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On a limiting motion and self-intersections of curves moved by the inter-
mediate surface diffusion flow
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We give a rigorous proof that the solution curve of the intermediate surface diffusion
flow equation converges to that of the averaged curvature flow equation locally in time as
the diffusion coefficient D goes to infinity. As an application of this convergence result, we
also prove that a self-intersection of curves can be developed by the intermediate surface
diffusion flow for any positive D.

1 Introduction

This is a preliminary version of our project on the intermediate law (1). In this paper we
discuss motion of curves in the plane. Although it can be generalized to higher dimensional
cases as is done later by the authors [3], we believe the proof given here is more elementary
and explicit and is also of some interest.

We study a nonlocal geometric evolution equation of the form:

V= —Ap(t)(—l— - —Ar'(t)) k onTI'(¢t) fort > 0. (1)

Here I'(t) is an unknown evolving closed curve immersed in R? depending on time ¢ > 0.
The operator Ar(;) denotes the Laplace-Beltrami operator on I'(t). For T'(¢), V denotes
its outward normal velocity and x stands for its curvature with the sign convention that
the curvature of a circle is negative. D > 0 is the diffusion coefficient and M > 0 is
the mobility constant. The equation (1) is called the intermediate surface diffusion flow
equation which was first proposed by J. W. Cahn and J. E. Taylor [1]. We consider (1)
~ as the initial value problem with the initial condition

I'(0) = Ty, | )



where the initial closed ¢urve Ty which is immersed in R? is assumed to belong to C2+e
with 0 < a < 1. Our interest here is restricted to large D, so that we restrict ourselves
to the case that D > 1.

The purpose of this paper is to prove that the problem (1)-(2) admits a unique local
solution I'°(-) in C?** on a common time interval [0, 7] with a T > 0 independent
of D > 1, and the solution I'P(-) converges to the unique solution I'(-) of the averaged
curvature flow equation

V =M(k—Kg) onD(t)fort>0 ' (3)

with I'(0) = T'p as D — oo in CH2+® on [0, T]. Here K, is the averaged curvature defined
by '

K'a'u(t t)/ ()Iﬁ(t S)dsa ' (4)

where L(t) is the length of I'(t) and s denotes the arc-length parameter. Moreover, as
an application of the above convergence result, we show a self-intersection of the solution
curve of (1).

The equation (1) was first proposed by J. W. Cahn and J. E. Taylor [1, 10] to descnbe
a geometric growth law for a moving surface where surface diffusion is the only transport
mechanism and the only driving force for surface motion is the reduction in total surface
free energy. The first mathematical analysis for (1) was presented by C. M. Elliott and
H. Garcke [2], who established both global existence and stability results when T is close
to a circle. J. Escher and G. Simonett [4] extended their result to the higher dimensional
case. But the D-dependence of the solutions to (1)-(2) was not investigated in [2, 4]. In
[1] it was conjectured that the formal limit of (1) as D — oo becomes (3). In this paper
we carefully investigate the D-dependence of the solutions of (1) in our setting different
from those of [2, 4] and then we justify this conjecture.

We here restrict our analysis to local-in-time solutions. We have two reasons to do so.
First, the global-in-time solvability of (1) for all kinds of configurations of initial closed
curves is not yet known. Secondly, (3) is convexity-preserving [6, 7], whereas (1) does not
seem so. Therefore the global-in-time convergence of (1) toward (3) in C*?*% as D — oo
may be delicate problem to treat.

Owing to the convergence result as D — 00, it is expected that we can find a particular
behavior of solutions to (1) for any D > 0 by investigating (3). We note that (3) is easier
to treat than (1). Here we study a self-intersection of the solution curve of (1)-(2). For
this phenomenon, we remind the reader the works by M. Gage [6], U. F. Mayer and G.
Simonett [9] for (3). Their results suggest that a self-intersection for (1) can also occur
because (1) and (3) are linked by the limit as D — oo. In our paper we prove for (1) with
any D > 0 that this phenomenon actually occurs. We here emphasize an announcement
that the above result is recently extended to higher dimensional case by the authors {3].



2 Parametrization

For simplicity of descriptions we set 6:=1/Dwith0 < é <1and M :=1 and we consider
the equation :

V = —Arw(6 — Arg) 'k on T(t) for t > 0 (5)

with (2). We note that (5) can be written as
V=kK—Kg—66~- Ap(t))’l(m — Kap)- : (6)

This can be seen from the facts that Ay and (6§ — Argy)~! commute and Ar)kay = 0.
We also note that (6) is valid also for § = 0. In fact, the fact [r)(k — Kay)ds = 0 shows
that K — Kqp 1 orthogonal to the constants which are the 0-eigenvectors of Ar(). Thus
we see that (—Arpg))~! makes sense for the operand & — k,,. From this observation we
are allowed to consider (6) for 6 € [0,1]. In particular, we note that (1) with § = 0
corresponds to the averaged curvature flow equation (3).

We parametrize (6) on a fixed closed reference curve near T'g. Let ¥ be the reference
curve which is assumed to be smooth (at least C%) and parametrized as

S ={o(n) e R®neT:=R/IZ}.

Here { and n are the total length and the arc-length parameter of ¥, respectively; o(n)
runs clockwise as 7 increases. Assuming that I'(¢) is close to X for t € [0, T] with a T' > 0
small enough, we parametrize I'(t) as a graph over X. More precisely, we set

L(t) = {(@uy(0))(m) € R%neT}, .
where (©,4:(0))(n) := o(n) + p(t,n)v(n) for n € T, and p(t,n) is the signed distance
function of I'(t) from ¥ at 7 and v(n) is the outward unit normal vector field of ¥ at 7.
Following the idea of Escher and Simonett [4], we pull (6) back to & by ©,y. Let ©*
be the pull-ba.ck opera,tor from I'(t) to ¥ induced by ©,. As in [2] we obtain
_1=X
T

p(t)
eV =

. 1
S W((l — D) Py + 2)"0727 + Nppp+A- (1 )\p)2> =: K]pl,

0%k _fo P]\/To-dﬂ —: Kool
O 1 aleldn

Here A(n) denotes the curvature of T at n and g[p] is the parametrization of the Euclidean
metric of ['(t) defined by

e = |25

Moreover, it follows from [4] that ©7,,(§ — Arw))™' = (6 — Ap(t))‘l@;(t), where A,y is
the parametrization of Ar) given by

= (1-Xp)* + p2.




1 (32_M8). (7)

o) = o1\ ™ 2glole)]

For notational simplicity we put G[p] := (1 — Ap)~14/g[p]. Then, pulling back (6)-(2) to
¥ by ©,, we have the following nonlinear nonlocal partial differential equation

pe=F[p] inXr, p(0)=po inZ. . , , (8)
Here we set Xr := [0, T] x I, F®[p] := Fy[p] — Fy[p] + F2[p] with
Flpl == GlplKle], Flp] = GlplKalpl,

Fil} := ~6GIo)(6 — Ap) (Kol — Kulp).

For later convenience, we also write Fi[p], G[p], K[p]\/glo], and (/g[p] by means of

functions f(n, po, p1,p2), ‘P(U,on,m), @b(ﬂ,Po,pl,pz), and w(n, po, 1) with n € T, Ipo| <
1/(2|1Alle)), and (p1,p2) € R _such as

Fi[p] = f(n, p, s o), Gl = (m, p, py),-
K[p]\/gm = 1(n, p, Py P \/g[_d = w(h, P Pn)-

3 Uniform local existence result

In this section we establish a unique local existence result of (8) which ensures a uniformity
of solutions with respect to § € [0, 1] in the following sense.

Theorem 3.1 (Uniform local ezistence). Let o € (0,1) and let py € C2+*(S) with
——7— = —. _ 9
HPOHC(E) 4“)‘”0(2) 2 ( )

Then there are positive constants To = To(||pollcz+=(x)) and Ny = No(||pollcz+e(sy), which
are independent of § € [0,1], such that (8) admits a unique solution p® in C1?*+%(Zp)
satisfying '

”p6”01,2+a(ETO) <Ny foréel0,1]. : (10)

Remark 3.2 (i) The condition (9) is imposed to keep the factor 1 — \p® positive and
away from 0 in X1, and for § € [0,1]. '

(ii) Local existence results of (6) for each § > O are previously obtained in [2, 4] but
6-dependence of solutions is not rigorously studied there.

We prove Theorem 3.1 by a contraction argument. To do so, we linearize (8) around po.
Let A be a linear operator defined by A := A; — Ay with :

_4_._



2
Ajr = mea:,r, (11)

=0
1 13 i : o 4
./427‘ - M(w /0 g%ﬁnrdﬂ +/O ¢dﬂ§¢manr
Jowdn 1 i : |
R wdn /o g“’maﬂdﬂ)’ 12)

for r € C%(X), where f, ¢, 1, w, and their first derivatives are evaluated at (M, Pos P4, £8)-
(For each k = 1,2 the expression of 4, can be obtained by deriving the first variation of
F} at po in the r-direction.) Let p(t,7) be a given function belonging to C*?+*(Xr) with
llplle(zry < - Then we consider the inhomogeneous linear equation for unknown fuction
r(t,n) of the form

re = Ar + F°lp] in Tr, r(O)‘ =pp inX | (13)

with a T > 0. Here F°[p] is defined by F®[o] := Fy[p] — E3[p] + F8[p] with Ep) =
Fi[p] — Axp (k = 1,2). We note that (13) with p = r is equivalent to (8).
For (13) we have the following unique existence result.

Lemma 3.3 Let 6 € [0,1] and let a € (0,1).  Assume that pp € C***(X) and p €
CL2*+(Zr) with |loolle) < v, lpllowny < v where v is in (9). Then (13) admits a
unique solution r® in C12+2(Lr) satisfying

Irllcrarecsr) < allloollcasasy) (llpollcaracey + 1E2[lllconca)s (14)
where the constant a is independent of § € [0, 1].

The proof of Lemma 3.3 is postponed in Section 6. Lemma 3.3 shows us that the problem
(13) induces the mapping S% : C12+e — CL2te; 5y p,
Now we are ready to prove Theorem 3.1.

Proof of Theorem 8.1. Let N be positive parameter and set

Brny = {p € CY***(Zr); lIpllcravary <N, lplloen <7 £(0) = po}-

Then Br,n, is a complete metric space endowed with the norm || - ||c12+a(z,y. For p €
Br,n, we denote by S°(p] the unique solution ¢ of (13) given by Lemma 3.3. We shall
show the estimates:

15%[ollcra+a(zgy < Colllpollcatarsy) + CL{NYT*/?, | (15)

15°p1) = S°[po]l|crzvazpy < Ca(N)T*/?||py — p2|lcrateasyy ' (16)

for p, p1, p2 € Br Ny, Where the constants C; (i = 0, 1,2) are independent of § € [0,1].
Here we once admit (15) and (16) and continue the proof. Choose N, and Ty as



o N o 1
No :=2Co(llpollcarasy),  Cr(No)Tg”? < 70, Co(No)T5"? < 3 Ml <

Note that Ny and Tj are independent of § € [0,1]. Then we see that 56 is a contraction
mappmg from Br, N, into itself and it admits a unique fixed point p° in Bry n,,. This
p® is obviously the desired solution we are going to seek.

We only prove (15), since the proof of (16) can be done identically. Throughout this
proof, we denote by C(g) universal constants depending on ¢ but independent of § € [0, 1];
their values may be different in each occasion. In view of (14), if we establish the estimate

12l lgoamry < Clllpollca+amy) + C(N)T2, " (18)

then (18) immediately yields (15). )
We shall show (18). By a standard method utilyzing its particular structure of F}, we
can obtain

I [elllcoa(zr) < Clllpollcaracsy) + C(N)T>/2 . ' (19)
(see [8, Theorem 8.5.4]). For Ej[p], we use the formula:
Bylp] = Falpo] — Azpo
+/1/0F"[(1 —0)po + opl(p — po, p — po)dodf
b Jo ©2 0 0, 0 -

b2

(17)

Here Fy'[w](u,v) for u, v, w € Br,n, is the second variation of F, to the (u,v)-direction
and its explicit form is given by

Fllw)(u,v) = / Z¢p1p23’u87vdn+/2¢p udnzgopjajv

i _7-0 =0
+Zsop,-a:;u [3- i, Bdvcn) + Qfulav),
i=0 =0

where @, 9, w, and their derivatives are evaluated at (n, w, wy, wy,) and the symmetric
bilinear form Q[w](u, v) stands for the term consisting of the up to first order derivatives
of u and v. Then, after a straightforward but rather long caluculation, we obtain

Hﬁ‘z[P]HCOva(z:T) < [[F2[po] — Azpollcx(s)
1 0
+ [ [ IR = 0)p0 + 800 — poy o = po)lomemrydode
C(llpollcz+azy) + C(N)T*/2, (20)

We are going to estimate F3[p]. We have nothing to prove when & = 0, for F{[p] = 0 due
to its definiton. So we investigate the case § € (0,1]. The key in this case is the following
lemma, which ensures the existence of uniform bounds for the operator §(6 — A,)™! with
respect to 6 € (0, 1].

-



Lemma 3.4 Let § € (0,1]. Assume that p € C1?**(Zr) and h € CO*(Zr). Then,
(i) (6 — A,)"h belongs to C%***(Zr). In particular,

16(6 = Ap) " hllcoar) < Billlpllcoz@e) IbllcEry  for 8 € (0,1], (21)

where the constant B, is independent of § € (0, 1].
(ii) Moreover, if h also fulfills

J nenalelnyn =0 forte 1], | (22)

16 = Ap) " hllooamgy < Balllpllcoamm) bl for é € (0,1], (23)
where the constant By is independent of § € (0, 1].

then

The proof of Lemma 3.4 is postponed in Section 6. We resume to estimate F{[p]. We
decompose F¥[p(t)] as

Filot)] = —8(Glp(t)] = Gloo))(6 — Apey) (K [p(8)] — Kanlp(t)))
—6Gpo] ((8 = D)) ™ = (6 = Do) ™) (K1p(£)] — Kalp(2)])
—6G[p01(6—Apo>-l(<K[p<t>1— Kaolo(t)]) — (K [po] — Kau[po)))

—8Gpo) (6 — Apo)_l(K[PO] — Kau[p0])
= I+ L+ I3+ 1.

Observe that
lo = polloa(mry < CIN)T2. - (24)

This can be checked by means of [8, Lemma 5.1.1]. Using Lemma 3.4 (ii) (and also (24)
for (25)), it is not difficult to show

L1l cozry < C(N)T®/2, | (25)
[ La]lcom(zry < Clllpollcr(s)- (26)

In order to estimate I, we use the resolvent equation:

(5 - Apo)_1 —(6— Ap(t))_1 = (6 - Apo)_l(Apo - Ap(t))(‘S - Ap(t))_1

Then
[ 2llcozr)
< 2/Gloul w166 — D)™ (A — A,)(6 — A >~1<K[p1 Keul) oo
< Clleollea@)I(Ap — A)(6 = Ap)HE o] — Kaulp])llo(zs),

where we have used Lemma 3.4 (i). Moreover, (24) and Lemma 3.4 (ii) yield
(A = Dp)(8 = 8p) (K o] — Kanlp))llon
< C(N)T2)|(8 = Ap) (Kol — Kau[o]) llco2zr)
< C(N)T*?|| K[p] - Kavlollcisr) < C(N)T.

Thus we arrive at



12llcon(zr) < C(N)T2. ‘ (@
For I3 we use Lemma 3.4 (i) to get

| 13]| core(zr) '
< 2||Glpo]llca)16(6 — Ap) ™ ((K[P] — Kulp]) — (Kpo] — Ka'u[po])) llco.«(s1)
< Cllpollcz@) I(K[p] — Kaulp]) = (Kloo] — Kaw[po))llcs)

< C(N)T*2. ' (28)
From (25)-(28) we obtain
IE3 o)l ooz < Clllpollez(s)) + C(N)T2. | (29)
Thus we have proved (18) by (19), (20), and (29), and therefore (15) has established.
This completes the proof of Theorem 3.1. q.e.d.

4 Convergence result

In this section we prove that the unique solutlon of (1)-(2) obtained in Theorem 3.1
converges to that of (3)-(2).
Now we state our main result.

Theorem 4.1 (Convergence result). Let § € [0,1]. Let p° be the unique solutions of (8)
in Theorem 3.1. Then it holds

16° = Pllcravesg) < 6C(llpollcaraiy) for 6 €[0,1], | (30)
where the constant C, is independent of § € [0, 1].
Proof. Set 2° := p® — p%. Then 2° fulfills

2 = A2 + R[] — F1[p°] — (B3[p’] — F3[p®) + F{[%] in Tq,,
(0) in . '

It follows from (14) that
2 , : |
12 lgrave(sny < a- (3 I1Ek10°] — Exlo%lllcommgy) + IFS [0 com(zny ).~ (31)
k=1 ' .

The first term in the right hand side of (31) can be estimated as in (16) by using the fact
that 2°(0) = 0 in . So we have for some constant C(N,) independent of § € [0, 1]

2 : . ‘
SN Ele’] = Eulpllooeegy) < C(No)Tg |12 lorre(zay)-
k=1



For F$[p®], we use Lemma 3. 4 (11) and (10) to get for some constant C’ (No) independent
of 6 € [0,1]
175]p° oo (zy) 26)|G(o°] lcoe(zry)ll(6 - Apﬂ)_l(K[ﬂﬁ] - Kav[Pa])”co,a(zTo)

<
< 8C'(No).

Thus we arrive at ||2°||c1, 2+a(ng) < Co(No)Tp /21| 28| o, 2+a(sy,) + 6C3(N0) Here we note
that Cy(Np) can be the same as the one in (16). Then, by (17) we obtain (30) with
C. = 2C3 and the proof is complete. qg.e.d.

5 Self-intersection

As an application of Theorem 4.1, we show a formation of self-intersection of closed curves
moved by (1)-(2) for any D > 0.

Theorem 5.1 (Self-intersection). Let a € (0,1) and let § € (0,1]. Then, there is an
embedded closed curve Ty in C?** such that the solution curve of (5) with the initial

data Ty established in Theorem 3.1 loses its embeddedness in finite time although it stays
Cl 2+a .

Proof. (a) Due to U. F. Mayer and G. Simonett [9], there is an embedded closed curve
Iy € C?** such that the solution I'® = {T(£) }cpo,z) of (5) with 6 = 0 and with I°(0) =
established in Theorem 3.1 loses its embeddedness for a ¢’ € (0, Tp).

(b) First we show the result when § > 0 is small. Let § € (0,1] and let I =
{T%(t)}tepo,z) be the solution of (5) with I'*(0) = I'y established in Theorem 3.1. Then,
by (30) and (a) we can find a small & € (0, 1] such that for any § € (0,8], ['*(¢') must
not be embedded curve.

(c) We show the result for any § > 0. For this purpose let us consider the rescaling as
t=X"%, (z,9) = A"}(z,y) for A > 0, where the bar-variables stand for the rescaled ones.
Then the normal velocity, the curvature, and the Laplace-Beltrami operator are rescaled
as V =)V, k= A, and A = X?A. Thus the equation (5) is rescaled to

V=-AMN6-A)"'k onT(f) for i >0. : (32)

Let 6 > 0 be fixed arbitrarily. As in (a)-(b), we can find an embedded closed curve T
and ?; > 0 such that for a sufficiently small A = A(6) > 0, the solution T of (32) with
I'(0) = [y is not embedded at #;. This means that the originally scaled solution I' of (5)
with I'(0) = T'o, where I'q is originally scaled curve for Ty, is not embedded at ¢, := A2{;,
although I'y is embedded. This completes the proof. - qe.d.

6 Proofs of Lemmas 3.3 and 3.4

Proof of Lemma 8.3. Let X := C(X) and let A be the realization of A in X which is defined
by A: D(A) — X;p+— Ap, where D(A) := C?(X). We shall show that A is sectorial in

— g —



X. Once this is verified, then it turs out that A generates an analytic semigroup {e*}:>0
in X and the unique solution of (13) is given by the variation of constants formula

¢
ré(t) = et py +/0 et=4 %[ p](s)ds

and it satisfies the desired estimate (14) (see [8, Chapter 5]). It also turs out that the
constant a(||pol|c2+e(x)) in (14) arises from the resolvent estimate of A.

In order to verify that A is sectorial in X, we owe a result concerning the perturbation
of the generator [8, Proposition 2.4.1 (ii)]. Let A; be the realization of A; in X which
is defined by A; : D(A;)(:= C*(X)) — X;p — A1p. Then, according to its particular
form of A; in (11), one can show by a standard method that A; is sectorial in X (see
for example [8, Chapter 3]). Let A; be the realization of A, in X which is defined by
Az : D(A2)(:= D(A;)) — X;p— Asp. Then, by means of (12), it is straightforward to
show that A; € L(D(A2), C*(X)) with

lAzpllca(zy < Clllpollor+a@)liplica)  for p € CHE).

This means that A, is regarded _as a perturbation of A; in the sense of [8, Proposition
2.4.1 (ii)], and it follows that A(:= A; — Ag) is sectorial in X. This completes the proof.
q.e.d. S

Proof of Lemma 8.4. For simplicity of notation, we write g(¢,n) = g[p](t,n). Through-
out this proof, we denote by C(q1,¢o, - - -) various constants dependeing on ¢;, g2 - -+, but
independent of § € (0, 1], whose values may be different in each occasion.

First we show (ii). Let us consider the equation

Su— Ayu=h. (33)

It follows from the Schauder theory that for any ¢ € [0, T}, (33) admits a unique solution
u(t,-) € C?t*(%).

In the following, we fix arbitrary t € [0,7]. We integrate (33) with respect to
v/ 9(t,n)dn from 0O to I, where [ is the total length of ¥. Then, it follows from (22)

and the fact [} Apu./gdn = 0 that Jeu(t, n)4/9(t,n)dn = 0. This implies

lu(t, oy < Ulun(t, o) ” (34)
Then (7) and (34) yield
g .
lumn(t, Mo = g (6u+ -2-5"5%7 =)} e

g
< lgllen (It Ve + 555 oy, et Mo + Iklloen)
< C(llpllcozsry)lun(t, )lee + 1Blleen)- (35)

Thus our task is reduced to estimate |lu,(¢,-)|lc(s). For this purpose, we introduce a
change of variables as follows:

§ = /on\/g(—t:?)dc’ U(t, 3) = U(t)n)a H(‘tv 3) = h’(t’ 77) (77 < [0’ l])
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Set L(t) := fy +/g(t,n)dn. Then the fact that [ ® Us(t, s)ds = 0 yields

unt, Dl = oMU )| < Cllellonssy) [ 1Uanlt5)lds
< C(llplleor@m | Uss(ts Ml c2o,Le- (36)
On the other hand, we see that (33) in s-coordinate reads
§U —U,, = H. (37)
Multiplying (37) by —U,, and integrating it yield |
|Us(t, MZ20,209) + [|Uss (2, Wi2(0,L0)
< %“Uss(t, Mizc0,L0 + %“H(t, ME20.1¢8-
Hence we have ‘
1Uss(, 20,y < 1HE 2o,y < Clllpllcorsn)) Bllesy- (38)
Now (36) and (38) give
(e, Yo < Clllollcoan) Illoges)- | (39)
Substituting (39) into (35) and using (34), we finally obtain
[u(t, M2y < Ba(llplloozsmy) IblloEs)-
In a similar way we can obtain
lu(#, ) — u(r, )z
< C(llpllcoa(zry Blloen) IR, ) — R(T, Mlew + o, ) = p(7: e s)

for t, 7 € [0, T]. This shows that u € C%?(Xr) and hence we get (23).

We can also show that u belongs to C%2**(%r) via further straightforward computa-
tion, which we leave to the reader.

Next we show (i). We use the decompoition as follows:

66— Ap) th =68 — Ap) M (h — haw) + 6(6 — A,) hey, (40)

where hq,(t) := [y h(t,n)+/g(t,n)dn/L(t). 1t is easy to verify from the uniqueness of the
solution in (33) that 6(6 — A,) 'hay = hay. Now, taking the C%2(Zr)-norm in (40) and
using (23), we have

166 — Ap)'hllcoamryy < 6Ba(llpllcocmmy)Ih — havllcr) + hallciomn
< Bi{llpllcozzry)llbllesyy  for 6 € (0,1].

This completes the proof. q.e.d.
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