized Spencer cohomology spaces. The complete answer for (A) will be given as Theorem
5.2 in §5 and the problem (B) will be discussed in §6 and §7.

In §3, we will recall the construction of the model equations for the typical symbol of type
(1,S), following [Sea88]. For simplicity, let us explain this construction here in holomorphic
category. Assuming the condition H!(®)oo = 0 (see §4.5), we see that the Lie algebra [ coin-
cides with the Lie algebra of infinitesimal (linear) automorphisms of the local model equations
of type m (see the discussion in §3.1). Regarding I as a subalgebra of gl (), let L and L’ be the
Lie subgroup of GL(S) with Lie algebra [ and I’ respectively, where I' = I, @ I;. Moreover let
f. be the Lie subgroup of GL(S) with Lie algebra { and put L = I’ 0 L. Then I is a parabolic
subgroup of L and M = L/L’ = L/’ is an irreducible compact hermitian symmetric space (cf.
§3.2).

Since L' preserves the filtration {S 7}, of S, where $¢ = EBZ:_I S p, we get the representation
pwof L'

pw : L' = GL(W),
through the projection 7o : § = P” | S, = S_, = W.

Let E; be the vector bundle over M = L/L’ associated with the representation py : L' —
GL(W). As is well known, each s € § defines a global section o of the vector bundle Eg (see
the discusssion in §3.1).

Let J¥(Es) be the bundle of u-jets of Eg. At each point x € M = L/L’, let (Rs), be the
subspace of J%(Es) defined by

(Rs)x = { fxlos) | s€ S}

where f,(o) is the u-jet at x of the section o5. Then the model (linear) equation Ry for the
typical symbol of type (1,5) is defined as the subbundle of J*(Es) by

Rs = | JRs)x.

xeM

Rs is the system of differential equations of finite type which characterizes global sections of
Eg locally.

In §3.2, we will discuss the Pliicker embedding equations as our examples of model equa-
tions. We assume here that [ = 1@ 3(I). Then, a little generally, an equivariant projective
embedding of the model space M = L/L’ = L/L’ can be obtained from an irreducible represen-
tation of L as follows: Let 7 : L — GL(T) be an irreducible representation of L with the highest
weight A. Let r, be a maximal vector in T' of the highest weight A. Then a stabilizer of the

__3__



line (¢5] spanned by ¢, in T is a parabolic subgroup of I.. When this stabilizer coincides with
[/, we obtain an equivariant projective embedding of M = L/L’ by taking the L-orbit passing
through [t,] in the projective space P(T'). In this case, it can be shown that this embedding can
be obtained by global sections of the line bundle F which is constructed from the dual represen-
tation p = 7* of L on § = T* (see the discussion in §3.2). Then the model equation R for the
typical symbol of type (I, S), which characterizes global sections of F locally, can be called the
embedding equation for M. The case when [ = s[ (£ + 1,C) and § = A“**' C*! corresponds to
the Pliicker embedding equations for the Grassmann manifold M = Gr(k, £ + 1).

From §4, we will study the cohomology group H*(®) = H*(m, g) associated with the adjoint
representation of m = EBP w9 ong for the pseudo-product GLA g = EBP 7 9p Of type (1, 5).
Namely we will study the cohomology space of the cochain complex C*(6) = €P CP(®) with
the coboundary operator 8 : C?(®) — CP*1(®) given by

p+l

Pty Xyrt) = ) (D 0y iy )]
i=1

TN G Ve (EE RE TS NS SR )
i<j
where w € CP(®) = Hom(A” m, g) and x; € m. Moreover we put b_; = S, by = land b, = 0
(p # —1,0). We utilize the bigradation (g, ),z of § = § & [ given by g,, = g, N b,. Then
C?(®) has the following decomposition : C?(®) = EBM C?(®),;, where

P - P
C(®rs {“’EC(G’) forall in,....ipsjis--»Jp

w(gil,jl ARRRAY Qip,j,,) C Girt +iptnjit - +jpts }

In §4.3, we prepare the fundamental theorem (Theorem 4.1) to calculate the cohomology space
HP(®),; by means of Kostant’s theorem on Lie algebra cohomology.

Now let us describe (I, S ) in detail, utilizing the structure theory of semi-simple Lie algebras
over C. First we decompose [ = Toz(D, lh = (D). Since S is a faithful irreducible I-module,
there is an irreducible -module 7' and 3I(f)-module U such that S is isomorphicto 7 ® U as a
[-module. Then we impose the following condition for (1, §) : 3D is isomorphic to gl (U). We
interprete this condition as the condition H*(®)g = 0 for the first cohomology in Lemma 4.5.

Fixing a Cartan subalgebra § (the set ® of roots relative to b)) and a simple root system
A = {a,...,as}, we have the root space decomposition of the simple Lie algebra {. Then
the gradation 1=1,;@&% &l can be described as (X¢, A1) (see §4.4). Here X, stands for the
Dynkin diagram of LA = {@;,} C A and q;, satisfies m; (0) = 1, where 6 is the highest root
and m; is a Z-valued function on @ defined by m;(a) = k; fora = Zle kja; € ®. Namely the
gradation 1 = [L; @ Iy @ I, is given as the decomposition by root spaces according to the height
m; () of each root «, for suitable choices of § and A. Thus (I, S) can be described by the triplet
(D), Ay, E) as follows : (D(1), Ap) is of type (X, X A, {@;}) and S is an irreducible D(I)-module
with highest weight Z = y + m; when dim U > 1 and (D(1), A,) is of type (Xe, {@;}) and S is an
irreducible T-module with highest weight & = y when dim U = 1. Here 7, is the fundamental
weight corresponding to the identity representation on U of 3D = gl (U) of type A, and y is a
dominant integral weight of T of type X,.

In §5, we will calculate the first cohomology H!(®) and give the answer for the question (A)
raised in §3 in Theorem 5.2 : For a pseodo-product GLA g = @pEZ a, of type (1,S) satisfying
the condition H'(®)oo = 0, g is the prolongation of m = @p <0 9p except for three cases. Let

b= b ez Bp be the prolongation of g = b_; & by. Then the three exceptional cases correspond
to cases :



(a) dimb < oo and by # 0,

(b) dimb = oo,

(¢) gis a pseudo-projective GLA.
In case (@), b = b_; @ by ® b; becomes a simple GLA containing g = b_; @ by as a parabolic
subalgebra. Theorem 5.2 lists up all these exceptions explicitly in terms of the data (D(1), A;, E).

We will calculate the second cohomology H*(®) in §6. Especially we will enumerate the

cases when H2(®), # 0 (r 2 1) for the above exceptional cases (a) and (b). Finally in §7, we
will show the rigidity theorem for the Pliicker embedding equations for M = Gr(k, € + 1), when
k=2((z24)ork=3(26).

1. DirrERENTIAL SYSTEMS AND PSEUDO-PRODUCT STRUCTURES

1.1. Differential Equations of Finite Type. Let us consider a higher order ordinary differen-

tial equation
y® = Fx,yy,...,y%"),

or more generally, a system of higher order differential equations of finite type

6kya
= @ 1... m
G o, =F (XX, LY ,...,pf,...,pljl jk—l)

(Afasml£ih £ S £n),

where pﬁ: W= 7Y _ These equations define a submanifold R in k-jets space J* such that the

i r 6)(,'] 6x,-,
restriction p to R of the bundle projection #¥_, : J¥ — J*! gives a diffeomorphism ;

(1.1) p : R — J¥1; diffeomorphism
On J*, we have the Contact (differential) system C* defined by
Ckz{w"zwf'z---:wff - =0},
where
w® =dy* - 3., pldx, (12asm
w?:dp?—Z’]’-zlp?jdxj, QA2asml1<isn)
12y ,

a — o o\ @ .
T e = dpil ik-1 Zj:l Py ik—ljd Xj
Afaesml1i £+ Lig Sn).

Then C* gives a foliation on R when R is integrable. Namely the restriction E’ of C* to R is
completely integrable.

Thus, through the diffeomorphism (1.1), R defines a completely integrable differential system
E = p.(E") on J*! such that

C'=E®F, F=Ker(n)).
where 7571 - J&1 — J¥2 is the bundle projection.

To treat with this situation, N.Tanaka ([Tan85]) introduced the notion of pseudo-product man-
ifolds as follows.

Pseudo-Product Manifolds (R; E, F)
(1)  E and F are differential systems on a manifold R.



2) ENF =0, and both E and F are completely integrable.
(3) D = E & F is non-degenerate.
(4)  The full derived systems of D coincides with T(R)

In fact he studied ([Tan82, 891), in this setting, the geometry of systems of second order
ordinary differential equations in depth, utilizing his theory of Cartan connections associated
with simple graded Lie algebras sl (m + 2,R) = @;:_2 ap-

More generally let R be an involutive system of k-th order differential equations of finite type.
Let RV c J*¥! be the first prolongation of R (cf. [Yam8&2] for a precise definition of involutive
systems). The condition “R is involutive and of finite type  implies that p® : RY — Ris a
diffeomorphism (cf. Lemma 7.3 [Yam82]). This implies that Ker p. = {0} and E is completely
integrable, where p = nf_ |z and E = C*[g. Then, as in the above example, by putting F' =
Ker(n)., (R; E, F) enjoys the properties (1) and (2) above, where 7 = nf:% op.Here D=E®F
is the pull back of the canonical system C*! by p,. We call (R; E, F) the pseudo-product
structure associated with R in the broader sense.

Our basic strategy to study (involutive) higher order differential equations R of finite type is
to utilize the ‘rich’ geometry of the differential system D = E @ F naturally associated with R.

1.2. Geometry of Differential Systems (Tanaka Theory). We summarize here the basic no-
tion for (linear) differential systems following [Tan70] and [Yam93].

1.2.1. Derived Systems and Characteristic Systems. For a manifold M of dimension d, a sub-
bundle D c T(M) of rank r (s + r = d) is called a differential system of rank r (or codimension
s).
D={w;=--=w;,=0}
For two differential systems (M, D) and (M, D), a diffeomorphism ¢ of M onto M is called
an isomorphism of (M, D) onto (M, D) if the differential map ¢. of ¢ sends D onto D.
By the Frobenius theorem, we know that D is completely integrable if and only if

dw; =0 (mod wy,...,ws) fori=1,...,s,
or equivalently, if and only if
[D, D] c D.

where D = I'(D) denotes the space of sections of D.
Thus, for a non-integrable differential system D, the derived system dD of D is defined, in
terms of sections, by

0D =D+ [D,D].
The Cauchy characteristic system Ch (D) of (M, D) is defined at each point x € M by
Xldw; =0 (mod wy,...,w;s) }

Ch(D)(x):{XED(x) fori=1,...,s

Then Ch (D) is always completely integrable when it is a subbundle (i.e. has constant rank) (cf.
[Yam82]).

Moreover higher derived systems 8D are usually defined successively by
8'D = 06" D),

where we put 8°D = D for convention.
On the other hand we define the k-th weak derived system 8® D of D inductively by

9D = §* DD + [D, 8% VD,



where 09D = D and %D denotes the space of sections of 8“D. This notion is one of the key
point in the Tanaka theory ([Tan70]).

A differential system (M, D) is called regular, if D~**D = §® D are subbundles of T'(M) for
every integer k > 1. For a regular differential system (M, D), we have ([Tan70], Proposition
1.1)

(S1) There exists a unique integer u > 0 such that, for all k z p,
D*=...=p#*Q2p*12...2D? 2D =D,
(S2) [DP, D!} c D forall p,q<0.

where D? denotes the space of sections of D”. (S2) can be checked easily by induction on g.
Thus D™ is the smallest completely integrable differential system, which contains D = D!,

1.2.2. Symbol Algebras. From now on, we will consider regular differential systems (M, D)
such that T(M) = D™. As a first invariant for non-integrable differential system, the symbol
algebra m(x) of (M, D) at x is defined as follows ([Tan70]); '

—H
m(x) = P s,(0),

p=-1

where g_(x) = D7\ (x), 8,(x) = DP(x)/DP*'(x) (p < —1). Let w, be the projection of D?(x)
onto g,(x). Then, for X € g,(x) and ¥ € g,(x), the bracket product [X, Y] € g,,,(x) is defined by

[X, Y] = @, g([X, Y1),

where X and ¥ are any element of D? and D? respectively such that wp(f{x) =X and wq(f’x) =
Y.

Endowed with this bracket operation, by (S2) above, m(x) becomes a nilpotent graded Lie
algebra such that dim m(x) = dim M and satisfies

8p(xX) = [8p+1(x),8-1(x)]  forp < -1
Furthermore, let m be a fundamental graded Lie algebra (FGLA) of u-th kind, that is,

m:Eng

p==

is a nilpotent graded Lie algebra such that

9p = [8p+1,8-1] for p < —-1.

Then (M, D) is called of type m if the symbol algebra m(x) is isomorphic with m at each x € M.
Conversely, given a FGLA m = @;’: _, 9p» We can construct a model differential system of
type m as follows: Let M(m) be the simply connected Lie group with Lie algebra m. Identify-
ing m with the Lie algebra of left invariant vector fields on M(m), g_; defines a left invariant
subbundle D,, of T(M(m)). By definition of symbol algebras, it is easy to see that (M(m), Dy,)
is a regular differential system of type m. (M(m), Dy,) is called the standard differential sys-
tem of type m. The Lie algebra g(m) of all infinitesimal automorphisms of (M(m), D,,) can be
calculated algebraically as the (algebraic) prolongation of m ([Tan70], cf. [Yam93]).



1.2.3. Prolongation of (m,gy). Here we recall some basic facts on the algebraic prolongation
g(m) of a FGLA m = @p'<0 g, (see §2 of [Yam93]).
a(m) is first characterized as the graded Lie algebra which satisfies: the following conditions:

(1) g,(m) = g, for p <0, where m = EB[KO 3p-

(2) Fork=0,if X € g,(m) and [X, m] = {0}, then X = 0.

(3) g(m) is maximum among graded algebras satisfying conditions (1) and (2) above.
More precisely, we can define g;(m) as follows: First we decompose A>m* = @j<_1 A?m*
according to the gradation m = @p<0 ap, Where

2. % _ * *
/\jm —@gp/\gq.

p+q=j

Putting C} = »<0 9p+k ® g and Cl = P, _, 97 ® Ajm", we can define g = gi(m) for k 2 0
inductively by the following exact sequence;

0o g - Cl -5
where the coboundary operator 8 : C} — C,f is given by

(Op)X,Y) = [X, p(1)] - [¥, p(X)] - p([X, Y]).

Thus go(m) is the (gradation preserving) derivation algebra of m. Moreover, for u € gi(m) and
v € go(m) (k, £ = 0), by induction on the integer k + £ = 0, we can define {1, v] € g C C,ﬁ +e DY

[, v}(X) = [[u, X], v] + [u, [v, X1] for X € m.

With this bracket product, g(in) becomes a graded Lie algebra.
Now let gy be a subalgebra of g(m). We define a subspace g; of gx(m) for k£ = 1 inductively
by
o = {u € ge(m) | [u,9.1]1 C &1 }-
Then, putting
g(m, go) = ma EB 9
k20
we see, with the generating condition of m, that g(m, go) is a graded subalgebra of g(m). g(m, go)
is called the prolongation of (m, go).

By utilizing the above definition of the algebraic prolongation, we will consider the following
situation: Leth = €D, b, be a graded Lie algebra such that m = P, _, b, is a FGLA. To check
whether b is the prolongation of m or (m, §,), we consider the Lie algebra cohomology H?(m, b))
associated with the adjoint representation ad : m — gl (h). According to the gradation of b, this
cohomology space has a bigradation (for the precise definition see §4);

H?(m,b) = EP) H? (m, ),

With this cohomology group, we will utilize the following criterion in §4.

Lemma A (Lemma 2.1 [Yam93]). Let b = @p o Dp be a graded Lie algebra such that b, =
[bp+1,b-1] for p < —1. Then Y is the prolongation of m (resp. of (m,bo)) if and only if the
Sfollowing two conditions hold:

(1) Forkz0,if Xeb,and [X,m] =0, then X = 0.
(2) H'(m,b), = {0} for r 2 0 (resp. r 2 1).



1.3. Symbol Algebra of (J*, C¥). As an example, we will now calculate the symbol algebra of
the canonical differential system (J*, C¥). First recall that C* is defined by 1-forms (1.2) on a
coordinate system U;(x', y*, p{, -+, pi, ;) of J*

Ck:{wazw?:...:w(?. =0}

I k-1
Then we have a following coframe

a @
{'w ,...,ZD'Q ',"-7dxi’dpil ik}’

oI

at each point in U. Now let us take the dual frame of this coframe;

{6 0 d 0 }
aya”"aapz i(’...,dxi’aptc.: )

d 0 o <
6_1'71':5?1' Z Zzpmn—

a=1 =1 i1g Eje ]1 Je

where

‘We have

9 d)_, 0 :
D=5
[617;? dx,} Toy* [6le i x,] Z

k= 11 Tk Je

Then we sce that (J*, C*) is a regular differential system of type €*(n, m):
n,m) =€ o ®C @ dC,

where €_gup) = W, €, = W@ S¥PrL(V*), €, = Ve W SK(V").

Here V and W are vector spaces of dimension n and m respectively and the bracket product
of €*(n,m) = €X(V, W) is defined accordingly through the pairing between V and V* such that
V and W ® S*(V*) are both abelian subspaces of €_;. Namely

[W.VI=1{0},  [V.V]={0},
WS (V),WeS (V)] ={0) (rns=0.---,k),
[WRS'(V),VI=WeGEV)S' (V) (r=1,---,k),

ie, [w®s,v] = w (i(v)s) forv e V,w € Wand s € S"(V*), where i(v) denotes the interior
multiplication.

The subspace W ® S¥(V*) of €_; corresponds to the subbundle Ker(zt_,). = Ch(3C*) of C*
and the identification Ker(nk D2 Wes k(V*) corresponds to the fundamental identification
of the jet bundle theory. For the geometry of the higher order contact system (J*, C", we refer
the reader to [ Yam82].

2. Pseubo-probucT GLA g = EBP oz 3p OF TYPE ([, §)

We now discuss the prolongation of symbol algebras of the pseudo-product structures asso-
ciated with higher order differential equations of finite type. Moreover we will generalize this
algebra to the notion of the pseudo-product GLA (graded Lie algebras) of irreducible type and
introduce the pseudo-product GLA of type (1, 5).

— 9 —



2.1. Pseudo-projective GLA of order k of bidegree (n, m). For a k-th order differential equa-
tion R of finite type given in §1.1, we have the pseudo-product structure (R; E, F). Correspond-
ing to the splitting D = E & F, we have the splitting in the symbol algebra of the regular
differential system (R, D) = (J*~1, C*°1) of type €¥1(n, m);

€ =caf,

where ¢ = V,f = W ® S*¥1(V*). At each point x € R, ¢ corresponds to E’(x) (the point in R)
over x) and § corresponds to Ker(n’,g:é)*( p(x)).

Now we put
8o = (X € go(C 1 (m,m) | [X,e] € ¢, [X, Tl C T}

and consider the (algebraic) prolongation g*(n, m) of (€% (n, m), §;), which is called the pseudo-
projective GLA of order k of bidegree (n, m) ([Tan89]).

Let Gy ¢ GL(€*!(n,m)) be the (gradation preserving) automorphism group of €*~!(n, m)
which also preserve the splitting €_; = ¢® {. Then Gy is the Lie subgroup of GL(C* 1 (n, m))
with Lie algebra d;. The pseudo-product structure on a k-th order differential equation R of
finite type given in §1, which is called the pseudo-projective system of order k of bidegree
(n,m) in [Tan89], can be formulated as the Gg-structure over a regular differential system of
type €*1(n, m) ([Tan70], [Tan89], [DKM99]). Thus the prolongation g*(n, m) of (€*!(n, m), 8o)
represents the Lie algebra of infinitesimal automorphisms of the (local) model k-th order differ-
ential equation R, of finite type, where

ik é l’l) } .

The isomorphism ¢ of the pseudo-product structure on R preserves the differential system D =
E®F, which is equivalent to the canonical system C*"! on J¥1. Hence, by Bécklund’s Theorem
(cf. [Yam83}), ¢ is the lift of a point transformation on J° when m 2 2 and k 2 2 and is the lift
of a contact transformation on J! when m = 1 and k 2 3. When (m, k) = (1,2), ¢ is the lift of the
point transformation on J°, since ¢ preserves both D and F = Ker(r),. Thus the equivalence
of the pseudo-product structure on R is the equivalence of the k-th order equation under point
or contact transformations. To settle the equivalence problem for the pseudo-projective systems
of order k of bidegree (n, m), N.Tanaka constructed normal Cartan connections of type g*(n, m)
([Tan79], [Tan82], [Tan89]).

lIA

akya
R ={—"" =0 (IZ2asmlsi <
? {6x,-1---0x,-k ( =a=milzhz=

It is well known that g“(n,m) (k = 2) has the following structure ([Tan89], [Yam93],
[DKM99]);

(Hk=2 a%(n, m) is isomorphic to sl (m + n + 1,R) and has the following gradation:
slm+n+1,R)=6,©0.19380®0 D%,

where the gradation is given by subdividing matrices as follows;

000
a4 = [000]
£0 0

feWaR’”},



0 00 :
g1=3[x 0 O|{xeV=R'  AeMmn=WeV"},
0 A O,
0

a 0
Jo = 0 B O
0 C

a={XXeqg,} w={X|Xecg,},
where V = M(n, 1), W = M(m, 1) and M(a, b) denotes the set of a X b matrices.
Qk=3andm=1 g(n, 1) is isomorphic to sp (n+1,R) and has the following gradation:

a+tuB+trC =0

acR, Begl(V), CEQI(W),}

o

sp(n+1,R)=g303,83. 193 D31 DD ys.
First we describe
spn+1,LR)={Xegl2n+2,R)|'XJ+JX =0},

where
0 0 01
0 0 I, 0 ~
T=lo -1 0 of€9@+2R), L =()eg®mR).
-1 0 0 0

Here I, € gl (n,R) is the unit matrix and the gradation is given again by subdividing matrices as
follows;

0 000
0 000
83=110 0 0 of|2<®
200 0 0
0 0 00
00 00 R
9-2=1l¢ 0 0 of¢ER =V
0 ' 00
00 0 O
x 0 0 0 " x
1=9l0 4 0 o xeR" =V, A eSym(n) = S>(V*) !,
0 0 -x 0
b0 0 0
0B 0 O ,
gO - O O _tB O b € R’ B € gI (V)’
00 0 -b
gk—_—{tX|XEg_k}(k=1,2,3),

where Sym(n) = {A € gl (n,R) | ‘A = A} is the space of symmetric matrices.
(3) otherwise For vector spaces V and W of dimension n and m respectively, g*(n, m) =
EBP <z 9p has the following description:

% =1{0} (kz22), a =V, g0 = gl (V) ® gl (W),

goi=VeWes“i(vY), g,=WeSH? (V") (p<-1).
Here the bracket product in g*(n, m) is given through the natural tensor operations.



For the proof of these facts ((1) and (2)), see e.g., Theorem 5.3 in [Yam93]. We refer the
reader to [DKM99] for the description of these algebras as the Lie algebras of infinitesimal
automorphisms (polynomial vector fields) of the (local) model equations. We will also give the
proof of (3) in §5 by calculating the first generalized Spencer cohomology. For this, we observe
the following points:  We put

[=Vagdg =Vagl(V)eV)oa (W)
2.1) = sl (V) ® gl (W),
S=wes*i(v), V=ReV
where the gradation of the first kind; sl (V) =V gl (V) & V* is given by subdividing matrices

corresponding to the decomposition V =R & V.
Then

k-1
SELP*) = @ SEVH,
£=0

and S is a faithful irreducible I-module such that I = 1_; @ Iy & [; is a reductive graded Lie
algebras, where [_; = V, Iy = go, [; = g;. Moreover af(n,m) = S ® lis the semi-direct product
of Iby S.

2.2. Pseudo-product GLA of type (I, S). Generalizing the pseudo-projective GLA of order k
of bidegree (n, m), we will now give the notion of the pseudo-product GLA of type ([, S).
Letg = @p 7 9p be a (transitive) graded Lie algebra (GLA) over the field K such that the

negative part m = EBP -0 9p is a FGLA, where K is the field R of real numbers or the field C
of complex numbers. Let ¢ and f be subspaces of g_;. Then the system & = (g, (g,)pez, ¢, 1) is
called a pseudo-product GLA (PPGLA) of irreducible type if the following conditions hold:

(1) gis transitive, i.e., for each k 2 0, if X € g; and [X,g_1] = 0, then X = 0.

(2) g1 =edf, [ee]=1[ff]=0.

(3) [g0,¢] C eand [go, ] C 1.

(4) g-» # 0 and the gyo-modules e and f are irreducible.

It is known that g becomes finite dimensional under these conditions (see [Tan85], [Yat88]).
As a typical example, starting from a reductive GLA 1= I_; ® 1, ®; and a faithful irreducible

I-module S, we define the pseudo-product GLA g = P pez 9 of type (1, S) as follows: Let
[=1®®]; be afinite dimensional reductive GLA of the first kind such that

(1) The ideall=1, @[, |]®of lisa simple Lie algebra.
(2) The center 3(1) of [ is contained in 1.

Let S be a finite dimensional faithful irreducible I-module. We put
Sa={seS|-s=0}
and
S, =ad(l,;)?!s; forp<0
We form the semi-direct product g of I by §, and put
g=SaI [S,51=0
G=4%k20), g1=0L18S5,,

8, =S, (p<-D.
Namely g is a subalgebra of the Lie algebra A(S) = S & gl (S) of infinitesimal affine trans-
formations of S. Then we have



Lemma 2.1. Notations being as above,
(1) S =€B,° S, whereS_, ={s€S |[l,s]1=0}.
2) m= @p<0 g, is generated by g_;.

(3) [Sp,Il] = Sp+1f0rp <-L

(4) S, is naturally embedded as a subspace of W ® S#*P(1" |) through the bracket operation
inm, where W=S5_,

(5) S-1, S, areirreducible 1y -modules.

Proof. We have the characteristic element Z € To (Lemma 4.1.1 [Sea88]), which defines the
gradation of I:

I, ={Xell| [ZX]=pX)} for p=-1,0,1.
Since ad(Z) is a semi-simple endomorphism with eigenvalues —1,0, 1. ad(Z) is a semi-simple
endomorphism of S (Corollary 6.4 [Hum72]) with real eigenvalues (see the argument in §4.5).
Moreover, for the eigenspaces S, = { s € S | [Z, 5] = As}, by the Jacobi identity, we have

[Ip,S(,l)] C S(/l+p) for p = —1,0, 1.
For each eigenvalue A of ad(Z), we consider the following subspaces S !(1) and S™!(2) of S:

S =P Stap@, ST =P SEW.

k=0 k20

where | .
S ={seSullly,s]=0}, SHA={seSy|[l,s]=0}

S (I,Hk)(/l) = [0, S (e, C Sy fork 21
S = [L1, S gLy C Sy fork 21
Then S (1/1)(/1) and S (jll)(/l) are lp-invariant subspaces of S (3. One can easily check that S (11 D
and S (—11_ o(A) are l-invariant and
[L1S ayD1 €S L@, LS Gy € S iy

by induction on k 2 0. Thus S (1) and S ~!(2) are I-submodule of S for each A.
Let Ag and A; be the minimum and maximum eigenvalue of ad(Z). We have

and S'(1) and S (1) are both proper subspaces of S for an intermediate eigenvalue 1. Then,
since S is an irreducible I-module, we get

S') =St =S and  S'QA) =511 =0 otherwise.
Especially, from S, (1) = S (‘/11)(/1) =0, we get
S<,11) ={seS|[l,s]1=0}=5_, S(/l()) ={seS|[l,s]=0}

Hence, from $~!(2;) = S, we obtain (1) and (2). Moreover, from S () = S, we get (3).
Now we put V = [L; and W = §_,. Then we have a linear map ¢, of §,_, into W ® S"(V")
(r=1,...,u— 1) defined by

()X, LX) =1L..[s,Xi],... . X, ] e W forseS§, ,,XieV.

Since _; is abelian, ¢, is well-defined and is injective by (1). Thus we get (4).
Starting from a lp-submodule 7',y in S _;, similarly as above, we can form the [-submodule

T-1(A,) of S by putting;
T () = EP Ty,

k=20



where Ty = L1, Tatan] € S ey for & 2 1. Hence we get T7'(4;) = S or 0, which
implies T(y,) = S—1 or 0. Thus S_; is an irreducible lp-module. By the similar argument, we see
that S _, is an irreducible [;-module, which completes the proof of Lemma. O

Thus m is a graded subalgebra of €~!(V, W), which has the splitting g-; = {_; @ S_;, where
V =1;and W = S_,. Hence m is a symbol algebra of u-th order differential equations
of finite type, which is called the typical symbol of type (I,S). Moreover the system & =
(8, (gp)pez, 1.1, S —1) becomes a PPGLA of irreducible type, which is called the pseudo-product
GLA of type (1, S).

This class of higher order (linear) differential equations of finite type were first appeared in
the work of Y.Se-ashi [Sea88]. We will construct the model (linear) equations for each PPGLA
® of type (1,S) in §3, following [Sea88]. Moreover we remark that the PPGLA & of type
(1, S) also naturally appeared in the classification of PPGLA’s of irreducible type under mild
conditions in [Yat92].

In this paper we will consider only pseudo-product graded Lie algebras g = EBP 7 9p Of type
(1, S). We recall that there exist an anti-linear involution 7 of [ and an hermitian inner product
(-]+) of g having the following properties:

@) 1) =1Ly
(i) (8p18q) = Ofor p #g;

(i) ([x, s]]s) + (s|[r(x),s’]) =0forall xeland s,s" € S.

Thus the PPGLA ® of type (I, S) satisfies the criterion (Proposition 3.10.1) in [Mor93] .
Hence, when g is the prolongation of m or (m, gq), for the equivalence of the pseudo-product
structure associated with g = @pez a,, we can utilize the Morimoto’s theory of normal Car-
tan connections [Mor93]. Especially we can utilize the harmonic theory for the curvature of
the normal Cartan connections (cf. [DKM99]). Namely, regarding the curvature as C*(m, g)-
valued function, its harmonic parts constitute the fundamental system of invariants of the con-
nection. In particular the curvature vanishes if and only if its harmonic part vanishes (Theorem
3 [DKM99)).

We will ask the following questions for the PPGLA g = @p oz 8p of type (I, S) in the subse-
quent sections:

(A) When is g the prolongation of m or (m,gy) 7
(B) Find the fundamental invariants for equations of type m.

Utilizing the Tanaka-Morimoto theory of normal Cartan connections, these questions will be
answered by calculating the first and second (generalized Spencer) cohomology spaces. The
complete answer for (A) will be given in §5 and the problem (B) will be discussed in §6 and §7.

In the rest of this section, as an example to obtain the local model equations, we will realize
the negative part m of a pseudo-product GLA of type (I,S) as the subalgebra of €*~!(n, m),
which is called the typical symbol of type (1, S) or (I, p) in [SYY97]. Here [ = sl (£ + 1,K) is
endowed with the gradation given by ;

(2.2) sl{+1,K)y=1L 0ol

where
I_I:{(g 8)|CGM(p,k)}, L ={(8 §)|DeM(k,p)},

h= {(g g)lAegI(k,K), B € gl (p,K) andtrA+trB=()}.



Here p = £ — k + 1 and M(a, b) denotes the set of a X b matrices.
And § = AT*TK! s the faithful irreducible [-module given by the following exterior
representation p = pg:
E~k+1

po:sl(E+ 1K) -l ( N\ K,

where
£~k+1

PoX)1 A+ Avp) = D 0 A AX@) A A Vi
i=1
forXesl(¢(+1,K)andv; e K*! (i =1,2,...,6—k+1).

Let {ey,...,ep1) be the natural basis of K*!. Then I = [y @ I; is the isotropy (stabilizer)
algebra of the line [e; A---Ae ] in A*K!. We denote by E,, € g1 (€+1,K) (1S a,b S €+1)
the matrix whose (a, b)-component is 1 and all of whose other components are 0. From (2.2),
we have the following basis for V = [ and 1;:

V=l =(E,;|1Sigk k+1spst+1)
h=(Ey|lsiskk+lspst+1)

Since E,i(e;) = §ije, for 1 £ j < kand, Eji(e;) =0fork+1 < g < £+ 1, we have from Lemma
2.1(1)
W==58_ =(e1 A Aegr).

Hence wehavem = landn=k(f—-k+1). For1 2ij < ---<i,fkandk+1Zp; <--- <
pr <€+ 1, weput

{—k—r+1

e(pl,...,pr)zek+1 A"'A?pl /\"'/\?pr/\"'/\em_] € /\ K€+1,

and consider the following element of S:
—k+1

St eesip Praee D) = €4 Ao Ay Ne(pr..,p) €S = [\ K
Then, from Lemma 2.1 (3) and E;,(e;) = 0, Eipleg) = 0pgeifor 1 S jsk, k+1sgs{+1, we
get

Sr-—,u :<S(i11"-7ir’pl9"-9pr)| l § il < - <lr§k7k+ 1 épl <:ee <pr§€+l>’
forr=1,2,...,po— 1 and
S o = {0},
for r 2 po = min{k + 1, £ — k + 2}. Thus we have u = py. Moreover, for X = 3;, X;,E,; € V, we
have
IR E{C T S JERU /1)) [0. U, § |
=rli(=1)"X(ey) A --- A X(ei,) Ae(p1, ..., pr)

=rU(=1Y' () SEN 0 Xiypyy** Xippois) €py A -+ A€y, AelPrs ., D).

Thus, by fixing a basis of W and identifying S V* with the ring of polynomials on V, we see
that S_, = V* and §,_, C §"V* is spanned by the minor determinants of degree r of the matrix
(Xip), which are the linear coordinates of V.



Moreover it is known that S,_, € S"(V*) is equal to the (r — 2)-th prolongation p"~?(S,_,)
of §,_, C S2(V*) (Lemma 3.1 [SYY97]). Hence the local model equation in this case is given
as the prolongation of the following second order equations:

%y &y
=0 <i<jgkk+1= <fE+ 1.
6x,-p3qu 0x,~q6xjp ’ <1 =i J =5 Tis p < 1= * )

3. Se-asur’s THEORY FOR LINEAR EqQuaTioNs or FINITE TyPE

We here recall some relevant facts from Se-ashi’s theory [Sea88] for the equivalence of higher
order linear differential equations of finite type. Especially we will recall the construction of
the model equations for the typical symbol of type (I, S) and his “Rigidity Theorem”. We will
also discuss the Pliicker embedding equations as our examples of model equations, following
[SYYO97] rather closely.

3.1. Model equations for the typical symbol of type (I, S). Starting from the typical symbol
m=SeL,oftype (I.S)in §2.2, where S = P, S, c PIyWeSV, V=1, W=5,
we now explain a recipe to construct an integrable system of linear differential equations of
finite type of order i modeled after m.

The construction of the model system Ry is preceded by the consideration of the Lie algebra a
of infinitesimal bundle automorphisms of the constant coefficient differential equations modeled
after S = P, S, c P, WSV

Let Ey = V x W be the trivial vector bundle over the vector space V. Let J#(E,) be the bundle
of u-jets of Ey. Then the fibre Jg‘ (Ey) of JH(E,) at the origin 0 € V is identified with @’f oWVe
STV*, where W ® S"V* can be regarded as the set of W-valued homogeneous polynomials of
degree r on V. Thus, starting from the typical symbol S = B ;é SruCEPL WSV, our
first (local) model is the constant coefficient differential equations given as the subbundle Rs =
V x § of JH(Ey), whose solutions consist of W-valued polynomials contained in.S C W® S V™.

Let us consider an infinitesimal bundle automorphism of E, preserving Rs. An infinitesimal
bundle automorphism of Ej has a form

N o
Zf(x)a; + ;Aaﬂu)fa—y;,

where (x') and (y®) are linear coordinates of V and W, respectively. Thus the Lie algebra @
of (formal) infinitesimal bundle automorphismsof E, can be expressed as a graded Lie algebra

i =P, by putting
) i, =SV eVeS vV egl (W),
where @_; = V corresponds to constant coefficient vector fields on V. The bracket operation in
d is given by
L/ ®v, gow] =-f(i(v)g) ®w+ g(iw)f) v,
[fed,gow]=g(iw)/f)®A,
[f®A,g® Bl = fg®l[A,B],
where f,g € SV*, v,w € V and A, B € gl (W) ; i(v) denotes the inner multiplication. The Lie
algebra @ acts naturally on the space S V* ® W which is regarded as the space of cross sections
of Eqy:
' (fev+gA)hew) =-fIvh) Qw+ gh® A(w),
where f,g,h € SV*,v,w € Vand A € gl (W).



Then the Lie algebra a of infinitesimal automorphisms of Ry is given by
a={Xea|XE$)cS}

a is a graded subalgebra of @ = @,2_1 d, ie,a= @rz_l a,, where a, = anN@,. The Lie algebra
al (S) has also the gradation given by -

gL(S), ={Xegl(S)|X(S,)CSpy foranyp}.

Referring the action above we have a restriction homomorphism: a — gl (§), which sends a,
into gl (§),. Assume here the following two conditions for S, which are satisfied by the typical
symbol of type (I, S):

(A1) The action of @_; = V leave S invariant.

(A2) Theactionof d&_; = Von S is faithful.

Then this homomorphism turns out to be injective and we can characterize a, as a subspace of
gl (), as follows (Proposition 2.2.2 [Sea88]):

3.1 =V, 0, ={X egl(S), | [a-,X]Cay} (r20).

Putfi, = S"V*® gl (W) C G,. Thenfi = @,zo fi, is an ideal of @ and n = fi N a is an ideal of a.
We can see -

(3.2) n={Xegl($)|la-, Xy} (r20),

where we put n_; = {0} for convention.

In the case of the typical symbol of type (I, S), we have the following: Since § is a faithful
[-module, 1 is a subalgebra of gl (§). We have a_; = [_; and it follows from (3.1) that ay = do,
where g is the Lie algebra of derivations of m = § @ 1_; such that D(S,) C S, =g, (p < -1),
D) clyand D(S_;) CS_;.

Let 35(I) denote the centralizer of [ in gl (S) and a* the orthogonal complement of a in gl (S)
with respect to thenon-degenerate bilinear form tr given by tr(X, Y) = trace XY for X, Y € gl (S).
Then, from (3.1) and (3.2), we have (Proposition 4.4.1 [Sea88])

a=[L®3s(D, s Cm,
gl (S) =L ®35()@a" (tr-orthogonal).
We here note that our assumption on [is a little different from that in [Sea88]. We will discuss
the condition for a = [in §4.5.

Now the model equation Ry is constructed as follows: We filtrate the space S by subspaces

S = Z=—1 S ». Notice that the group GL(V) x GL(W) acts on & by the adjoint action: for

a € GL(V) x GL(W) and X € &, the action is (aX)(s) = (a- X - a™)(s) for s € S. Let us define
groups

(3.3)

Ag={ae GL(V)XGLW) |a(S)cC S},
GLO(S)={g e GL(S)| g(S9) c S? foranyq}.
Let A be the analytic subgroup of GL(S) with Lie algebra a C gl (S) and put
A=A A,
A = AnGLO(S).

We see that the groups Ay and A’ are Lie subgroups of GL(S) with Lie algebras ap and o’ =
@20 a, respectively. Since A’ preserves the filtration {S 9}, of S, we get the representation
pw of A”:

pw - A" = GL(W),



through the projection 7y : § = EB;_# S,—=>S_, =W
Let Es be the vector bundle over M = A/A’ associated with the representation py : A" —
GL(W) ; A’ acts on A X W on the right by

(a,w)d’ = (ad', pw(a@’)™ W),

fora € A,w € Wand a € A’. Then Es is the vector bundle over M = A/A’ defined by
Es = AX W/A'.

As is well known, the space I'(Eg) of global sections of Es is identified with the space
F(A, W), of all W-valued functions f on A satisfying

flaa') = pw(@)" f(a),
fora € A and a’ € A’, via the correspondence f € F(A, W)u - oy € I'(Es) given by

of(m(a)) = m(a, f(a)),

where ry : A > M = A/A’ and 7, : A X W — Ej denote the natural projections. Then each
s € S defines an element o, € I'(Es) via the above correspondence by

f(a) = mo(pa™)s)

fora € A.
At each point x € M = A/A’ , let (Rs), be the subspace of J5(Es) defined by

Rs)x ={J5(os) | s€ S}
where f.(o) is the p-jet at x of the section o. Let Rs be the subbundle of J¥(Es) defined by

Ry = U(Rs )x-

xeM

Then we have

Proposition A (Proposition 2.4.1 [Sea88)). R is an integrable system of linear differential
equations of finite type of order u of type S and every local solution of Ry is a restriction of o
for some s € S.

We call R the system of equations modeled after S. Ry is the system of differential equa-
tions which characterizes global sections of Eg given by elements of S even locally. By the
construction, it follows that Rg is locally isomorphic with the constant coefficient differential
equations Ry.

Here the condition for Ry to be a system of differential equations of type S means that the
total symbol S, of Ry is isomorphic with § = @’r:é SruC @’: o W®S"V" ateach x € M. For
the precise definition in terms of the jet bundle theory, we refer the reader to §2 of [Sea88] or
§2.1 of [SYY97].

What is important for us here is that, as a submanifold of J*(Es), Rs has the pseudo-product
structure induced from canonical systems C* and C*! as in §1.1. Then, when S is the typical
symbol of type (1,5), the above condition is equivalent to say that the symbol algebra of the
pseudo-product structure is isomorphic with m = § @ [_; at each v € Ry (cf. [Yam82]), which
follows from the fact that Ry is locally isomorphic with Rs. R is our (global) model equations
for the pseudo-product structures associated with the PPGLA ® of type ([, ).

Moreover it follows from (3.3) that A/A’ = L/, where L is the Lie subgroup of A with Lie
algebraf =L @[y, [{1®];. Especially, in the case of pseudo-projective GLA a*(n, m) of order
k of bidegree (n, m), we see from (2.1) that the model space M coincides with the projective
space P* and it is known ([Tan89]) that the vector bundle E; is the tensor product W @ H*! of



the trivial bundle W = P" x W with the (k — 1)-th power of the hyperplane bundle H over P"
(see the discussion in §3.2).

Y.Se-ashi developed in [Sea88] the theory for the linear equivalence of integrable higher
order differential equations R of finite type with the typical symbol of type (I, 5). He gave the
complete system of differential invariants of R and interpreted these invariants in terms of Cartan
connections constructed over R. Utilizing these invariants he showed the following “Rigidity
Theorem” in the linear equivalence of these equations.

Theorem A (cf. Corollary 3 [SYY97]). Let 1 = L1 & Iy ® [y be a simple graded Lie algebra
over C and let M = L/L’ be the model space associated with | = 1L, @ ly®1,. Let S be a faithful
irreducible l-module. Then, except when M = P" or Q", every integrable system R of differential
equations of type S is locally isomorphic with the model system R of type (1, S), where P" is
the projective space and Q" is the hyperquadric in P"*.

We will discuss the invariants of the pseudo-product structure on these equations in subse-
quent sections.

3.2. Pliicker embedding equations. In order to discuss the Pliicker embedding equations, a
little generally, we will consider here projective embedding of hermitian symmetric spaces,
following §1 in [SYY97].

Group-theoretically, a compact irreducible hermitian symmetric space M corresponds to a
simple graded Lie algebra over C of the first kind as follows: Let [ = I_; @ [, & [; be a simple
graded Lie algebra of the first kind, 1.e.,

(1) lis asimple Lie algebra over C.
(2) I=1 @@l is a vector space direct sum such that [_; # {0}.

(3) [y, 1] € 1,4y, where I, = {0} for [p| 2 2.

Let L be the simply connected Lie group with Lie algebra [ and L’ be the analytic subgroup of
L with Lie algebra I’ = [y ®I;. Then M = L/L’ is a compact (irreducible) hermitian symmetric
space and every compact irreducible hermitian symmetric space is obtained in this manner
from a simple graded Lie algebra of the first kind. M is called the model space associated
with [ = L_; & [y & [;. For example, when M = Gr(k, £ + 1) is the Grassmann manifold of
k-dimensional subspaces in C‘*, we have [ = sl (£ + 1,C) and the gradation [ = [L; ® (& [
is given by subdividing matrices as (2.2) in §2.2. As the extreme case k = 1, we have the
projective space M = P? = P(V). In this case [ = sl (£ +1,C) = sl (V) and the gradation is given
asin (2.1) in §2.1.

- An equivariant projective embedding of the model space M = L/L’ can be obtained from an
irreducible representation of L as follows: Let 7 : L — GL(T) be an irreducible representation
of L with the highest weight A. Let 5, be a maximal vector in 7" of the highest weight A. Then
a stabilizer of the line [f4] spanned by ¢, in T is a parabolic subgroup of L. When this stabilizer
coincides with L', we obtain an equivariant projective embedding of M = L/L’ by taking the
L-orbit passing through [7,] in the projective space P(T') consisting of all lines in T passing
through the origin. For example, when M = Gr(k, £ + 1), we take the exterior representation 7o
of L=SL{+1,C)onT = A\FCH!:

k
701 SL(E +1,C) — GL(/\ cih,

where 7o(a@)(n1 A+ - -Av) = a(V)A- - -Aa(u) fora € SL(E+1,C) andv; € CH (i = 1,2,...,k). Let
{e1,...,ee1) be the natural basis of C*!. Then 7y is an irreducible representation of S L(£+1,C)
with the maximal vector e; A - - - A ¢ for a suitable choice of a Cartan subalgebra § and a simple



root system A of sl (€ + 1,C). Ty is the irreducible representation of SL(¢ + 1,C) with the
highest weight @, where {@j, ..., @} is the set of fundamental dominant weight relative to A
(see §4.5). From (2.2), we see that the stabilizer of the line [e; A- - - Ae;] coincides with L. Thus
we see that the Pliicker embedding of Gr(k, £+ 1) is obtained from the irreducible representation
1o of SL(€ + 1,C).

As other examples, we take the symmetric representation vy of L = S LWyon T = SKV),
where S*(V) denotes the k-th symmetric product of V :

vi : SL(V) - GLS*(V)),

where vi(a)(v; © - © 1) = a(®m) © - ©a(y) fora € SLV)andv; € V (i = 1,2,...,k)
and © is the symmetric product. Let us take a highest weight vector v, € V of the identity
representation v;. Here V = ({v,}) ® V in the notation of (2.1). Then v’; =0y©@---©®Uu,is the
highest weight vector of v,. v; is the irreducible representation of S L(V) with the highest weight
kwry. From (2.1), we see that the stabilizer of the line [v¥] coincides with L’. Thus we obtain
projective embeddings of P(V) from irreducible representations v,. Here we note that the line
bundle over P(V) = L/L’ obtained from the representation of L' on Wy = ({v,}) is isomorphic
with the universal bundle U over P(V). Hence the line bundle over P(V) obtained from the
representation of L' on Wy = ({tf}) is isomorphic with the k-th power U* of U.

Next, for an irreducible representation 7 : L — GL(T), we will construct a (positive) line
bundle F over M such that the above orbit is obtained as an embedding of M by global sections
of F. To construct F, let us take the dual representation p : L — GL(S) of 7, i.e., § = T™ is the
dual space of T and p = 7* is defined by

(@) &), 1) = (&, (g™ HD),

forge L,t € T,£ € T* and (, ) is the canonical pairing between 7 and T'. Then, when 7 is an
irreducible representation with the highest weight A (for a fixed choice of a Cartan subalgebra
and a simple root system of [ ), p is the irreducible representation with the lowest weight —A.
Let us take a basis { #1,...,t} of T consisting of weight vectors of 7 such that #; = ¢5. Then the
dual basis { s1,...,s,}of {f1,...,4}in S = T* consists of weight vectors of p and s, is a weight
vector corresponding to —A. Let W and W’ be the subspaces of S spanned by a vector s; and
by vectors sy, ..., §,, respectively. Then, since s, is a lowest weight vector, we have W = §_,
in the notation of Lemma 2.1. Since L’ is the stabilizer of the line [t,], W’ is preserved by L'.
Hence we get the representation pw of L":

pw : L' — GL(W),
through the projectionmy : S = W W' — W.
Relative to the representation pw, L’ acts on L X W on the right by
(g, w)g’ = (g9’ pw(g") " (W),
forge LLwe Wandg' € L’. Then F = L x W/L' is the line bundle over M = L/L’.
As in §3.1, the space I'(F) of global sections of F is identified with the space F (L, W), of
all W-valued functions f on L satisfying
f(gg") = pwig'y"' f(9),
forg € Land g’ € L'. Then each s € § defines an element o~y € ['(F) via this correspondence
by
£ = molp(g™)s)
forg € L.



Now let us check that global sections of F give the desired embedding of M into P(T). We
utilize the above basis {#,...,f.}and { s;,...,s,J of T and S = T*. Let us consider a map ¢ of
L into T defined by

(3:4) 89) = ) {fulg) )t
i=1

for g € L. Then, from {(f;(g), 1) = {o(g7")s;, 11), ¢ induces a map ¢ of M into P(T) satisfying
the commutative diagram

L - o

! !

M=L/L —— PT).
For g € L, if we represent 7(g) as a matrix A with respect to the basis {#;,...,%}, plg™h) is

represented by the transposed matrix ‘A of A with respect to the basis { s1, ..., s,}.From (3.4),
@(g) corresponds to the first row vector of ‘A. Hence we obtain

@(g) = 1(g)(t1)

Thus the image of ¢ coincides with the L-orbit passing through [#;] in P(T).

In particular we see that, for the model equation Rg associated with the pseudo-projective
GLA g¢*(n, 1), the line bundle Ej is isomorphic with the (k— 1)-th power H*™! of the hyperplane
bundle H over P(V), which is dual to the line bundle over P(f/) obtained from the representation
of L’ on W,_; = ({t*"1}).

Furthermore we see that the Pliicker embedding of Gr(k, £ + 1) into P( A* C1Y is obtained by
global sections of the line bundle F, which is constructed from the irreducible representation pg
of SL(6 + 1,C) on S = A1 C¢1, Here p, is the dual representation of 7o on T = AFCH1.
Let R = Rg be the system of equations modeled after S = A“*"' C*! constructed in §3.1.
Then, by Proposition A, R is the system of equations of finite type, whose local solution is
the restriction of a global section of F and whose projective solution coincides with the Pliicker
embedding of Gr(k, £+ 1) (cf. §1 of [SYY97]). Thus R* can be called the Pliicker embedding
equation. Theorem A in §3.1 states the rigidity for these equations in the linear equivalence.
For the application of these facts to a problem of the hypergeometric systems, we refer the reader
to [SYY97]. We will discuss the rigidity property of these equations in the contact equivalence
in §7.

In fact, the symbol algebra m of R is already calculated in the last paragraph in §2.2 and we
see that R* is a system of order 4 = min{fk + 1,£ -k + 2} suchthat S_, = Cand S, , = V".
Namely the system R has no equation of the first order. Then, since the symbol algebra m
of R is generated by g_; (Lemma 2.1.(2)), it follows from Corollary 5.4 [Yam&2] that the
equivalence of the pseudo-product structure on the equation R of type m is the equivalence of
the u-th order equation under contact transformations.

4. GENERALIZED SPENCER COHOMOLOGY

From this section, we assume that the ground field is the field C of complex numbers for
the sake of simplicity. For the discussion over R, the corresponding results will be obtained
easily through the argument of complexification as in §3.2 in [Yam93]. We use the following
notation: For a graded vector space V = (D), V,, we put Vg = €D, V, and Ve = D,e Vo
In particular, we set V_ = V<_; and V, = Vs;. For a Lie algebra g and a subalgebra b of g,
Der(g) denotes the Lie algebra of all derivations of g, D(g) denotes the derived subalgebra [g, g]



of g, 3(g) denotes the center of g, and 3,(b) denotes the centralizer of b in g. For a g-module M,
we denote by chy (M) the isomorphism class of M.

4.1. Cohomology of Lie algebras. Let a = EDPGZ a, be a finite dimensional GLA and V =

@pez V, be a graded a-module. (i.e., V is a vector space with a gradation such that a, -
V, C V,.,.) Then we have a cohomology space H”(a, V) associated with the cochain complex
(CP(a,V),8), where CP(a, V) = Hom(A? a, V) and the coboundary operator 6 : CP(a,V) —
CP*Y(a, V) is defined by

p+l
6pw(X1, ey xp+1) = Z(—l)l+lxi : OJ(X1, s >-£i’ R xp+1)
i=1

£ 3 D X1 X R Ry Xpa),

i<j

where x; € a and w € C?(qa, V). Since both a and V are graded, we have the natural gradation:
CP(a, V) = @r C?(a, V), , where

CP(a, V), ={we CP(a, V) |w(ay A+ Aa) C Viy vipar -

It is easy to see that C*(a, V), = €P CP(a, V), is a subcomplex of C*(a, V), whose cohomology
space (resp. p-th cohomology space) will be denoted by H(a, V), (resp. H?(a,V),). Then we

have
H'(e,V) = P H @, V), = P H (0, V) = D # V).
r P p,r

4.2. Generalized Spencer cohomology H*(®) and H*(b_,g). Let ® = (g,(8p)pez, 1,5 -1) be
a PPGLA of type (I,S). Wesetb_; = §, by =land b, = 0 (p # —1,0); then g has a bigradation
(8p.4)pgez> Where g,, = g, N ;. We have the cohomology group H*(®) = H"(m, g) associated
with the adjoint representation of m = g_ on g, that is, the cohomology space of the cochain
complex C*(6) = @ CP(6) with the coboundary operator @ : CP(&) — CP*!(G), where
C?(®) = Hom(A? g, g). We put

Cp((ﬁ)r,s = {w € Cp((ﬁ) ' w(gil,jl A--- /\g,-p’jp) C Qi+ Hpbrjit +jpts } |

forall i1,...,ip j1s---sJp

As is easily seen, C*(0®),, = @p C?(®), ; is a subcomplex of C*(®). Denoting its cohomology
space by H(®),; = EB H?(®), 5, we obtain the direct sum decomposition

H'(6) = (D HY(6),...

b.hs

The cohomology space, endowed with this tri-gradation, is called the generalized Spencer co-
homology space of the PPGLA ® of type (1, S). Note that H 1(®)0 = 0 if and only if &y = go.
where §y is the Lie algebra of derivations of m such that D(g,) C g, (p < 0), D(I_;) C I_; and
DS _)cS_,.

Furthermore we have the cohomology space H*(b_, g) associated with the adjoint representa-
tion of b_ on g, that is, the cohomology space of the cochain complex C*(b_, g) = EB CP(b_,q)
with the coboundary operator 6° : CP(b_,g) — CP*'(b_, g), where CP(b_,g) = Hom(A b_, g).
Let CP(b_, g); be the subspace of C?(b_, g) consisting of all the elements w € C?(b_, g) such that
w(®;, A Aby) Cbj, 4y forall ji,...,j, <0.C(b_,0)s = @p CP(b_, g); is a subcomplex



of C*(b-, g). Denoting its cohomology space by H*(b_, g); = @ HP(b_, g),, we obtain the direct
sum decomposition

H'(b_,9) = P H (6, 9)s.
p,S$

The cohomology space, endowed with this bi-gradation, is called the Spencer cohomology of
the GLA g= b_1 ©® bo.

4.3. Calculation of the cohomology H?(®), . Here we prepare the fundamental theorem to
calculate the cohomology space H?(®), ; by means of Kostant’s theorem.

Since H'(b_, ), naturally has a graded [-module structure, we obtain the following direct sum
decomposition

H (L, H'(b,9),) = EP) HP (L, H (b, 8),):-

r

Fori=s,5+ 1, we set

p-i i
7' = Hom(/\ L ® /\ 61,09,
and C? = CP* @ CP**!. For w € C?*, we denote by Gﬁiw the C?’/-component of 8”w. Then 8,

is a gg-module homomorphism of C2” into C2*"/,

Lemma 4.1. Under the above assumption, we have
(D 6‘Zi=0f0rj¢i,i+1.
@) 057 lafi =0, af++21,i+1611'7+1,i =0.
(3) OPH or + 87t 8P =0,

+1,074,0 i+1i+17i+1,

Proof. Letw € C¥'. Then, for xq,...,x, € Lmy,...,m; € b_ (k € Z),
0W(X1,. .y Xgs My, ey Myy)

q
1 A
= E (D)™ oy W(X1s oy Ry e e ey Xgs MU« oy Mgeti)]
a=1

i+k
-1 A
+ Z(_l)lﬁ'a [ma5 (,L)(X], LY xqa my,...,Mg,... ,mk-*-i)]
a=1

+ Z(_l)a+q+bw([xa7 mb], Xisenns -ia’ <o Xy my,..., fhba e mk+i)]
a,b

wheregq=p—-i+k+1.Ifk #0,1, then
ow(xy, ... s Xp—i=k+1, M1, .-« , M) = 0.

Thus 6? ; = O0for j# i,i+ 1, which proves (1). Moreover we see that

— Aptlap . ap+leap
0=0""0w=0"" (0w + 0, w)
_ gbtlap P+l ap p+1 4 p+1 4
=0,; 0w+ 0;,) 0,0 + 6i+1,i+16i+1,iw +0,410051 0
This proves (2) and (3). O

We define a linear mapping ¢,; of C2* onto C?~/(1_, C(b_, g);) (i = s, s + 1) as follows:
¢p,i(w)(x1’ cees xp—i)(mls coomy) = w(xy, ..., Xp—is M50y m;).

Then ¢,; is a go-module isomorphism.



From the proof of Lemma 4.1, we have

ai,iw(xl,...,xq,ml,...,m,-)

q

1 A
= Z(—l)"+ [t (1, ooy Ray s gy s 1))
a=1
b A A
+ Z(_l)‘”“]“‘ a)([xa3mb]’x17' .. ’xa$ “ e ,.Xq,ml, e 7mbs AR ’mi)]’
ab

wherew e C8'andg=p—-i+1.
i+1
+a-1 A
Oir1jW(X1, « vy Xgy My« ooy Myy)) = Z(—l)’ Tme, (X1, XMy Bl M),
a=1

where w € C?" and r = p — i+ 2. Hence we obtain the following lemma.

Lemmad4.2. Letw € C¥ (i = 5,5 + 1). Then:
(1) ¢ps1.:(0),0) = p(¢,(w)), where p is the coboundary operator of C*(L_, Ci(b_, 9),).
(2) For xy,...,x,-; €1, we have
Gpe1,i(0f, @) (X1, .-, Xp ) = (=178 (@p (@) (X1, - - . 5 Xpoi))
We recall that there exist an anti-linear involution 7 of [ and an hermitian inner product (-|-)
of g having the following properties:

1) 70p) =1,
(ii) (b,[by) = Ofor p # g and, (g,]g,) = 0 for p # g;
(i) ([x, s]ls) + (s|{r(x),s’]) =0forall xeland 5,5 € b_4.

The inner product (-|-) induces inner products on b*, and C*(b_, g), which are denoted by the
same symbol. Namely, forw = @ ®v] A+ A vy, 0 = BOW] A+ A w), we see that

(o) = @|B) det(v} |w),

where @, € g, v],w; € b7,.
Now we denote by §* the adjoint operator of § with respect to the inner product (- |-),i.e.,

bw|w) = (w]|§w) for w,w €C*(b_,q).

We see that §* is a homomorphism as a by-module and §*(C?(b_, g);) € CP~!(b_, g);. As usual,
the operator A = §6* + §*4 is called the Laplacian. We set H?P(b_, g); = {w € CP(b_, q); | Aw =
0}; then

CP(b_, g)s = HP(b_, 8)s ® A(C?(b_, 9),).
We put D?(b_, g); = A(CP(b_, g),). Then HP(b_, g), is isomorphic to H?(b_, g); as an [-module
and DP(b_, g); = 62(C?) & (Ker 6|CY)*. We put

p—i
HY' = ¢\ (Hom( \ 1, H(b-, 9),),

DY = ¢;,‘,~<Hom<K L, D'(b_, 8),),
HP = (HHY, Dr=(PDr

Then C?' = H”' @ D2 and we obtain the following exact sequence:

Bivyi

11 Giin : ;
(41) D;; 1,i-1 Df,z D§+l’l+1.



From Lemma 4.2, we obtain the following lemma.

Lemma4.3. (1) o/ (H) c HIY, o0 (HP) = 0.

i+1,0

(2) afl(z)xsjz) - Dfﬂ’i, afﬂ’i(z);sz,i) c Dfﬂ’”l.

Lemma 4.4. Let w € Ker8? N C. We decompose w as follows: w = o' + "', where ' € H?P
and " € DE. Then " € Im P~ L.

, s+l
Proof. We decompose w” as follows: «” = w” + w”,,, where o € DF* and w?,, € DF'™".

: — P "o _ Y4 17 V4 o :
Since dw = 0, we have d_, ), = 0and 8., 0}, +0, w/ =0. By (4.1), there is an
-1, -1 -1 s
element ¢; € D{ " such that 87 ¢s = w/,,. Furthermore w{ ~ 95 ¢, € DY and
D 1n _ ap-1 —_ AP v ap p—1
as+1,s(ws aS,S CS) - as+1,sws 6s+1,sas,s Cs
— ap ” Y4 p—1
- as+1,sw: + 6s+1,s+1as+1,sCS
Y/ " Y4 7 _
- 6s+1,sws + 6s+1,s+1w5+1 =0.
. D S s e s . 1 ap-1 0o "o p—1 p—1 —
Smce 0%,, /DY is injective, we have w] = 87, ¢;. Thus " = w +w,, = (05 + 05, Jes =
cs. O

We are ready to state the following fundamental theorem.

Theorem 4.1. Let ® be a PPGLA of type (1,S). Then HP(6),, is isomorphic to B , HP7(L_,
H(b_,8),), as a gg-module.

Proof. We define a linear mapping
P
® 1 CP(6),, — () CP (L, H'(b_, 9)s),
=0

as follows: ®(w) = X7 ¢pi(w)), where w = 37, w) + w” € CP(B),,, w] € H " e DE. By
Lemma 4.2, ®9 = d® and hence @ induces a go-module homomorphism

P
0" HY(6),; — ) H (L, H (b, 0),),.
i=0
By Lemma 4.4, ®* is an isomorphism. O

4.4. Gradations of semisimple Lie algebras and Kostant’s theorem. Here we recall some
basic facts on gradations of semisimple Lie algebras following [Yam93] and state Kostant’s
theorem on Lie algebra cohomology, which is our basic tool in the discussion of subsequent
sections.

Let s be a complex semisimple Lie algebra. We fix a Cartan subalgebra b of s and the set ©
of roots of s relative to §. Let us fix a simple root system A = {ay, ..., @} of ®. For a subset A;
of A and an integer p, we put

O, ={ae®| ) ml@=p),

a;€A

where m; is a Z-valued function on @ defined by m,-(}_]ﬁ:1 kja;) = k;. Then we can construct a
gradation (s,),ez of s as follows:

sO:b@Zs“, sp:Zsa (p # 0),

aedy aed),,



where s% is the root space corresponding to a root @ of 5. Then s = @pEZ s, is a GLA such

that s_ is generated by s_;. If s is of type X, then the GLA s = @pez s, is said to be of type
(X, A1), where X, stands for the Dynkin diagram of s.
Conversely, let s = @pez s, be a simple GLA such that s_ is generated by s_;. Assume that

s is of type X,. Then s = @pez s, is isomorphic to a simple GLA of type (X,, A;), for some
Ay C A Lett = @pez t, be an another simple GLA of type (X, A}). Then s = EDP oz 9p 18
isomorphic to t = @pez t, if and only if there exists a diagram automorphism ¢ of X, such that

#(A;) = A} (Theorem 3.12 [Yam93]).
Let W be the Weyl group of s, @, the set of positive roots. Moreover we put

T, =w®_Nd, (where ®. = 0O\D,),
W/ ={weW|#T,)=j T,

where @(s,) = {a € @ | s* C s, }. For an antidominant integral weight w of s (resp. %) we
denote the irreducible s (resp. sp)-module with lowest weight w by M(w) (resp. m(w)). Then
we have the following theorem due to Kostant.

Theorem B (Theorem 5.14 [Kos61]). Let s = @peZ s, be a simple GLA of type (X,, Ay) and
M(w) be an irreducible s-module with the lowest weight w. Then

chey(H/ (s, M(@)) = " chyy(m(w(w = p) + p)),
weW{
where p is the half sum of positive roots.
4.5. Parameterization of pseudo-product GLA of type (,5). Let ® be a PPGLA of type
(1,S). Wesetl=11@[,[]®L and u = DG(D); then [ = T@u@ 3D and 1= P, is a
simple GLA. Let (b,),cz be as in §4.2.

Let us take a Cartan subalgebra § of [ such that ) C I5. Then h N 1 (resp. h N u)is a Cartan
subalgebra of I (resp. u). Let A = {ay, ..., a;} (resp. A’ = {B4,...,Bx}) be a simple root system
of (Lh N T) (resp. (u,H N u)) such that a(Z) 2 O for all @ € A, where Z is the characteristic
element of the GLA [ = EBP oz [, We assume that Tis a simple Lie algebra of type X,. We set
Ay ={a e Ala(Z) =1} Itis well known that the pair (X,, A;) is one of the following type (up
to a diagram automorphism) (cf. §3 in [Yam93]):

(Ap{ei)) (1 S i €+ 1)/2D), (Be, {and) (€ 2 3), (Cp, fee)) (£ 2 2),
(De, {an}) (€ 2 4), (De,{ae-1}) (€ 2 5), (Es,{a1}), (Er,{a7)).

We denote by {w@y, ..., @} (resp. {ny,...,7m,}) the set of fundamental weights relative to A
(resp. A’). Since S is a faithful l-module, we have dim3(l) £ 1. Assume that 3([) # {0}. Let
o be the element of 3(I)* such that o-(J) = 1, where J is the characteristic element of the GLA
a= EBq 7 bg. Namely J = —ids € 3(I) C by = [ as the element of gl (). There is an irreducible

I -module T (resp. 3(1) -module U) with highest weight y (resp. n — o) such that § = b_; is
isomorphic to T ® U as an I-module, where 7 is a weight of u. Then we have

Lemma 4.5. H{(®)oo = 0 if and only if 3(1) is isomorphic to g1 (U) and 1 = m,. Especially,
when D(1) =1, H'(®)op = 0 ifand only if 1 = 1@ (1), where 3(I) = (J).

Proof. We first remark that H*(®)o = 0 if and only if §; = go and that
g =[Lnhleoad, & =I[l1Lles50.
For ¢ € gl (U), we define D, € Hom(g_, g-) as follows:
D,(L1)=0, D,(t®@u)=t@¢pu)forteT andue U.



Then D, € § and the mapping gl (U) 3 ¢ = D, € § is injective. By Schur’s lemma, this
mapping is also surjective. This proves our assertion. O

Thus, when H'(®)o = 0, the semisimple GLA D(1) is of type (X¢ X A,,{a;}) and S is an
irreducible D()-module with highest weight £ = y + m; when dim U > 1 and D(J) is of type
(X, {e;}) and S is an irreducible -module with highest weight y, when D(I) = 1 (i.e., when
dim U = 1). We will impose the condition H'(®)yy = 0 on ® in the rest of this paper.

Now let us consider the characteristic element E of the gradation g = @p oz 9p- Since §
is the irreducible [-module with highest weight & = y + 7 —o,and Z € h N 1is defined by
@;,(Z) =1and ai(Z) = 0 (i # i,) for A; = {a;,} € A = {ay,..., ), we see that the semi-simple
endomorphism ad(Z) has consecutive eigenvalues in S of the following form:

M-k  fork=0,...,u—1.

where A; = y(Z) and Ao = A; — u + 1 is the minimum eigenvalue (see Lemma 2.1). Thus the
characteristic element E of g = EBP 7 9p 18 given by

E=Z+ +DJelh@3)cly=g.

Then we note that, utilizing the characteristic elements E and J, the decomposition of ly- mod-
ules C?(®) and CP(b_, g) :

c?(®) = (P (), = PGy, o9 = P Cre., 9,

are given as the eigenspace decomposition of the action of E and J respectively, where r
and s denote eigenvalues of E and J respectively. Moreover the decomposition C?(®) =
EB” CP(®),, given in §4.2 is the simultaneous eigenspace decomposition of commuting semi-
simi)le elements E and J.

Let A be a dominant integral weight of D(I). We denote by L*(A) the irreducible I-module
with highest weight A + so. Now we apply the notation of §4.4 to the case when s = D(I). For
we W, we set

&,(A) = w(we(A) = p) +p + 50,
where wy is the element of W such that wy(A) = —A, which sends the highest weight to the
lowest weight. Since S = b_; is an irreducible I-module with highest weight 2 = y + 7 — o,
we have (y — 0, E) = —1 and hence (£ (A), J) = s and
(Eu(N), E) = (w(wo(A) — p) + p, E) + s(1 + (x, E))
= (wwo(A) — p) + p, Z) + s(4; + 1).

By Kostant’s Theorem (Theorem B), H?(1_, L°(A)), # 0 if and only if (£ (A), E) = r for some
we WY

5. FIRST COHOMOLOGY OF PSEUDO-PRODUCT GRADED LIE ALGEBRAS

Let ® be a PPGLA of type (1,5) satisfying the condition H!'(®)o = 0. We use the same
notation as in §4.5. By Theorem 4.1,
(5.1) H'(®),, = H'(, H'(b,9),), ® H'(I, H' (b_, 9),)r.

In particular, we see that H 1(®)m = (Qfor s £ =2 or s = 2. First of all, we consider H 1((6),,_1.
By (5.1),
H (®),_, = H'(I_,b_)),.
By Kostant’s Theorem (Theorem B), we see that
(i) H{(®),_, =0forrz 1,



(i) H(®)y_; # 0 if and only if D(I) is of type (A; X A,,{a1}) and S is an irreducible
[-module with highest weight kw, + m;. (cf. [Yat92, pp.323-324].)

Secondly we consider H'(®),,. Clearly
HY(G),o = H(L_, H' (b_,8)0),-

Let A be the highest weight of an irreducible component of the I-module H'(b_, ). Then
(XA, E) = (wo(A), @}). If wo(A) = > cia; (ci € R), then ¢; £ 0 for all i, so (£(A), E) £ 0.
By Kostant’s Theorem (Theorem B), we obtain that H'(®),o = 0 for r 2 1.

Thirdly, we consider H'(®),,. Let b= @p oz b » be the prolongation of EBP <o 0p- Clearly

H(G),, = H@,b),.

If dimb < oo and b; # 0, then b is simple and the prolongation of G_ is a simple PPGLA. Hence
HY(®), = $*, and HY (®),, = 0(r# 1). If dimb = oo, then, by the theorem of Kobayashi
and Nagano [KN65], b = EB ez BP is isomorphic to one of W(n;1) and CH(m; 1;2), where
n = 2m = dimb_;. (For the definition of W(n;1) and CH(m; 1;2), see [Yat92].) If b= W),
then [ is of type (A, {@;}) and S is an irreducible D(I)-module with highest weight @. Hence
H'(G®)o; = S, ®5*S*), H(G); = S*,, and HY{(®),, =0( #0,1). Ifb =~ CH(m;1;2),
then D(D) is of type (Cy, {@,}) and S is an irreducible I-module with highest weight w,. Hence
HY(G)o; = L?(0)® S3(S*,), and H'(G),; = 0 (r # 0).
We summarize the above results in the following theorem.

Theorem 5.1. Let ® be a PPGLA of type (1,S) satisfying the condition H' (®)oy = 0. Let
b= EBP .5 by, be the prolongation of EBpSO b,. Then
(1) H(G),;=0forr20, s+ -1, 1.
(2) HY(®),_;1 =0forr= 1.
(3) HY(®)o_1 # 0 if and only if D(1) is of type (A X Ay, (1)) (n 2 1) or (A¢, {a1}), and S is
an irreducible D(1)-module with highest weight kw, + m1. In this case,

H' (G- = 5, ® SH(L).

(4) Ifby =0, then H'(®),, = 0 for all r.
(5) Ifdimb < co and b, # 0, then

ST if r=1
0 otherwise.

H'(6),, = {

(6) Ifdimb = oo, then ® is isomorphic to one of PPGLAs of the following types:

(@) D) is of type (Ae,{a;}) (1 £ i £ €) and S is an irreducible D()-module with
highest weight w,.

(b) DQ) is of type (Ce,{a;}) and S is an irreducible D(1)-module with highest weight
wi.

In these cases, we have

(1) If D) is of type (Ag, {a;}) (1 £ i £ €) and S is an irreducible D(1)-module with

highest weight @, then

SL®SXS:) if r=0
H'(),; ={S*, if r=1
0 otherwise.



(1) If D) is of type (Ce, {a,}) (€ = 2) and S is an irreducible D(1)-module with highest
weight @, then

L‘2(O)®S3(Sf1) if r=0
0 otherwise.

H'\(G),; = {

Corollary 5.1. Let G = EBP o2 G» be the prolongation of g-. Then dimG = oo if and only if
HY(®)y, # 0 for some s % 0.

If dimb < oo and b; # O, then H 1(®),, # 0. Now we classify pseudo-product GLAs ®

of type (I,S) such that H'(®);; # 0. Lets = @p .7 5p be the prolongation of (m, go). The
condition H'(®);; # 0 implies g; # s,. Then, by Theorem 3.2 [Yat88], s = @pez s, 1s a simple
GLA such that g, = s, for all p £ 0. Since the go-module sy is completely reducible, there
exists a go-submodule 5(11) of s; such that s = g; & s(ll). Since s; is contragredient to s—; as a
so-module, the go-module s(ll) is irreducible. Also s(ll) is contragredient to S_; as a go-module.
For g € Z, we put ¢, = {x € s | [J,x] = gx}; then (¢ ),z gives a gradation of s. Note that each
¢, is ad E-stable. Since [g1,8;] = 0 and s; is generated by s, we have c.; = S, ¢¢ = land
s(ll) = ¢; N ;. Since s is simple, we get s = ¢_; @ ¢y @ ¢;. Let h be a Cartan subalgebra of s such
that E € b; then J € §) C ;. Let @ be the root system of (s, ). There exists a simple root system
% = Y1y -+ Yesne1) OF (5,5, @) such that y,(E) 2 O for all j, where ¢ = rank { and n = rank 3(D).
We assume that s = @pez s, is of type (Yeins1, 21), A € X and A; C Z;. For y; € X, we denote
by s(_”l the gy submodule of 5_; generated by s_,,. s(_’)l is an irreducible sg-submodule of s_, with
highest weight —y; (cf. [VOG90, Ch.2, 3.5]). Since I_; and S _; is not isomorphic to each other
as a go-module, there exist y; ,y;, € X; satisfying (1) [_; = s(_ill) and S_; = 5(_:'21) or(ii)I_; = s(_izl) and
S_1 = 5(_i11). In particular, ¥; consists of two elements y;, and y;,. We may assume the case (i).
Thus the GLA s = @pez s, is Of type (Yesn+1, (V1,5 ¥iy}) and the GLA s = ¢ @ ¢ @ ¢; is of type
(Yesn+1, {1yi, ). For each y; € X, we set CDS) ={a e ®|mle)=pandmi(a) =0for j € I\{i}}
Moreover we set @0 = J,.; @5, ¥ = 00 N @, and s = T 400 5 + b. Since PO = 0O,
we know that s is a reductive graded subalgebra of s (cf. [Bou75, Ch.8, §3, no.4, Prop.2]),
which we write s = @pez sg) . Then s© = D) @ 3(51), sg) = s, 8 = Zaeq)m] 5% and
sy = D, 5(_’)1 Since [sf)l,sf)l] = 0, (Dg) = Q for |[p| > 2. Clearly ®¥ is a root system of
(s9,5). We set O = 2N X0, Since {a,h) = 0 for all @ € PP and h € 3(s?), we see that
@ is a system of simple roots of ®® (cf. [Bou75, Ch.8, §1, no.7, Cor.3 to Prop.20]). Here
we extend the definition of a root system and a system of simple roots, etc. to the cases of
reductive Lie algebras (cf. Ch.8, §2 in [Bou75]). Thus the derived subalgebra D(s) of s© is
a semisimple Lie algebra whose Dynkin diagram is the subdiagram of Y;,,., consisting of the
vertices ({1, ..., £+n+1}\DU(i}. In particular, 5 is a simple Lie algebra whose Dynkin diagram
Y;’zn ., is the connected component containing {i} of the diagram of D(s®). Let 6 (resp.6®) be
the highest root of s (resp.s®). Then, for @ € @, and 8 € @, we have m;(@) < m;(6) for all
j and m(B) < m(69) for all k, so § € @, and 6V € @, where u (resp.u;) is the depth of s
(resp.s). Thus p = ¥,e; mi(6) and p; = m(69). Since [1-1,14] = [S_1,S-1] = 0, we see that
u; = 1 forall i. Also since [¢_y, ¢_;] = 0, m;, () = 1. Hence (Yei,41, X1) is one of the following

types:



Apins1, ir Yer1) 2 0,1 £ £ 6), (Bes1, {y1, 72D (€ 2 2),
Corts Vi ver D€ 2 1,1 21 26), (Desr, (y1,72D (€ 2 3),
Des1> Yisyen) (€2 3,1 212 0),

(Es, {y1,76})> (Es, {y1,72})s (Ess {¥1,73)),

(E7, {y1, 71D, (E7,{v6: 71D

Summarizing the above discussion, we obtain the following answer for our problem (1) cited
in §2.

Theorem 5.2. Let ® be a pseudo-product GLA of type (1, S) satisfying the condition H(®)yo =
0. Letb = EBP 7 bp be the prolongation of @pso b,. Then g = @p o7 8p is the prolongation of
m = @,.00, except for the following three cases.

(a) dimb < coand b; 0  (b: simple)

D) Ay by Yeinst 2

Aex Ay oy} | @e+ 7y | Apnar | (Vi vesrt)

Ag {a) (o A1 | 1yisYest}

Ae {laid | 2@ | Cer | (yisven}
A (€23) | {ai} | @e1 | Dent | v ves)
Be(£22) [ {an}| Bey | {r1 72}
De(€24) | {a}| Desr | {y1, e}
De(¢24) |{en}| @ Devr | {r1,72)

Ds las}| w5 Es {r1,73}

Ds (g} | w5 Es {v1, 72}

Ds {1} | s E¢ {71, 76}

Es {1} | @ E; {ri,v7)

Es las} | s E; {¥6, 77}

In this case (Ypi441,21) is the prolongation of m except for (Agini1, {Y1,Yer1)) and
(Ces1, {¥1>Yes1)). Moreover the latter two are the prolongations of (m, go).

(b) dimb = oo
DO | Ay | by a(m, go)

Ae | ai} | @ | (A, (i, Vo))

Ce |lae} | T g

In (Ce, {ae})-case, u =2
Sa=V, S,=V, Lj=8XV),



h=VeV'aeC, L =SYV)

(c) g is a pseudo-projective GLA, i.e., D) = (A¢ X Ay {an}), E=kwe+m, (k22,n2 1),
or D(1) = (A¢, {an)), x = k@y, (k23,n=0)

S—u =W, §,= W®SHP(VY) (~u < p<0),

Li=V, =g Wegl(W), L=V,
wherepy=k+1,dmV =anddimW =n+ 1.
In this case g is the prolongation of (m, gp).

6. SECOND COHOMOLOGY OF PSEUDO-PRODUCT GRADED LIE ALGEBRAS

Let  be a PPGLA of type (I, S) satisfying the condition H'(®)o = 0. We use the same
notation as in §4. We define elements {'} and {@} of Inpby (a 5 @) = a;jand (@}, a;)) = 6;j,
where (a;;) is the Cartan matrix of 1. Also let {ry, ..., r¢} be the set of fundamental reflections of
1. Also we assume y = Zf;l m;w; (m; € 7).

6.1. Computation of H*(®), ;. By Theorem 4.1,
H*(6),_ = H*(I-,b_y),.

Note that H*(®),_; = O for all r provided that (X,, A;) = (A1, {a1}). Since A; is the form {a;},
an element of Wf becomes the form {r;r}, where k # i and (o, @) # 0. Then

(&L 00, E) = (woly) — x, @}y = (wol), ) — {a, @) )y ) — (e, @)
We compute (‘f;}k (), E) by a case by case analysis. For convenience, we put &,.,, = f,‘i}k ).
Case 1: Take (Xg, A]) = (Ag, {0'1}) (f 2 2) Then le = {rlrg} and

-2
(é:r;rz,E> = _ij + 1.
=1

Case 2: Take (X7, A1) = (Ap, {oi}) (1 < i < [4L]). Then W2 = {ryri_1, 7z} and

i-1 £—i
G BY ==Y jmj= ) imy= (i = Dmg g
Jj=1 Jj=i
[4
— (= Dmesa = Y, (€= j+Dm+1,
j=b-i+3
i-1 £-j-1
G E) = = ) jmj= Y im; = (i = Dime.y
j=t =i
¢
— = Dmepy— Y (€= j+Dm+1.

jeeoie2
Case 3: Take (X;, A1) = (Be, {@1}) (€ 2 3). Then W? = {rrp} and

-1
<§r1r2>E> =—my —Hnp — 2ij —me+ 1.

J=3



Case 4: Take (X;, A;) = (Ce, {@¢}) (€ 2 2). Then W? = {rere_1} and

2
Erer EY == jmy= (€= 2mey = (€= Dimg + 1.
=
Case 5: Take (X;, A1) = (D¢, {@1}) (€ 2 4). Then W? = {ryr,} and
-2
Enp EY = —my —my — 2ij —mp1 —mp+ 1.
=3

Case 6: Take (X;, Ay) = (Dg, {@e_1}) (€ 2 5). Then W} = {re_yre—} and
-3

. 1
Ererrens B) = = ) mj = (€= meg = (€~ 2= Go)mey

=1
- %(5— 2+ 0g)me + 1,
where 6y = 0 if £ is an even number and &, = 1 if £ is an odd number.
Case 7: Take (X;, A1) = (Es, {@1}). Then W? = {ryr;} and
s EY = —my = 2my — 2m3 — 4ms — 3ms — 2mg + 1.
Case 8: Take (X¢, A1) = (E7, {a7)). Then W(a7) = {r7r¢} and
(& s EY = =2my — 3my — 4mz — 6my — Sms — 3mg — 2my + 1.
Hence we obtain the following proposition
Proposition 6.1. (1) H*(®),_; =0forallr=?2.
(2) H*(®),_1 # 0 if and only if the sequence (X;, Ay, A) is one of the following
(Ap{arh, jwer +hkoy) (€22,7,k20,j+k21),
Ae (b kwy) (£23,kz1), (Cyla) ko) (k21

6.2. Computation of H*(®),,. By Theorem 4.1,
H*(®),0 = H' (I, H' (b_,8)o)-

and .
ch(H" (b_, g)o) = chy(b_; ® bZ,) — chy(bp)

= chy(sl (7)) chy(gl (U)) — chy(D).
Note that H'(b_, )y = 0 if and only if D() = [, X, = A, and x = @; or we. Hence we

may assume that Yb_,a); # 0. Let A be the highest weight of an irreducible component of
H'(b_, q)o; then (A,a}’) > 0 for some j. Assume that A; = {a;}. Then W11 = {r;} and

(E2(N),E) = (wo(N), @} — o) + 1.
By the table of [Bou68], (@;, w} —~a;') > 0 for all jexcept for the case when (X¢, A1) = (A,, {aiD
or (Ag, {a;}). Also(w;, @/ —a)) > Oforall jif (X, Ay)isoneof (A, {a}) (24,1 <i< [%]),
(Ce, {ae}) (€ 2 3), (De, {ae-1}) (€ 2 5), (Es, {a1}), (E7, {a7)).

Now we consider the case when (X;, A}) = (A, {a1}).

Now we consider the case when (X,, A;) = (Ag, {a1}).

Since T is an irreducible sI(£ + 1,C)-module with highest weight 4 = f‘;l myw;, TF 1S an
irreducible si(¢ + 1,C)-module with highest weight 4 = Zle me_ir1@;. Let T be a Young
tableau corresponding to T, that is, a collection of boxes, arranged in left-justified rows, with
Yk m; in the k-the row. Let T* be a Young tableau corresponding to 7*. We add s(ll) boxes of



the top row in 7 to the top row in 7'; then we add s, boxes of the top row in 7* to the second
row in T, etc. Next we add s(lz) boxes of the top row in T* to the top row in T'; then we add
S;z) boxes of the top row in T* to the second row in T, etc. Repeating this procedure, we get a
Young tableau corresponding to an irreducible sI(£ + 1, C)-submodule of T ® T* with highest

weight
p+l1

A= Z(mp+Z(s(’) O V@,

Also, in this procedure, we must 1mpose the rule in [Fis81]. Hence it is necessary to satisfy the
following condition:

’\
a1

+

—_

£+1

(p) » _
5,8 =0fork < p,

3
1

j-
Z O (1<jsp2spst+])
i=1

M~ g g
"tzh’.:‘
ll/\

I

-1
sf><Zs Disj<eo.
i i=1

1

]
—

From these inequalities, we have

¢
s(’) < m1n{z m;, 2my + Z m;).

i=

Thus
(€ (A),E) = Zm, Z @ 41 < min{my, me} + 1.

Hence we obtain the following proposmon.

Proposition 6.2. (1) H*(®),o = 0 for r = 2 except for the case when (X¢, A1) = (Ag, {a1}).
(2) HX(®)19 = 0 except when (X, Ay) is one of (Ag,{a1)) (£ 2 2), (A3, {@2]), (B {a1})
(€ 2 3) or (D¢, {an}) (£ 2 4).
(3) If (X¢, A1) = (Ag, {a1)), then we see that HX(®),o = 0 for r 2 min{my, ms} + 2.

Remark 6.1. (1) The contents of (1) and (2) in Proposition 4.2 were first observed by Y.Se-
ashi (see Theorem 2 [SYY97]), which essentialy constitutes the proof of Theorem A in
§3.1.
(2) Let(Xe, Ay) = (Asz, {az}). We set
Smy,my—m3 S c=m }

bs
') = {(a,b, ¢) € (Zs)’ |

azQ,a+b+c=m+my

Let M be the sum of irreducible components of the D(I)-module sl (7') with high-
est weight A such that (§92(A),E) = 1. By using the Young tableau method, we
get chy(M) = 3, n,chi(L(2aw,)), where n, = #{ (b,¢) | (a,b,c) € I'(1)}. Hence
H*(®), = 0if and only if (1) = 0

6.3. Computation of H*(®),, (s = 1,2). By Theorem 4.1,
H*(®),; = H(I_, H*(b_, 8),), ® H' (L, H' (b_, 8)1),,
H*(®),, = HY(L_, H*(b_, 9),),-



6.3.1. The case H'(®);; # 0. In this case, g = @pez g, is a parabolic graded subalgebra of a
finite dimensional SGLA s = @p <z 5p such that g, = s, forall p £ 0.

Theorem 6.1. Under the above assumption, we have
(1 H2(®)r,s = H2(m, s)r,s (s = ~1,0), where m = @p<0 9p-
(2) H2(®)r,1 = Hz(m, S)r,l ® Hl (I—, bil)r-
(3) H2(®)r,2 = H2(m, 5))‘,2 @ HO(I—, bi] ® bil)r-
Proof. There exits a gradation (¢,)4ez of s such that b, = ¢, for all g < 0. We remark that

2

H*(m, 5),, = () H*7(L, H'(b_, 9)y)y.s
i=0

The proof is similar to that of Theorem 4.1.
The statement of (1) is easy to check. We consider the following sequence

. 2
0—q ﬁ) Hom(b_4, by) —6—1» Hom(/\ b_1,b.) — 0,

where &, is the coboundary operator 8, : C%(c_,s); — C'(¢c_, s);. Since &, is injective, we see
that H(b_, g); = ¢, ® H'(b_, 5);. Also, since ¢; is isomorphic to b*; as a by-module,

H*(6),; = H*(m,),; ® H'(L,b*,),,

which proves (2). Next consider the following sequence

- 2 3
0 — Hom(b_y, ¢;) < Hom( /\ b_y, by) <> Hom( /\ b_,b_;) —> 0,

TaBLE 1
D() Ay B b, ®°b*,
A XA, | {a} |we+m | @ + 7, | 21, w2 (mod 7, 7,-1)
A, {a;} | 2w, 2wy 4wy, 2w, 2@ + Wy
A (£ 23) | {ai} | e (o)) 2, Wy, W1 + W3
B, {1} W | 0, 2w,, 2w,
Be (€23) | {1} | w0 @y 0, @, 2w
De(€24)|{ad| @y wy 0,3, 2w,
De(€z4) {{an}| w0 (2 0, @, 2@
Ds {as} Ws Wy 204,773,
Ds {aa}) | @5 (o7 2wy, w3,
Ds {1} | s Wy 24, W3, W1
Eg {a1} ) s w) 3,20, W
Eg {as} | s ™ w3, 21, We




where &, is the coboundary operator §; : Cl(c_,s), — C%(¢c_, ). Since 8, is injective, we see
that Ker 6, is isomorphic to H*(b_, g); ® Hom(b_y, ¢;). Since ¢; is isomorphic to b*,, we get

HX(6),, = H*(m, s),, ® H°(I_, b, ® b7)),,
which proves (3). 0

By the above theorem, we need to decompose the by-module ®2bil into irreducible by-
modules. By the table in (1) of Theorem 5.2 and the table of [OV90], we get the Table 1 of
the irreducible decomposition of the by-module &°b* .

By Table 1 and Kostant theorem, we get the following theorem.

Theorem 6.2. Let ® be a pseudo-product GLA of type (1,S) such that: (i) Tis an SGLA of type
(Xp, Ay); (D) S is an irreducible D()-module with highest weight E; (iii) H'(®)1; # 0. Then
the following are the triplet (D(1), Ay, E) and the set of r such that HY(®),#0( 2 1).

(D (DM, A1,E) = (A, {ay}, @), r=2,3,4.
2) DMH,ALE)=(A XA (), +m), r=1,2,3.
3) DM,ALE) = (A XAy {ar},m +m) (n22), r=2,3.
4) (DM, ALE)=Arx A}, we+m)(22,n20),7r=1,2
5 (DM, ALE) =Arx A {ar),we+m)(€23,n20),r=1,2
6) (DD,ALE)= A xAp{ail,w+r)(BLis€~-1,05ns]),r=12
(7 (DO, ALE) = A x Ay {a),we+m)BSist-1,25n),r=2
@) (DM,A,E) = (As, {an}, @), r = 1,2,3.
9) (D), Ay, A {agh, @) (£ 23), r=2,3.

(10) (DM, A, A, x Ay {ae), we+m) (£22,n2 1), r=1,2,3.

(1) (DM, Ay, Ay, {a1},2w@y), r=2,3,4.

(12) (D), A, (A {1}, 2wm) (€2 2), r=1,2.

(13) (DM, Ay, (Ay, {an}, 2m7), r = 1,2,3,4.

(14) (D), Ay, (Ag, {2}, 2w) (€2 3), r=1,2.

(15) (D), Ay, (Ap, {ae},2we) (£ 23), r=1,2,3,4

(16) (D), Ay, Apla},2w) B=ist-1), r=2

(17) (DD, Ay, (As,{ay}, @), r = 1,2,3.

18) (D), Ay, (Asz, {an), @), r =1,2,3,4.

(19) (D), Ay, A a1}, we ) (€24), r=1,2.

(20) (DO, Ay, A lat, @) 25is€-3), r=2

2D (D), Ay, (A {aea), o) (€2 4), r=2,3.

(22) (D), Ay, (A o), we) (€2 4), r=2,3,4

(23) (D), Ay, (A, {ac), wer) (£24), r=2,3.

(24) (DO, Ay, (Be, (a1}, @) (€22),r=1,2,3,4

(25) (D), Ay, (D¢, {aet, @) (E24), r=1,2,3.

(26) (DO, Ay, De {1}, w)(24),r=1,2,3,4

Q27 (D), Ay, Ds, {as), ws), r =2,3,4.

(28) (D), Ay, Ds, {4}, @s), r = 2,3.

(29) (DM, Ay, Ds,{a,}, @s), r = 2.

(30) (D), Ay, Es, {a1}, @), r = 2.

31D (DM, A, Eg, {as}, we), r = 2,3,4.

[
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In this case, by Theorem5.2, s = @p <z 5p 18 the prolongation of m or (im, gg). Hence we
include the following theorem (Proposition 6.2 [Yam99]) for H?(m, s).



Theorem 6.3. Let © be a pseudo-product GLA of type (1, S) such that: (i) {is an SGLA of type
(X¢, Ay); (i) S is an irreducible D()-module with highest weight Z; (iii) H Y(®)1,1 # 0. Then
the following are the triplet (D(1), Ay, E) and the set of r such that H*’(m,s), #0 (r 2 1).

() DO,ALE) = A {a1}, @), r =4
2) (DM, AL, E) =(A; XAy {a ),y +my), r=1,2,3.
3) (DM,AL,E) = (A1 XAy, e}, @ +m) (n22), r=2,3.
@ (DM,ALE) =A x A {a,we+m)(£22,n20), r=1,2
(3 (DO, A, (Ae X Ap{an},wp+m) (€23,n20), r=1
©6) (DO, A, AexAp{a),we+m)BList-1,0sns ), r=1
(7 (DO, Ay, (Ar, {2}, @), r = 1,2,3.
&) (DO, A, (Ag, {ae}, @) (€2 3), r=2,3.
9 OO, A, A x Ay {ae), e +m)(€22,n21), r=1
(10) (D), Ay, Ay, {1}, 2w1), r = 3,4
(1) (DM, Ay, (A {an},2we) (£22), r= 1.
(12) (DO, A, (A2, (@)}, 2@y), r = 1.
(13) (DO, Ay, (Ag {an}, 2wy) (€2 3), r = 1.
(14) (D), As, (Ag, {ae}, 2w) (€ 2 3), r= 1.
(15) (D), Ay, Az, {ar}, @), r= 1.
(16) (DM, Ay, Az, {ao}, @), r=1,2.
A7) (DO, A, (A {ar}, @) (€2 4), r=1
(18) (D), A1,E) = (Be,{an}, w) (€22), r=1,2
(19) (DM, AL, E) = (D, {ae}, @) (E24), r=1.
(20) (DD, ALE) = De,{an}t,w) Uz 4), r=1,2

6.3.2. The case dimb = co.

By the theorem of Kobayashi and Nagano [KN65], b = @pez 5,, is isomorphic to one of
W(n; 1), CH(£;1;2) (£ 2 2). On the other hand, if b = B, b, is isomorphic to W(n; 1), then
H'(®);, # 0 and the triple (D(), Ay, E) is (A¢, (@}, @1). In Ehis case, our problem is reduced to

Theorem 6.2. Hence we may consider only the case where b = @pez Bp = CH(;1,2) (€ = 2).
Thus we assume that the triple (D(1), Ay, E) is (Cy, {@,}, w1). Since csp (b_;) is an involutive

subalgebra of gl (b_;) (cf.[KN66]), we have
(6.1) H'(b_,b); =0 fori<s.
By Theorem 4.1,

[x] [x1 [0 [x3 [x] @) [x1 ] [0 [0 @3 [x] [x] fxd [

N N N N N’ N N N’ N N N N N’ N’ N

HX(6),,; = H'(I_, H*(b_,8)1), ® H' (I, H' (b_, 9)1),-
Clearly, chy(H'(b_, 9);) = chy(b;). By (6.1), we obtain

2
chy(H(b-, 9)1) = chy( /\ b7, ® b_y) — chy(bZ; ® bo) + chu(y).

Using the tables of [OV90] and [Kac68], we have the following decomposition into irreducible
[-modules.

b, = L(3w)
2
Hom( /\ b_1,b.,) = 2L(w)) ® L(w, + @) ® L(w3)),
Hom(b_l, bo) = L(’(D']) 187] L(w1 + 1172) ©® L(3w1)
Therefore chi(H%(b_, g)1) = chy(L(w3)). Here chy(L(w3)) = 0 in case £ = 2. Moreover
& Gw),E)=1,  (£(w3),E)=0.



By Theorem 4.1,
HY(6), = H(L, H*(b-, 9)).
By (6.1), we obtain
ch(H*(b_,8),) = chy(b; ® b,) — chy(by).
By the tables of [OV90] (also see [AGY3]) and [Kac68]),
b ®b*, = L2w)) ® L2w, + @) ® L{dw)
b, = L(4w).
Hence
ch(H(b-, 9)2) = ch(LQ@, + @,)) + ch(LQ2w@1)).
Moreover
(EQw + ), Ey =1,  (£Qw),E) =2.
Theorem 6.4. Let & be a PPGLA of type (1, §) such that the triple (D(1), Ay, E) is (Ce, (e}, @1)
(£ Z 2). Then we obtain the following list of pairs (r, s) such that HX(®),, #0(r21,5s=1,2).
A =2 (r,s)=(1,1),(1,2), (2,2).
i) 1z3, (r,s)=(0,1), (1,1), (1,2), (2,2).
6.3.3. The general case. Let A be the highest weight of the [-module H?*(b_, g),. Then
(6.2) (E(A)LE) < s{y, @) + 5.

Hence we have

Proposition 6.3. Let ® be a PPGLA of type (1, S). Then:
(1) Fors=1,2,

HO(I_, H?(b_,0),), =0 forrzs(u—1)+1.
(2) IfXg = Bg, Cg or E7, then
H(L, H*(6_,0)5), =0 forrz[s(u+1)/2]+ 1.

Proof. (1) Since it = (y — wo(y), @w!) + 1 and (wo(y), w;) < 0, we have s((y, @) + 1) =
s(u + (wo(y), @) £ s(u — 1), which proves our assertion.

) If X, = By, Ce or E7, then wy(y) = —y, sou = 2y, w;’)+ 1. By (6.1), we have (£](A), E) =
s(u + 1)/2, which proves our assertion. O

7. THE SYMBOL ALGEBRAS OF THE PLUCKER EMBEDDING EQUATIONS

In this section we will calculate H>(®) when the PPGLA g = @pez g, of type (1,S) is
associated with the Pliicker embedding equations for M = Gr(i,£ + 1). Namely let ® be a
pseudo-product GLA of type (1, §) such that the triple (D(1), Ay, E) is (A¢, {ai}, weix) A S 1 S
t—i+1),ie,[=1® &l is areductive GLA such that

(1) lis isomorphic to gl (¢ + 1,C).

(2) lis an SGLA of type (X, A1) = (Ap, (i) (1 £1290),
and S is an irreducible I-module with highest weight y = @,y (e, S = AT*HCHY). We
setby =, b_; =S;theng=b_; &by Leth = @pGZ b, be the prolongation of b_; & by. Also,
we use the notation in §4.



7.1. The case i = 1 or 2 (the case b, # 0). In this subsection, we assume b; # 0. Then
by Theorem 5.1 and Table 1, we see that H'(®);; # 0 and the triple (D(1), A}, E) is either
(Ag, {1}, we) or (Ag, (@2}, @e-1) (I 2 3). By Theorem 6.2 (1), (4), (18), (20) and (21), we obtain
the following theorem.

Theorem ’Z.l. Let ® be a PPGLA of type (1,S) such that the triple (D(1), A1, E) is (A¢, {ai),
@e_is1). If b1 # O, then the triple (D(1), A, B) is (Ae, {1}, @we) (€ 2 1) or (Ag, {aa}, we-1) (€ 2 3)
and we have

(1) We assume that (D(1), A1, Z) is (Ag, {1}, @e) (€ 2 1). Then the set of integers such that
H*(®), # 0 (r 2 1) is the following.
) £=1,r=2,3,4
i) €z2,r=1,2
(2) We assume that the triple (D(1), A1, E) is (Ag, {an}, we_1) (€ 2 3). Then the set of integers
r such that H*(®), # 0 (r = 1) is the following.
i) €=3,r=1,2,3,4
G) €=4,r=2,3.
@ii) £=5,r=2
In these cases, g = @pez g, is a parabolic graded subalgebra of a simple GLA s = @pez Sp
such that g, = s, for all p £ 0. In fact s = @pez s, is Of type (Aect, {¥1,Ver1)) and is the

prolongation of (m,gp) wheni = 1 and s = @p oz 5p 18 Of type (D1, {v2,Ves1}) and is the

prolongation of m when i = 2. Hence we obtain the following theorem for H2(m, s) (Proposition
6.2 [Yam99]).

Theorem 7.2. Notations being as above.
(1) We assume that (D), A, ) is (A, {a1}, we) (€ = 1). Then the set of integers such that
H*(m,s), # 0 (r 2 1) is the following.
) €=1,r=4.
i) €22, r=1,2
(2) We assume that the triple (D(0), A, E) is (A¢, (a2}, @e_1) (€ 2 3). Then the set of integers
r such that H*(m, s), # 0 (r 2 1) is the following.
G €=3r=1,2

7.2. The case i > 3 (the case b, = 0). Let [ be an SGLA of type (As, {a;}) ( 2 5,3 S i £
£—i+1).

7.2.1. The computation of HX(®), _,.
We have

& @), E) = (&, (@), Ey= (= 1D+ 1=~i+220

7.2.2. The computation of H*(®),.
We have already known that
H*(®),o = H'(L., H' (b, 8)o),-
Also H(b_, ), is isomorphic to Hom(b_, b_;)/5%(by) as a by-module.

Hom(b-1,b-1) & L(@¢-51) ® L@) = () L(@r-iajo1 + @iy)

jz0

bo = L(w; + @) ® L(0).



Hence

. i-2
H'(b_,9) = @L(ﬁ%f—nm + @)
=0
We get
EN T i jr1 + T ), E) = (o @ eoivjo1 + @ij) = p) + p, @))
= ~(Ti_j+ Tpoinjol, @} )+ (Tiej + Tpoi ity &)
-1
£+1
=Jj—i+0j0+06eisjr1it120

(E=DE—i+ D+ A= P+ 850+ Oinjeri + 1

7.2.3. The computation of H(®),,.
We have already known that
H*(®),,, = H(I_, H*(b_,a)1)r-
Also H2(b_, g); is isomorphic to Hom(A?b_j;, b_;)/6°(Hom(b_;, bp)) as a by-module. By the
table [OV90] and the Young tableau method, we have

{G-1)/2]

2
/\ b, = @ L(®@iszje1 + Wizgj-1)
j=0

by ® b, = (L(w + w¢) ® L(w,;) & L(w))
= L(w + @; + we) ® L(w, + @;_y)
® L(wiy + we) ® 2L(w;)
2 [G-1)/2}
b ® /\bil = @ EB L(w, + Wigj-146 + Tisrzjsiec)s
720 (ab.O)eAG)
where A(j) = {(a,b,0) €Z° |05a<i-2j-1,08b54j+2,05cLt—-i-2ja+b+c=
{—i+1}.
Casel: i<f{—-i—-2j—c={€—-i+2j+2-b<{-a+1l
(1@, + Tigjo14p + Tisajrest)s E)
:———1——((£+i+ Di-)+1=~i+1<0

£+ 1
Case2: {—i—2j—c<iZl—-i+2j+2-b=f—-a+l

(E1(@a + Tigjo14b + Tisajrce1)s E)
=—(-i-2j-c)+ 12— C+i+2j+1+¢~-i-2j=1
Case3: {—i—2j—-cSCl—-i+2j+2-b<isf-a+]l.
(1@, + iajotep + Tiszjres1)s E)
=—f-a+2i<t—-a+i+l-i+1l=-a+1Z1
Cased: {—i—2j—cS{l—-i+2j+2-b=fl-a+1<i.
<§11(wa+wi—2j—l+b +wi+2j+c+1), E>

=-204+3i-1£-20+i+2(6-i+1H)-1L-i+120
Proposition 7.1. (1) H*(®),_, =0 forallr 2 1.



(2) H*(®),9=0forallr2 1.
(3) H*(®),, = 0 for all r 2 2. Furthermore H*(®)11 = 0 when i = 3 and > 6.

Proof. We need to show the case i = 3 and £ 2 6. In this case, by the above results, we have
H*(b_,9)1 = (w, + 3 + @-1) ® L@, + @)

& L(w; + w4 + @e-1) ® L(w4 + @e)

O L(wy + w4 + wen) (£ 26)® L(ws +wey) (£27)

® L(ws + @¢-2) (€ 2 8)
Hence we obtain

H*(®),, =0forall r > 1
O

7.3. The computation of H>(®),, when i = 3 and ¢ 2 5. In what follows, we consider the
case where by = gl (V) and b_; = A“?V, where V = C! (£ 2 5). We see that

HX(®),, = H'(L, H*(b_,8)2)r, H*(b_,0); = Ker d,,

where 6° is the coboundary operator 62 : C2(b_, g); — C*(b_, g),.

We 1nvest1gate a relation between the coboundary operators §° : by — Hom(b 1,b_1) and
52 Hom(/\ b_1,b) — Hom(/\ b_;,b_1). Recall that for ¢ € by, w € Hom(/\ b_;, Do) and
U1, U2, 3 € by,

So(@)(1) = [v1, 0] = —(v1)
and .
S (W) (1, v2,v3) = [v1, W(V2, v3)] = [V2, W(V1, v3)] + [v3, W1, 02)]
= —w(vy, v3)(V1) + W1, v3)(V2) — W(1, V2)(V3).

In particular, if w = ¢ ® w} A w}, *(p ® wi A wh) = %) A w; A ws.

We use the following notation: Let {ey, ..., g1} be the canonical basis of V and let {e],.. .,
e;,.,} be the dual basis. Let E;; be the element of by such that Ejje, = dpe;. Also we put
i, =€y N-Ney,ande; . =e Ao Nep .

Let b be the canonical Cartan subalgebra of by (i.e., h = Zf:ll CE;;). We define a linear form
/li Of[) by /l,‘(Ejj) = 5,'1'. Then

. £+1
Z/l _£’+1Z/1

and e} is a weight vector of I—module S with Welght -y — -+ — A, ,. Note that if A is

1| l(2

a weight of the D(I)-module Ker 62, then A + 20 is a weight of the -module Ker?. Since
ad(I;;1)IS = (€ — 2)15 and ad(J)|S = —1g, we have Ip,; = ~(£ = 2)J, where Ipyy = X2 Ey.

£ —
Hence o = o) £l 4. Let A = Y'Y, myw; be a highest weight of the [-module Ker §%; then

£+1

A+20=22miﬂj {Zmlz+2(€ 2)}2/1

=1 j=1

The highest weight vectors v, of Ker 6% with highest weight A + 20 have the following forms:
U = Z Qi iy, Jie-2.jis ,jf—inj ® e;, Jea A e;‘l Je2?

where the summation is taken over all i, j,iy,...,%, 2, ji,-.., jez SUchthat A + 200 = A4; — 4, —

Z,fj(/l,-k + 4;,). Since Eyxva = 0 for 1 £ k < £, we get the relations between the coeflicients
{ai’j,ily Jie-2,J1, ,j(—z} of vs.



From these methods, we can calculate 6%(vy).

7.3.1. Thecase £ =5. .

We first consider the case £ = 5. By the table of [VG90] and the Young tableau method, we
have

2
Hom(/\ b.1,b0) = L(w; + @4 + @s)  L(2w3)
@ 3L(w, + wy) ® L(wy + @, + ws3)
® L(w, + 2ws) & 2L(w + @s)
& L(w; + Wy + @4 + @s5) ® LQw; + @y)
® L(0)
By a direct inspection, we see that Ker ¢, = L(w; + @ws) and
(&1(@) + @s), E) = —(@ + ws,@3) + 2(w3, @3) + 1) = 3.
Also a lowest weight vector of H%(b_, q), is the following (This vector is also a generator of
H*(6)3,).
wis = Egs ® egqy A €3y — Egs ® €3y A egyy + Ees ® ey A ey
— Eq4 ® €55y A €31 + Egu ® €3 A €51 — Eea ® ey A €53
+ Eg3 ® egs) A €l — Ee3 ® €5y A €5y1 + Ees ® €1 N €5y
— Eex ® eg5; A €y + Eqa ® €y A €53 — Ear ® €63 A esyy
+2E6 @ egsq A €3y — 261 ® €gs3 A €4y + 2E61 ® €55y N €43
~ E61 ® €55y A €43 + 2E61 ® egy3 A €5y — 2Eg1 ® €y A €53
+ Egi ® ey A €53 + 2E61 ® €53y A €5y — Bt ® €3y A €5y
+ Ee1 ® €gy) A €543 + Ess @ €541 A €3y = Ess @ €53 A egyy
+ Ess ® €5y A €31 + 2Es54 ® €531 A €551 — 2E53 ® €34, A €5y,
+2E5; ® €54y A €53 + Es1 ® €543 A €5y — Esi ® €549 A ey
— Es1 ® €54y A €53 — 2E45 @ €331 A €y = 2E43 ® €54 A €
+2E4 ® €5 A €3y + Eqa @ €54y N €5y + Egn @ €53, A €y
— Eu®e5 N egyy + Eq @ €543 N ey — En @ €54 A e
— B ® €4y A €hgy — 2E35 @ €431 A €3y + 2E34 ® €531 A €3y
+2E5 ® €531 A eg3) — B33 @ €5y A eyy) — Exy @ €53y A ey
— Ex3 @5 A ey + E31 @ €543 A €3y — B3 ® €55 A egyy
— E31 @ €53 A €43 — 2E05 @ €y A €3y + 2E0 ® €51 A €3y
~2En®e5 Aeyy — En®ey, Aexp + En®esy Aegy
+ En ® ey Aejsy + En ® sy Aeiy — En ® sy A ey

* *
— By ®esy N ey

We summarize the above results in the following theorem.

Theorem 7.3. Let ® be a PPGLA of type (1, S) such that the triple (D(1), Ay, E) is (As, {a3}, @3).
Then we have

(1) HX®),_; # 0 ifand only if r = —1.



(2) H*(®),0 # 0ifand only if r = —1,0.

(3) HX(®),, # 0ifand only if r = —1,0.

(4) HX®),, # 0 ifand only if r = 3.
Consequently H(®), # 0 if and only if r = —1,0,3.

7.3.2. Thecase £ 2 6. .
In this case, by the table of [VG90] and the Young tableau method, we have

2
A\ 2 L@, + @) @ Liw)
2

Hom( /\ b_1,b0) & L(w; + w4 + @) & LQ2w5)
® L(w, + @y + w3) ® L(w7 + wy)
® 3L(w, + w,) ® L(w + e + @y)
® L(w, + ws + @) ® 2L(w) + @s)
® L(w, + @y + @4 + wy) ® L2w, + @y)
® 2L(we)

By a direct inspection, we see that Ker § = 0. Hence we obtain the following theorem.

Theorem 7.4. Let ® be a PPGLA of type (1, S ) such that the triple (D(1), Ay, E) is (A¢, (a3}, Te-2)
(£ 2 6). Then H*(®),, = 0 for all r.

Thus, by Proposition 7.1 and Theorem 7.4, we obtain the vanishing H*(®), =0(r= 1) for
the second cohomology when €. 2 6.

Summarizing the discussion above, we have the following rigidity theorem for the Pliicker
embedding equations for M = Gr(k,€ + 1), when k = 2 (£ 2 4)and k = 3 (£ 2 6): Let
g = @pez g, be the pseudo-product GLA of type (I, $) such that the triple (D), A, 5) 1s
(Ag, {an}, @e_1) OF (A, {3}, @e-2). In case k = 2, the prolongation of m = @N) g, becomes a
simple GLA s = @pez s, of type (Des1, {y2, Ye+1}) and we have H?*(m,s), = 0 for r 2 1 when

¢ = 4. In case k = 3, g is the prolongation of m and we have H*(®), = 0 for r 2 1 when ¢ 2 6.
Thus in both cases, the pseudo-product structure reduces to that of regular differential system
of type m. Here m is a subalgebra of €*(V, W) as in Lemma 2.1. A submanifold R of J* is called
a system of differential equation of type m, when (R, D) is a regular differential system of type
m, where D is the restriction to R of the canonical differential system C* on J*.

Then, utilizing the Tanaka-Morimoto theory of normal Cartan connections [Tan79] [Mor93],
we obtain the following rigidity theorem for the Pliicker embedding equations.

Theorem 7.5. Let ® be a pseudo-product GLA of type (1, S) such that the triple (D), Ay, E) is
(A, {ar}, we_1) (€ 2 4) or (Ag, {3}, o) (€ 2 6). Then every system R of differential equation
of type m is locally isomorphic with the model system Rs of type (1, ).
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