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Abstract. Suppose F' is a nonzero function in the Hardy space H'. We study
the set {f ; f is outer and |F| < Re f a.e. on D} where D is a unit circle. When
F is a strongly outer function in H! and 7 is a positive constant, we describe the set
{f; fisouter, |F| <y Ref and [F7!| <~y Re(f!) ae ondD}. Suppose W
is a Helson-Szego weight. As an application, we parametrize real valued functions v in
L*>(0D) such that the difference between log W and the harmonic conjugate function ¥
of v belongs to L*(8D) and ||v|o is strictly less than /2 using a contractive function o
in H* such that (1 + @)/(1 — @) is equal to the Herglotz integral of W.



1. Introduction

Let D be the open unit disc in the complex plane and let 8D be the boundary of
D. An analytic function f on D is said to be of class N if the integrals

/ log™ | f(re)|dd

are bounded for r<1. If fisin N, then f(e*?) which we define to be hm f (re®) exists
almost everywhere on 0D. If

lim [ log* | £(re)|a0 = [ log*|/(e¥)las

then f is said to be of class N;. The set of all boundary functions in N or N, is denoted
by N or N, respectively. For 0 < p < 00, the Hardy space HP is defined by N, N LP.
Hence any function in H? has an analytic extension to D.

A function h in Ny is called outer if h is invertible in N,. A function g in H' is

called strongly outer if the only functions f € H' such that 5 > 0 a.e. on 0D are scalar

multiples of g. If g is strongly outer then outer. Suppose F' is a nonzero function in H!.
Define a by

2n il
1+a(z) 1/ e +z[F(e’0)|d9 (ze D).

1-—a(z) 2« et
The right hand side is the Herglotz integral of |F|. Then « is a contractive function in
H*>. Let fo = i Then Re fo(z) >0 (z € D),
1—|al?
|F|=Re fo = 1= af a.e. on 0D,

and fo € (| H? by a theorem of Kolmogorov (c.f. [1, Theorem 4.2]). Since Re fo(z) > 0,

<1
i . . T .. . .
fo = ¢ €™ where c is a positive constant and [|[v]|e < 5 Uisa harmonic conjugate

function of v satisfying #(0) = 0. By a theorem of Kolmogorov, # — iv € ﬂ H?,
p<oo

|F]=¢e""" and e*=c cosv a.e. ondD

where u is a real valued function. In Section 2, when F' is strongly outer we study an outer
function f in N+ such that |F| < Re f a.e. on 8D. We then show that |F| < v Re F if
and only if o? is a 4-Stolz function, where 7 is a positive constant. If 3 is a contractive
function in H* and |1 — ] < 7(1 — |8]) a.e. on D then we call 3 a y-Stolz function.
Suppose W is a Helson-Szego weight (cf. [3]). In Section 3, using Theorem 1 in Section

2, we parametrize real valued functions v such that logW — 9 € L*® and ||v]le < 72_r



2. The Real Part of an Outer Function

In this section, we study the inequality : |F| < v Re F a.e. on 8D when F is
a nonzero function in H'. The first author [4] studied the inequality : |F| < ¥ Re f
a.e. on 0D when F is strongly outer and f is outer in N,. We give necessary and
sufficient conditions of this inequality. We study two inequalities : |F| < v Re f and
|F~'| <y Re(f~!) a.e. on D when F is strongly outer and f is in N,. Results in this
section will be used in the latter section. '

Proposition 1. Suppose F' is a nonzero function in H' and v is a constant
satisfying v > 1. Then the following (1) ~ (8) are equivalent.

(1) |F|<vReF ae ondD.

1

(2) F:lf
~-Stolz function.

(3) F=ce’ ™ a.e. ondD , where c is a positive constant and v is a real function

w

o 1
in L™ satisfying ||v|leo < cos™ (;) <3

a . . . .
— a.e. on 0D for a contractive function o in H* such that o? is a

Proof. (1) & (2): Since F € H! and Re F > 0 a.e. on D, it follows that

1 20 1— |z ;
ReF(z).—.%/o ﬁReF(ew)dGZO (z € D).

1
Hence F = 1+a

for a contractive function o in H*. Since |F| <~ Re F a.e. on 0D,

1+ a 1+a 1-|af?
1-a —7Re(1—-a) 7]1—042 a.e. on

2

Hence |1 — a?| < y(1 —|al?) and so o? is a 7-Stolz function. The converse is clear.

a2
(2) = (3): Since ||a)loo <1, Re F = % > 0 a.e. on &D. Since F € H!, this implies
that Re F((z) >0 (z€ D). Hence F =ce®® and |v| < T ae. on OD. Since o? is a

-2
~-Stolz function, it follows that

|F] =< Re F ae. ondD.

_ 1+a|_ 1 —a?| < 1—|a)?

el T 1= a S - ap
) T (1 ™
Hence 1 <« cos v. Since |v| < 3 this implies that ||v||e < cos " <3
(3) = (1): By (3), |F| = ce? < yce¥cos v = yRe F. This implies (1). O



By (3) in Proposition 1 and Corollary 2.6 in [2, Chapter II1], if |F| < v Re F ae.
on 0D then both F' and F~! belong to HP for some p > 1.

Proposition 2. Suppose F' is a strongly outer function in H'. Define a by

1+a(z)___1_/27'e +z
1-a(z) 2rlo

For f in N, (1) ~ (8) are equivalent.
(1) |F|<Re f a.e. on 8D and f is an outer function.
1 + @ 1+4
(3) |F| =e +’~’, lv] < 5 e"<ccosv and f=ce"™ ae ondD
where c is a positive constant and u and v are real functions.

|F(e"’)|d0 (z € D).

a.e. on 0D for some contractive function 8 in H.

Proof. The following proof is similar to one of Theorem 6 in the first author’s
paper [4]. (1) = (3): Let Arg f denote the argument of f restricted to —m < Arg f<m

Let v = —Arg f. Then [v] <7 and f = |f|e‘"’ Since 0 < |F| < Re f, |v| <3 . By the

proof of Lemma 5.4 in [2, Chapter IV], if |v] < = then e’cosv € L!. Let g = e“"” Then
= |fle= > 0. Since f is outer, F/fg € N,. Slnce

F Re f _ cosv

= Tfal ~ lal

it follows that F/fg € H'. Since F is strongly outer, F/fg is a scalar multiple of F.
Hence fg = c for some positive constant c. Hence f = ¢ €*~%, and hence |F| < c €’ cosv.
Define u by |F| = e**?. Then e* < ¢ cosv. This implies (3).

(3) = (2): In the following we do not assume that F is strongly outer. We assume that
F' is a nonzero function in H'. By (3), |F| < Re f and Re f € L. Let (¥ —4v)(2) denote
the Poisson transform of (¢ —iv)(e*). Let g(2) = c e ), Then Re g(z) >0 (z € D),
hmg(re %) = f(e"%) a.e. on 8D, and

=e’cosv € L1,

sup ~1— "Re g(re?®)df = Re ¢(0) < .

0<r<1 27 .

Hence

2m —_ 2 .
Re g(z) > —1‘/0 1.—|z|——Re f(e®)de

- 2 le® — z|2

1 2 1—|2)2 " 1+ a(z)
> — —— ¢ = .
> 27r/0 e~ z|2|F(e )|dé = Re T—alz) (z€ D)



Hence there exists a contractive function B in H* such that

_ 1+a(z)  14+8(2)
1—a(z)  1-p(2)

Since lim g(re®) = f(®) a.e. on OD, this implies (2).

o(2) (e D).

(2) = (1): Since |8 <1, Re%ZO. Hence
|F|=Rel+—a§Re 1+O[+1+’8 =Re f a.e.ondD.
l1—a \l—a 1-p0

This implies (1). ‘ O

By (3) in Proposition 2 and Corollary 2.6 in [2, Chapter III], if |F| < Re f a.e. on
0D and f is an outer function then both f and f~! belong to HP for all p < 1.

By (1), the set of all functions f satisfying one of the conditions (1) ~ (3) is a
convex subset of N;. If F' is a nonzero function in H!, then (3) = (2) = (1) holds in
Proposition 2. But by Theorem 6 in [4], (1) = (3) does not hold in general.

Theorem 1. Suppose F is a strongly outer function in H 1. Define a by

1+a(2) 1 [metz . .
1—a(z) 277/0 ez'o_z|F(e )|d6 (= € D).

For f in Ny, (1) ~ (4) are equivalent. 71, ...,7s are positive appropriate constants.

(1) |F|<7 Ref and |FY<v Re (f!) ae ondD.

(2) 7—1-R»e F<|F|<vRe f and |f| <yRe f a.e. ondD and f is in H'.
2

(3) There ezists a contractive function 3 in H® such that

1-af I1-ag) 1— o
and

R ey Bl T T R e

(4) There exists a constant ¢ > 0 and real functions u,v in L™ such that
|F| = e*"?,  ||v]|oo < cos™ls < g and f=ce”™ a.e. ondD.
Proof. (1) = (2): By (1)

(Re f)? < 1P < m(Re f)|F| < %(Re f)>.



Hence |f| <7 Re f < ~3|F| € L. This implies (2) with 7o =
@) = (1): By (2),

This implies (1) with y; = ~
(2) = (3): Since f € H! andRef>0ae on D, Re f(z) >0 (z € D). Hence f is
an outer function. Since |F| < 7, Re f, by Proposition 2,

1+a 1+8  2(1-af)

—_ + —
A e N e )
for some contractive function 3 in H®. Since |f| <2 Re f < 12| F|,
2|1 - o) l+a 148 3 Ial2
= = < Fl =

This implies (3) with y3 = 72/2 and 74 = 75/2.
(3) = (4): By (3), f is outer, since @ and 3 are contractive. Since

|F|:Re(1+ )<273Ref,

by Proposition 2, |F| = e**?, |v] < 5, e* < ¢y cosv and 2y3f = cpe? ™, where ¢ is a
positive constant and u, v are real functions. Hence

1—|al?

1 —af?
< 2c974 e’ cosv < 2¢co74 ev.

IA

V4 = 24|F| = 2y 77

1

Hence —2 <e"< ¢y and cosv > 1 > 0. Hence u,v € L* and |[v]|e < cos™! (——) <
274 274 274

T This implies (4) with ¢ = 2 and V5= —.

2 273 274

(4) = (1): Since cosv > s,

T | 5 1
|F| = e*t? < — elltllogl cogy = —-elvll=Re f,
Vs

CYs
and
L ut o € il gpgy = & eluloge L
|F| s s
. . . . 1 ' 1 Ilu” v
This implies (1) with y; = 7max (c, Z) el¥llee, o
5



By (2) in Theorem 1, the set of all functions f satisfying one of the conditions (1)
~ (4) is a convex subset of H'.

3. Helson-Szego Weight

Let W be a positive function in L! and log W is in L!. For each € > 0, put
Ewe={vERI™; logW -9 €L® and ol < .

and &y = USW,G. Ew,e and Ew are convex subsets of Re L. When &y is nonempty, W

e>0
is called a Helson-Szegd weight. Then for each v in &y there exists a 4 € Re L™ such
that log W = u+49. In this section, we study two problems about a Helson-Szegé weight.
In Theorem 2 we describe &w. Theorem 3 follows from Theorem 2 immediately.

Theorem 2. Let W be a positive function in L'. Define a by

2 il
1+a(z) _ 1/ ¢ +zW(e“’)d0 (z € D).

1—az) 2r et
Then v belongs to Ew if and only if ‘
1-af
v=— Ar a.e. on 0D,
*T-a)1-5)
where (3 is a contractive function in H® satisfying
_ — 1ol2
[1-of] < 1-—|of a.e. on 0D

H—a]-1-8 =" [1-ap

for some constant v > 0.

Proof. If v € &y, then v € Ey, for some constant € > 0. Hence

W = e**?

s
where u € L* and [|[v|[e < 5 "€ Hence there exists a constant > 0 such that

W <ve'cosv and Wl<yecosu

where ell*le < ycosv. Put f = e"® then W < v Re f, W' < 4 Re(f™?) and
f € H'. Since W,W=! € L!, there exists an outer function F such that |F| = W and
F,F~' € H'. Hence F is strongly outer. By Theorem 1, there exist constants 73,y > 0
and a contractive function 8 € H* such that



_ 1—af
=T aa-p)

and

11— af| 1—|of? |
. T a.e. D.
ol -8 =™ fi—ap ™7
Hence ) 5
-«
v=—Arg f=— Ar a.e. on 9D.
R T
This implies the ‘only if’ part. Conversely suppose v satisfies the condition. Define f by
| | fe 1—af
1-a)1-p8)
Then _ o A , .
v—;Ar f and |f] < L |of* a.e.on 0D
= g <~ i af *©
for some constant y > 0. Then f satisfies (3) of Theorem 1 and
— ]2 — 12 —_1RI2 —_1alz2
_1-fof _1-oP  1-|g] L=fof _,

w

+

— _ < <
1—af2 = |1—0of? " [1-0[2 2 Ref <2|f| <2y

[1—al2
Since W is a positive function in L', Re f > 0 ae. on 8D and f € H'. Hence f
is strongly outer. Since logW € L, there exists an outer function F € H?' such that
|F| = W. Let k be any function satisfying k € H' and k/F > 0 a.e. on dD. Since
f/F € H®, kf/F € H'. Since f is strongly outer, kf/F = cf for some constant c¢. Hence
k = cF. Therefore F is strongly outer. By Theorem 1, there exists a constant ¢ > 0 and
real functions u, vy € L* such that [[vg|lee < —g, W=e"" and f=ceo ™ ae.

on O0D. Hence
1—apf

I-0-8) "

Hence W =¢"*? ae. on 9D and |]v||oo<g. Hence v belongsto &y. O

vo = — Arg f = — Arg

By Theorem 2, if W = 1 then a = 0 and hence

& = {veRe"L‘"";» »llvllm<g ‘and -f)eL°°}

_ {_Argl_lﬁ;ﬂEH‘”, 18Il <1 and i%EELOO}



Theorem 3. Let W be a positive function in L'. Define o by

1—afz) 2n

o2 pif
1+ a(z) 1/ e +zW(e'o)d9 (€ D)

620

(1) W is a Helson-Szego weigh_t, that is, Ew # 0 if and only if there ezists a
constant -y > 0 and a contractive function 3 in H*® such that

1-af _ 1—|af

< a.e. on 0D.
H—of 1—8 = [I-ap

(2) If a is a Stolz function, then W is a Helson-Szegé weight, and W' belongs
to L. :

Proof. By Theorem 2, (1) follows immediately. By Theorem 2 with 3 = 0, if & is

a Stolz function, then
1
—Ar
vE AT,

belongs to £, and hence Ey 75 0. By (1) Wis a Helson—Szego weight. Since

1——|oz|2__ 1+]a|1-|qf
|1—a|2_ I1—a||l-aq]

W = a.e.on 0D

and a is a Stolz function, it follows that W—! € L. O

Note that if « is a Stolz function, then a2 is also a Stolz function. In fact if a is a
~-Stolz function, then |a| < 1 and

1-o’| <|1-a]+]oel - )| < 21 —a| < 29(1 - |a]) < 29(1 ~ |of?).

Let W be a positive function in L!. By Proposition 1, W = c €? for a constant ¢ > 0 and
) ™ .
a real function v with ||v|l < — if and only if there exists an & € H* such that o? is a

1
Stolz function and W = + a‘ Then there exists a u € Re L® such that
1-a?|1—|of> ,1—|of
W = =e¥ ——— =¢*R F
I—[oP[T-af " © Jl—ap "
where F' = ﬂ.
1—ao



4. Remark

Put B, = {8 € H*; |||l < r} and put

11— af| 1—|of?
H—al-1-8 = "[1-af

B® = {,8 € B ; a.e. on 0D for some constant y > 0}

where o is a contractive function in H®. The set B* was important in Theorems 1, 2
and 3. Let W be a Helson-Szegd weight. Define o by

1+a(z) 1 etz 4
1—-az) 27r/0 e“’—zW(e )db.
Then by Theorem 2
1-af }
g = ’U:—Ar ; EBa .
w={r= e o 0

IfW =1 then @ = 0 and
_ 1 0
81—{ Argl_ﬁ,ﬂeB}.

In this section, we study such a set B*. « is a Stolz function if and only if 0 € B®.
o? is a Stolz function if and only if o € B®. Hence if 0 € B* then a € B®. If o is a Stolz
function and § € B,, r < 1, then for some constant v > 0

11— of 2 27(1 — |of?)
1—af-1-8 7 A-7)l-a] = Q-r)[l-af

a.e. on 0D,

and hence 3 € B*. Hence if « is a Stolz function then B, C B* (r <1).
For two positive functions f and g on 9D, if there exists a constant v > 0 such

1
that ;g < f<vg9 ae. ondD, then we write f ~ g.

Lemma. Suppose a and 3 are contractive functions in H*®. Then the following
(1) ~ (5) are equivalent.

) “ et

(2) 11 —af]? <71 -|a?)(1—|B|?) a.e. on D for some constant v, > 0.

<1l

‘00

(8) There ezists a constant 3 > 0 such that for any function t >0

11— ef]
1—of-|1-4|

1—Jof? 11-|p]
< v3{t - €. D.
__’73{ |1—a|2+t|1——[3|2 a.e. on 0




(4) There exists a constant 4 > 0 such that

11— af| 1 |af?
< .e. oD
Lol -8 =" i=ap *°"

wnd 11— ap) 1ol
._a —
: < a.e. on 0D.
1—af-1-8] = ™ 1=pP2 |

(5) N-al~[1-f| and 1-|a|~1— | ~1—af.

Proof. (1) and (2) are equivalent because

L |e=B _a-lePa-18?
1—af 11 —af)? - |
(cf.[5, p.58]). (2) and (3) are equivalent because if a,b > 0 then 2v/ab < a + b and the
: B ' _a-p _a-f
equality holds when a = b. (1) = (5): Let f = Tt Then ||flloe < 1, 8= T of

and

_ - +fA-a)  1-al-|fl-lt—a] _ 1-|flle
-4 = > > —al.
|1 -2l = af| > 5 > — 21—
_oa-f _ _9+8
Letg—l_aﬂ. Then ||g|lcc = || flloo < 1, @ = 17540 and

| -8) —g(1 - Bl L=Bl~lgl-1-8] _ L9l
— > > — 0.
1 —a|= T 9 2= 11 -4
Hence |1 —a|~|1—0|. Since 0 <1—||f]loo < |1 —af|] <2 and

_ Q-] -1fP)
1—118'2_ Il“af|2 -9

— (a2
1—]a| ~1—|@| Since |1 —af|= |11_———|_g[l3_|’ |1 —af| ~1—|a|. Itis clear that (5)
a

implies (4). If we multiply both sides of two inequalities in (4), then (2) follows.

By the above lemma, Proposition 3 follows immediately.

Proposition 3. If o € By, then

BaD{,BEBl; “a_
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