The Real Part Of An Outer Function And A Helson-Szegö Weight

Takahiko Nakazi and Takanori Yamamoto

Series #490. August 2000

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- #466 S. Izumiya, G. Kossioris and G. Makrakis, Multivalued solutions to the eikonal equation in stratified media, 24 pages. 1999.
- #467 K. Kubota and K. Yokoyama, Global existence of classical solutions to systems of nonlinear wave equations with different speed of propagation, 105 pages. 1999.
- #468 A. Higuchi, K. Matsue and T. Tsujishita, Deductive hyperdigraphs a method of describing diversity of coherences, 35 pages. 1999.
- #469 M. Nakamura and T. Ozawa, Small solutions to nonlinear Schrödinger equations in the Sobolev spaces, 26 pages. 1999.
- #470 M. Nakamura and T. Ozawa, Small solutions to nonlinear wave equations in the Sobolev spaces, 27 pages. 1999.
- #471 K. Ito and Y. Kohsaka, Stability of a stationary solution for evolving boundaries of symmetric three-phases driven by surface diffusion, 36 pages. 1999.
- #472 Y. Giga and M.-H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, 32 pages. 1999.
- #473 R. Yoneda, Characterization of Bloch space and Besov spaces by oscillations, 31 pages. 1999.
- #474 T. Nakazi, Norm inequalities for some singular integral operators, 13 pages. 1999.
- #475 A. Inoue and Y. Kasahara, Asymptotics for prediction errors of stationary processes with reflection positivity, 15 pages. 1999.
- #476 T. Sano, On affine parallels of generic plane curves, 8 pages. 1999.
- #477 T. Nakazi, On an invariant subspace whose common zero set is the zeros of some function, 11 pages. 1999.
- #478 M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, 68 pages. 2000.
- #479 M.-H. Giga and Y. Giga, Crystalline and level set flow Convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane, 16 pages. 2000.
- #480 A. Arai and M. Hirokawa, Stability of ground states in sectors and its application to the Wigner-Weisskopf model, 16 pages. 2000.
- #481 T. Nakazi, Two dimensional Q-algebras, 11 pages. 2000.
- #482 N. H. Bingham and A. Inoue, Tauberian and Mercerian theorems for systems of kernels, 16 pages. 2000.
- #483 N. H. Bingham and A. Inoue, Abelian, Tauberian and Mercerian theorems for arithmetic sums, 29 pages. 2000.
- #484 I. A. Bogaevski and G. Ishikawa, Lagrange mappings of the first open Whitney umbrella, 22 pages. 2000.
- #485 A. Arai and H. Kawano, A class of deformations of the Schrödinger representation of the Heisenberg commutation relation and exact solution to a Heisenberg equation and a Schrödinger equation, 22 pages. 2000.
- #486 T. Nakazi, Functions in N_{+} with the positive real parts on the boundary, 21 pages. 2000.
- #487 Y. Shibukawa, Classification of the R-operator, 36 pages. 2000.
- #488 A. Inoue, Asymptotic behaviour for partial autocorrelation functions of fractional ARIMA processes, 20 pages. 2000.
- #489 S. Ohtani, Construction of unramified Galois extensions over maximal abelian extensions of algebraic number fields, 14 pages. 2000.

The Real Part Of An Outer Function And A Helson-Szegö Weight

by

Takahiko Nakazi* and Takanori Yamamoto*

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

2000 Mathematics Subject Classification: Primary 30D55; Secondary 42B30, 47B35.

Key words and phrases: Hardy space, outer function, Helson-Szegö weight.

Abstract. Suppose F is a nonzero function in the Hardy space H^1 . We study the set $\{f \; ; \; f \text{ is outer and } |F| \leq \operatorname{Re} f \quad \text{a.e. on } \partial D\}$ where ∂D is a unit circle. When F is a strongly outer function in H^1 and γ is a positive constant, we describe the set $\{f \; ; \; f \text{ is outer, } |F| \leq \gamma \operatorname{Re} f \quad \text{and} \quad |F^{-1}| \leq \gamma \operatorname{Re} (f^{-1}) \quad \text{a.e. on } \partial D\}$. Suppose W is a Helson-Szegö weight. As an application, we parametrize real valued functions v in $L^{\infty}(\partial D)$ such that the difference between $\log W$ and the harmonic conjugate function \tilde{v} of v belongs to $L^{\infty}(\partial D)$ and $||v||_{\infty}$ is strictly less than $\pi/2$ using a contractive function α in H^{∞} such that $(1+\alpha)/(1-\alpha)$ is equal to the Herglotz integral of W.

1. Introduction

Let D be the open unit disc in the complex plane and let ∂D be the boundary of D. An analytic function f on D is said to be of class N if the integrals

$$\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$$

are bounded for r < 1. If f is in N, then $f(e^{i\theta})$ which we define to be $\lim_{r \to 1} f(re^{i\theta})$ exists almost everywhere on ∂D . If

$$\lim_{r\to 1} \int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta = \int_{-\pi}^{\pi} \log^+ |f(e^{i\theta})| d\theta$$

then f is said to be of class N_+ . The set of all boundary functions in N or N_+ is denoted by N or N_+ , respectively. For $0 , the Hardy space <math>H^p$ is defined by $N_+ \cap L^p$. Hence any function in H^p has an analytic extension to D.

A function h in N_+ is called outer if h is invertible in N_+ . A function g in H^1 is called strongly outer if the only functions $f \in H^1$ such that $\frac{f}{g} \geq 0$ a.e. on ∂D are scalar multiples of g. If g is strongly outer then outer. Suppose F is a nonzero function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} |F(e^{i\theta})| d\theta \quad (z \in D).$$

The right hand side is the Herglotz integral of |F|. Then α is a contractive function in H^{∞} . Let $f_0 = \frac{1+\alpha}{1-\alpha}$. Then Re $f_0(z) > 0$ $(z \in D)$,

$$|F|=\mathrm{Re}\; f_0\;=rac{1-|lpha|^2}{|1-lpha|^2}\;\;\; ext{a.e. on }\partial D,$$

and $f_0 \in \bigcap_{p < 1} H^p$ by a theorem of Kolmogorov (c.f. [1, Theorem 4.2]). Since Re $f_0(z) > 0$, $f_0 = c \ e^{\tilde{v} - iv}$ where c is a positive constant and $||v||_{\infty} \le \frac{\pi}{2}$, \tilde{v} is a harmonic conjugate function of v satisfying $\tilde{v}(0) = 0$. By a theorem of Kolmogorov, $\tilde{v} - iv \in \bigcap_{p < \infty} H^p$,

$$|F| = e^{u+\tilde{v}}$$
 and $e^u = c \cos v$ a.e. on ∂D

where u is a real valued function. In Section 2, when F is strongly outer we study an outer function f in N_+ such that $|F| \leq \operatorname{Re} f$ a.e. on ∂D . We then show that $|F| \leq \gamma$ Re F if and only if α^2 is a γ -Stolz function, where γ is a positive constant. If β is a contractive function in H^{∞} and $|1 - \beta| \leq \gamma (1 - |\beta|)$ a.e. on ∂D then we call β a γ -Stolz function. Suppose W is a Helson-Szegö weight (cf. [3]). In Section 3, using Theorem 1 in Section 2, we parametrize real valued functions v such that $\log W - \tilde{v} \in L^{\infty}$ and $||v||_{\infty} < \frac{\pi}{2}$.

2. The Real Part of an Outer Function

In this section, we study the inequality : $|F| \leq \gamma$ Re F a.e. on ∂D when F is a nonzero function in H^1 . The first author [4] studied the inequality : $|F| \leq \gamma$ Re fa.e. on ∂D when F is strongly outer and f is outer in N_+ . We give necessary and sufficient conditions of this inequality. We study two inequalities: $|F| \leq \gamma$ Re f and $|F^{-1}| \leq \gamma \operatorname{Re}(f^{-1})$ a.e. on ∂D when F is strongly outer and f is in N_+ . Results in this section will be used in the latter section.

Proposition 1. Suppose F is a nonzero function in H^1 and γ is a constant satisfying $\gamma \geq 1$. Then the following (1) \sim (3) are equivalent.

(1) $|F| \leq \gamma \operatorname{Re} F$ a.e. on ∂D .

(2) $F = \frac{1+\alpha}{1-\alpha}$ a.e. on ∂D for a contractive function α in H^{∞} such that α^2 is a

(3) $F = c e^{\tilde{v} - iv}$ a.e. on ∂D , where c is a positive constant and v is a real function in L^{∞} satisfying $||v||_{\infty} \leq \cos^{-1}\left(\frac{1}{\gamma}\right) < \frac{\pi}{2}$.

Proof. (1) \Leftrightarrow (2): Since $F \in H^1$ and Re $F \geq 0$ a.e. on ∂D , it follows that

Re
$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \text{Re } F(e^{i\theta}) d\theta \ge 0 \quad (z \in D).$$

Hence $F = \frac{1+\alpha}{1-\alpha}$ for a contractive function α in H^{∞} . Since $|F| \leq \gamma$ Re F a.e. on ∂D ,

$$\left|\frac{1+\alpha}{1-\alpha}\right| \le \gamma \operatorname{Re}\left(\frac{1+\alpha}{1-\alpha}\right) = \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} \quad \text{a.e. on } \partial D.$$

Hence $|1 - \alpha^2| \le \gamma (1 - |\alpha|^2)$ and so α^2 is a γ -Stolz function. The converse is clear. (2) \Rightarrow (3): Since $\|\alpha\|_{\infty} \le 1$, Re $F = \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \ge 0$ a.e. on ∂D . Since $F \in H^1$, this implies that Re $F(z) \ge 0$ $(z \in D)$. Hence $F = c e^{\tilde{v} - iv}$ and $|v| \le \frac{\pi}{2}$ a.e. on ∂D . Since α^2 is a γ -Stolz function, it follows that

$$|F| = \left| \frac{1+\alpha}{1-\alpha} \right| = \frac{|1-\alpha^2|}{|1-\alpha|^2} \le \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} = \gamma \text{ Re } F \quad \text{a.e. on } \partial D.$$

Hence
$$1 \le \gamma \cos v$$
. Since $|v| \le \frac{\pi}{2}$, this implies that $||v||_{\infty} \le \cos^{-1}\left(\frac{1}{\gamma}\right) < \frac{\pi}{2}$.
(3) \Rightarrow (1): By (3), $|F| = c e^{\tilde{v}} \le \gamma c e^{\tilde{v}} \cos v = \gamma \text{Re } F$. This implies (1).

By (3) in Proposition 1 and Corollary 2.6 in [2, Chapter III], if $|F| \leq \gamma$ Re F a.e. on ∂D then both F and F^{-1} belong to H^p for some p > 1.

Proposition 2. Suppose F is a strongly outer function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} |F(e^{i\theta})| d\theta \quad (z \in D).$$

For f in N_+ , (1) \sim (3) are equivalent.

(1) $|F| \leq \text{Re } f$ a.e. on ∂D and f is an outer function.

(2)
$$f = \frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta}$$
 a.e. on ∂D for some contractive function β in H^{∞} .

(3) $|F| = e^{u+\tilde{v}}$, $|v| < \frac{\pi}{2}$, $e^u \le c \cos v$ and $f = c e^{\tilde{v}-iv}$ a.e. on ∂D where c is a positive constant and u and v are real functions.

Proof. The following proof is similar to one of Theorem 6 in the first author's paper [4]. (1) \Rightarrow (3): Let Arg f denote the argument of f restricted to $-\pi < \text{Arg } f \leq \pi$. Let v = -Arg f. Then $|v| \leq \pi$ and $f = |f|e^{-iv}$. Since $0 < |F| \leq \text{Re } f$, $|v| < \frac{\pi}{2}$. By the proof of Lemma 5.4 in [2, Chapter IV], if $|v| \leq \frac{\pi}{2}$ then $e^{\tilde{v}} \cos v \in L^1$. Let $g = e^{iv-\tilde{v}}$. Then $fg = |f|e^{-\tilde{v}} > 0$. Since f is outer, $F/fg \in N_+$. Since

$$\left| rac{F}{fg}
ight| \leq rac{\mathrm{Re}\ f}{|fg|} = rac{\cos v}{|g|} = e^{ ilde{v}} \cos v \in L^1,$$

it follows that $F/fg \in H^1$. Since F is strongly outer, F/fg is a scalar multiple of F. Hence fg = c for some positive constant c. Hence $f = c e^{\tilde{v} - iv}$, and hence $|F| \le c e^{\tilde{v}} \cos v$. Define u by $|F| = e^{u + \tilde{v}}$. Then $e^u \le c \cos v$. This implies (3).

 $(3) \Rightarrow (2)$: In the following we do not assume that F is strongly outer. We assume that F is a nonzero function in H^1 . By (3), $|F| \leq \text{Re } f$ and $\text{Re } f \in L^1$. Let $(\tilde{v} - iv)(z)$ denote the Poisson transform of $(\tilde{v} - iv)(e^{i\theta})$. Let $g(z) = c e^{(\tilde{v} - iv)(z)}$. Then $\text{Re } g(z) \geq 0$ $(z \in D)$, $\lim_{x \to 1} g(re^{i\theta}) = f(e^{i\theta})$ a.e. on ∂D , and

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \, g(re^{i\theta}) d\theta = \operatorname{Re} \, g(0) < \infty.$$

Hence

$$\operatorname{Re} g(z) \geq \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} \operatorname{Re} f(e^{i\theta}) d\theta$$
$$\geq \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2} |F(e^{i\theta})| d\theta = \operatorname{Re} \left(\frac{1 + \alpha(z)}{1 - \alpha(z)}\right) \quad (z \in D).$$

Hence there exists a contractive function β in H^{∞} such that

$$g(z) = \frac{1 + \alpha(z)}{1 - \alpha(z)} + \frac{1 + \beta(z)}{1 - \beta(z)} \quad (z \in D).$$

Since $\lim_{r\to 1} g(re^{i\theta}) = f(e^{i\theta})$ a.e. on ∂D , this implies (2).

(2) \Rightarrow (1): Since $|\beta| \le 1$, Re $\frac{1+\beta}{1-\beta} \ge 0$. Hence

$$|F| = \operatorname{Re} \frac{1+\alpha}{1-\alpha} \le \operatorname{Re} \left(\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta}\right) = \operatorname{Re} f$$
 a.e. on ∂D .

This implies (1).

By (3) in Proposition 2 and Corollary 2.6 in [2, Chapter III], if $|F| \leq \text{Re } f$ a.e. on ∂D and f is an outer function then both f and f^{-1} belong to H^p for all p < 1.

By (1), the set of all functions f satisfying one of the conditions (1) \sim (3) is a convex subset of N_+ . If F is a nonzero function in H^1 , then $(3) \Rightarrow (2) \Rightarrow (1)$ holds in Proposition 2. But by Theorem 6 in [4], $(1) \Rightarrow (3)$ does not hold in general.

Theorem 1. Suppose F is a strongly outer function in H^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} |F(e^{i\theta})| d\theta \quad (z \in D).$$

For f in N_+ , (1) \sim (4) are equivalent. $\gamma_1, ..., \gamma_5$ are positive appropriate constants.

- (1) $|F| \le \gamma_1 \operatorname{Re} f$ and $|F^{-1}| \le \gamma_1 \operatorname{Re} (f^{-1})$ a.e. on ∂D . (2) $\frac{1}{\gamma_2} \operatorname{Re} f \le |F| \le \gamma_2 \operatorname{Re} f$ and $|f| \le \gamma_2 \operatorname{Re} f$ a.e. on ∂D and f is in H^1 .
- There exists a contractive function β in H^{∞} such that

$$\gamma_3 f = \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)} \quad and \quad \frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad a.e. \text{ on } \partial D.$$

(4) There exists a constant c > 0 and real functions u, v in L^{∞} such that

$$|F| = e^{u+\tilde{v}}, \quad ||v||_{\infty} \le \cos^{-1} \gamma_5 < \frac{\pi}{2} \quad and \quad f = c \ e^{\tilde{v}-iv} \quad a.e. \ on \ \partial D.$$

Proof. (1) \Rightarrow (2): By (1),

$$(\operatorname{Re} f)^2 \le |f|^2 \le \gamma_1(\operatorname{Re} f)|F| \le \gamma_1^2(\operatorname{Re} f)^2.$$

Hence $|f| \le \gamma_1$ Re $f \le \gamma_1^2 |F| \in L^1$. This implies (2) with $\gamma_2 = \gamma_1$. (2) \Rightarrow (1): By (2),

$$\frac{1}{|F|} \leq \gamma_2 \; \frac{1}{\operatorname{Re} \; f} \leq \gamma_2^3 \; \frac{\operatorname{Re} \; f}{|f|^2} = \gamma_2^3 \; \operatorname{Re} \; \frac{1}{f}.$$

This implies (1) with $\gamma_1 = \gamma_2^3$.

(2) \Rightarrow (3): Since $f \in H^1$ and Re $f \geq 0$ a.e. on ∂D , Re f(z) > 0 $(z \in D)$. Hence f is an outer function. Since $|F| \leq \gamma_2$ Re f, by Proposition 2,

$$\gamma_2 f = rac{1+lpha}{1-lpha} + rac{1+eta}{1-eta} = rac{2(1-lphaeta)}{(1-lpha)(1-eta)}$$

for some contractive function β in H^{∞} . Since $|f| \leq \gamma_2 \operatorname{Re} f \leq \gamma_2^2 |F|$,

$$\frac{2|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|} = \left| \frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} \right| = \gamma_2 |f| \le \gamma_2^3 |F| = \gamma_2^3 \frac{1 - |\alpha|^2}{|1 - \alpha|^2}.$$

This implies (3) with $\gamma_3 = \gamma_2/2$ and $\gamma_4 = \gamma_2^3/2$.

 $(3) \Rightarrow (4)$: By (3), f is outer, since α and β are contractive. Since

$$|F| = \operatorname{Re}\left(\frac{1+\alpha}{1-\alpha}\right) \le 2\gamma_3 \operatorname{Re} f,$$

by Proposition 2, $|F| = e^{u+\tilde{v}}$, $|v| < \frac{\pi}{2}$, $e^u \le c_0 \cos v$ and $2\gamma_3 f = c_0 e^{\tilde{v}-iv}$, where c_0 is a positive constant and u, v are real functions. Hence

$$c_{0}e^{\tilde{v}} = 2\gamma_{3}|f| = \frac{2|1 - \alpha\beta|}{|1 - \alpha| \cdot |1 - \beta|}$$

$$\leq 2\gamma_{4} \frac{1 - |\alpha|^{2}}{|1 - \alpha|^{2}} = 2\gamma_{4}|F| = 2\gamma_{4} e^{u + \tilde{v}}$$

$$\leq 2c_{0}\gamma_{4} e^{\tilde{v}} \cos v \leq 2c_{0}\gamma_{4} e^{\tilde{v}}.$$

Hence $\frac{c_0}{2\gamma_4} \leq e^u \leq c_0$ and $\cos v \geq \frac{1}{2\gamma_4} > 0$. Hence $u, v \in L^{\infty}$ and $||v||_{\infty} \leq \cos^{-1}\left(\frac{1}{2\gamma_4}\right) < \frac{\pi}{2}$. This implies (4) with $c = \frac{c_0}{2\gamma_3}$ and $\gamma_5 = \frac{1}{2\gamma_4}$. (4) \Rightarrow (1): Since $\cos v \geq \gamma_5$,

$$|F| = e^{u+\tilde{v}} \le \frac{1}{\gamma_5} e^{\|u\|_{\infty}} e^{\tilde{v}} \cos v = \frac{1}{c\gamma_5} e^{\|u\|_{\infty}} \operatorname{Re} f,$$

and

$$\frac{1}{|F|} = e^{-u - \tilde{v}} \le \frac{c}{\gamma_5} e^{\|u\|_{\infty}} e^{-\tilde{v}} \cos v = \frac{c}{\gamma_5} e^{\|u\|_{\infty}} \operatorname{Re} \frac{1}{f}.$$

This implies (1) with $\gamma_1 = \frac{1}{\gamma_5} \max\left(c, \frac{1}{c}\right) \; e^{\|u\|_{\infty}}.$

By (2) in Theorem 1, the set of all functions f satisfying one of the conditions (1) \sim (4) is a convex subset of H^1 .

3. Helson-Szegö Weight

Let W be a positive function in L^1 and $\log W$ is in L^1 . For each $\varepsilon > 0$, put

$$\mathcal{E}_{W,\varepsilon} = \left\{ v \in \operatorname{Re} L^{\infty} \; ; \quad \log W - \tilde{v} \in L^{\infty} \quad \text{and} \quad \|v\|_{\infty} \leq \frac{\pi}{2} - \varepsilon
ight\}$$

and $\mathcal{E}_W = \bigcup_{\varepsilon>0} \mathcal{E}_{W,\varepsilon}$. $\mathcal{E}_{W,\varepsilon}$ and \mathcal{E}_W are convex subsets of Re L^{∞} . When \mathcal{E}_W is nonempty, W is called a Helson-Szegö weight. Then for each v in \mathcal{E}_W there exists a $u \in \text{Re } L^{\infty}$ such that $\log W = u + \tilde{v}$. In this section, we study two problems about a Helson-Szegö weight. In Theorem 2 we describe \mathcal{E}_W . Theorem 3 follows from Theorem 2 immediately.

Theorem 2. Let W be a positive function in L^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} W(e^{i\theta}) d\theta \quad (z \in D).$$

Then v belongs to \mathcal{E}_W if and only if

$$v = - \operatorname{Arg} \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)}$$
 a.e. on ∂D ,

where β is a contractive function in H^{∞} satisfying

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \leq \gamma \,\, \frac{1-|\alpha|^2}{|1-\alpha|^2} \quad a.e. \,\, on \,\, \partial D$$

for some constant $\gamma > 0$.

Proof. If $v \in \mathcal{E}_W$, then $v \in \mathcal{E}_{W,\varepsilon}$ for some constant $\varepsilon > 0$. Hence

$$W = e^{u+\tilde{v}}$$

where $u \in L^{\infty}$ and $||v||_{\infty} \leq \frac{\pi}{2} - \varepsilon$. Hence there exists a constant $\gamma > 0$ such that

$$W \le \gamma \ e^{\tilde{v}} \cos v$$
 and $W^{-1} \le \gamma \ e^{-\tilde{v}} \cos v$

where $e^{||u||_{\infty}} \leq \gamma \cos v$. Put $f = e^{\bar{v}-iv}$ then $W \leq \gamma \operatorname{Re} f$, $W^{-1} \leq \gamma \operatorname{Re} (f^{-1})$ and $f \in H^1$. Since $W, W^{-1} \in L^1$, there exists an outer function F such that |F| = W and $F, F^{-1} \in H^1$. Hence F is strongly outer. By Theorem 1, there exist constants $\gamma_3, \gamma_4 > 0$ and a contractive function $\beta \in H^{\infty}$ such that

$$\gamma_3 f = \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)}$$

and

$$\frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad \text{a.e. on } \partial D.$$

Hence

$$v = -\operatorname{Arg} f = -\operatorname{Arg} \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)}$$
 a.e. on ∂D .

This implies the 'only if' part. Conversely suppose v satisfies the condition. Define f by

$$f = \frac{1 - \alpha \beta}{(1 - \alpha)(1 - \beta)}.$$

Then

$$v = - \operatorname{Arg} f$$
 and $|f| \le \gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2}$ a.e.on ∂D

for some constant $\gamma > 0$. Then f satisfies (3) of Theorem 1 and

$$W = \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \le \frac{1 - |\alpha|^2}{|1 - \alpha|^2} + \frac{1 - |\beta|^2}{|1 - \beta|^2} = 2 \operatorname{Re} f \le 2|f| \le 2\gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = 2\gamma W.$$

Since W is a positive function in L^1 , Re $f \geq 0$ a.e. on ∂D and $f \in H^1$. Hence f is strongly outer. Since $\log W \in L^1$, there exists an outer function $F \in H^1$ such that |F| = W. Let k be any function satisfying $k \in H^1$ and $k/F \geq 0$ a.e. on ∂D . Since $f/F \in H^{\infty}$, $kf/F \in H^1$. Since f is strongly outer, kf/F = cf for some constant c. Hence k = cF. Therefore F is strongly outer. By Theorem 1, there exists a constant c > 0 and real functions $u, v_0 \in L^{\infty}$ such that $||v_0||_{\infty} < \frac{\pi}{2}$, $W = e^{u+\tilde{v}_0}$ and $f = c e^{\tilde{v}_0 - iv_0}$ a.e. on ∂D . Hence

$$v_0 = -\operatorname{Arg} \, f = -\operatorname{Arg} \, rac{1-lphaeta}{(1-lpha)(1-eta)} = v.$$

Hence $W=e^{u+\tilde{v}}$ a.e. on ∂D and $\|v\|_{\infty}<\frac{\pi}{2}$. Hence v belongs to \mathcal{E}_W . \square

By Theorem 2, if W=1 then $\alpha=0$ and hence

$$\mathcal{E}_1 = \left\{ v \in \operatorname{Re} L^{\infty} ; \quad \|v\|_{\infty} < \frac{\pi}{2} \quad \text{and} \quad \tilde{v} \in L^{\infty} \right\}$$

$$= \left\{ -\operatorname{Arg} \frac{1}{1-\beta} ; \; \beta \in H^{\infty}, \quad \|\beta\| \le 1 \quad \text{and} \quad \frac{1}{1-\beta} \in L^{\infty} \right\}.$$

Theorem 3. Let W be a positive function in L^1 . Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} W(e^{i\theta}) d\theta \quad (z \in D).$$

(1) W is a Helson-Szegö weight, that is, $\mathcal{E}_W \neq \emptyset$ if and only if there exists a constant $\gamma > 0$ and a contractive function β in H^{∞} such that

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \le \gamma \frac{1-|\alpha|^2}{|1-\alpha|^2} \quad a.e. \ on \ \partial D.$$

(2) If α is a Stolz function, then W is a Helson-Szegö weight, and W^{-1} belongs to L^{∞} .

Proof. By Theorem 2, (1) follows immediately. By Theorem 2 with $\beta=0$, if α is a Stolz function, then

$$v = -\operatorname{Arg} \frac{1}{1-\alpha}$$

belongs to \mathcal{E}_W , and hence $\mathcal{E}_W \neq \emptyset$. By (1), W is a Helson-Szegő weight. Since

$$W = \frac{1-|\alpha|^2}{|1-\alpha|^2} = \frac{1+|\alpha|}{|1-\alpha|} \frac{1-|\alpha|}{|1-\alpha|} \quad \text{a.e. on } \partial D$$

and α is a Stolz function, it follows that $W^{-1} \in L^{\infty}$.

Note that if α is a Stolz function, then α^2 is also a Stolz function. In fact if α is a γ -Stolz function, then $|\alpha| \leq 1$ and

$$|1 - \alpha^2| \le |1 - \alpha| + |\alpha(1 - \alpha)| \le 2|1 - \alpha| \le 2\gamma(1 - |\alpha|) \le 2\gamma(1 - |\alpha|^2).$$

Let W be a positive function in L^1 . By Proposition 1, $W=c\ e^{\tilde v}$ for a constant c>0 and a real function v with $\|v\|_\infty<\frac{\pi}{2}$ if and only if there exists an $\alpha\in H^\infty$ such that α^2 is a Stolz function and $W=\left|\frac{1+\alpha}{1-\alpha}\right|$. Then there exists a $u\in \mathrm{Re}\ L^\infty$ such that

$$W = \frac{|1 - \alpha^2|}{1 - |\alpha|^2} \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = e^u \frac{1 - |\alpha|^2}{|1 - \alpha|^2} = e^u \operatorname{Re} F,$$

where $F = \frac{1+\alpha}{1-\alpha}$.

4. Remark

Put $B_r = \{ \beta \in H^{\infty}; ||\beta||_{\infty} \le r \}$ and put

$$B^{\alpha} = \left\{ \beta \in B_1 \ ; \quad \frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad \text{a.e. on } \partial D \quad \text{for some constant } \gamma > 0 \right\}$$

where α is a contractive function in H^{∞} . The set B^{α} was important in Theorems 1, 2 and 3. Let W be a Helson-Szegö weight. Define α by

$$\frac{1+\alpha(z)}{1-\alpha(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} W(e^{i\theta}) d\theta.$$

Then by Theorem 2

$$\mathcal{E}_W = \left\{ v = -\operatorname{Arg} \ rac{1 - lpha eta}{(1 - lpha)(1 - eta)} \ ; \ eta \in B^{lpha}
ight\}.$$

If W = 1 then $\alpha = 0$ and

$$\mathcal{E}_1 = \left\{ - ext{ Arg } rac{1}{1-eta} \; ; \; eta \in B^0
ight\}.$$

In this section, we study such a set B^{α} . α is a Stolz function if and only if $0 \in B^{\alpha}$. α^2 is a Stolz function if and only if $\alpha \in B^{\alpha}$. Hence if $0 \in B^{\alpha}$ then $\alpha \in B^{\alpha}$. If α is a Stolz function and $\beta \in B_r$, r < 1, then for some constant $\gamma > 0$

$$\frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \frac{2}{(1 - r)|1 - \alpha|} \le \frac{2\gamma(1 - |\alpha|^2)}{(1 - r)|1 - \alpha|^2} \quad \text{a.e. on } \partial D,$$

and hence $\beta \in B^{\alpha}$. Hence if α is a Stolz function then $B_r \subset B^{\alpha}$ (r < 1).

For two positive functions f and g on ∂D , if there exists a constant $\gamma > 0$ such that $\frac{1}{\gamma}g \leq f \leq \gamma g$ a.e. on ∂D , then we write $f \sim g$.

Lemma. Suppose α and β are contractive functions in H^{∞} . Then the following (1) \sim (5) are equivalent.

$$(1) \quad \left\| \frac{\alpha - \bar{\beta}}{1 - \alpha \beta} \right\|_{\infty} < 1.$$

(2)
$$|1 - \alpha \beta|^2 \le \gamma_2 (1 - |\alpha|^2) (1 - |\beta|^2)$$
 a.e. on ∂D for some constant $\gamma_2 > 0$.

(3) There exists a constant $\gamma_3 > 0$ such that for any function t > 0

$$\frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_3 \left\{ t \ \frac{1 - |\alpha|^2}{|1 - \alpha|^2} + \frac{1}{t} \ \frac{1 - |\beta|^2}{|1 - \beta|^2} \right\} \quad a.e. \ on \ \partial D.$$

(4) There exists a constant $\gamma_4 > 0$ such that

$$\frac{|1 - \alpha \beta|}{|1 - \alpha| \cdot |1 - \beta|} \le \gamma_4 \frac{1 - |\alpha|^2}{|1 - \alpha|^2} \quad a.e. \text{ on } \partial D$$

and

$$\frac{|1-\alpha\beta|}{|1-\alpha|\cdot|1-\beta|} \le \gamma_4 \frac{1-|\beta|^2}{|1-\beta|^2} \quad a.e. \ on \ \partial D.$$

(5)
$$|1-\alpha| \sim |1-\beta|$$
 and $1-|\alpha| \sim 1-|\beta| \sim |1-\alpha\beta|$.

Proof. (1) and (2) are equivalent because

$$1 - \left| \frac{\alpha - \bar{\beta}}{1 - \alpha \beta} \right|^2 = \frac{(1 - |\alpha|^2)(1 - |\beta|^2)}{|1 - \alpha \beta|^2}.$$

(cf.[5, p.58]). (2) and (3) are equivalent because if a,b>0 then $2\sqrt{ab}\leq a+b$ and the equality holds when a=b. (1) \Rightarrow (5): Let $f=\frac{\bar{\alpha}-\beta}{1-\alpha\beta}$. Then $\|f\|_{\infty}<1$, $\beta=\frac{\bar{\alpha}-f}{1-\alpha f}$ and

$$|1 - \beta| = \frac{|(1 - \bar{\alpha}) + f(1 - \alpha)|}{|1 - \alpha f|} \ge \frac{|1 - \alpha| - |f| \cdot |1 - \alpha|}{2} \ge \frac{1 - ||f||_{\infty}}{2} |1 - \alpha|.$$

Let
$$g = \frac{\alpha - \overline{\beta}}{1 - \alpha \beta}$$
. Then $||g||_{\infty} = ||f||_{\infty} < 1$, $\alpha = \frac{g + \overline{\beta}}{1 + g\beta}$ and

$$|1 - \alpha| = \frac{|(1 - \bar{\beta}) - g(1 - \beta)|}{|1 + g\beta|} \ge \frac{|1 - \beta| - |g| \cdot |1 - \beta|}{2} \ge \frac{1 - ||g||_{\infty}}{2} |1 - \beta|.$$

Hence $|1 - \alpha| \sim |1 - \beta|$. Since $0 < 1 - ||f||_{\infty} \le |1 - \alpha f| \le 2$ and

$$1 - |\beta|^2 = \frac{(1 - |\alpha|^2)(1 - |f|^2)}{|1 - \alpha f|^2},$$

 $1-|\alpha|\sim 1-|\beta|$. Since $|1-\alpha f|=\frac{1-|\alpha|^2}{|1-\alpha\beta|}, \quad |1-\alpha\beta|\sim 1-|\alpha|$. It is clear that (5) implies (4). If we multiply both sides of two inequalities in (4), then (2) follows.

By the above lemma, Proposition 3 follows immediately.

Proposition 3. If $\alpha \in B_1$, then

$$B^{\alpha} \supset \left\{ \beta \in B_1 ; \quad \left\| \frac{\alpha - \bar{\beta}}{1 - \alpha \beta} \right\|_{\infty} < 1 \right\}.$$

References

- 1. P.Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 2. J.Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 3. H.Helson and G.Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138.
- 4. T.Nakazi, Sum of two inner functions and exposed points in H^1 , Proc. Edinburgh Math. Soc. **35** (1992), 349-357.
- 5. K.Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Takahiko Nakazi
Department of Mathematics
Hokkaido University
Sapporo 060-0810
Japan

E-mail: nakazi@math.sci.hokudai.ac.jp

and

Takanori Yamamoto
Department of Mathematics
Hokkai-Gakuen University
Sapporo 062-8605
Japan

E-mail: yamatk@hucc.hokudai.ac.jp