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Abstract

We classify the R-operator, which is a solution of the quantum Yang-
Baxter equation on a function space.

1 Introduction

In the studies of the integrable models, it is one of the most important
problems to find the solutions of the Yang-Baxter equation. Almost all
solutions of the Yang-Baxter equation have been constructed in the set of
matrices, which is called R-matrices. Ueno and the author have introduced
the infinite-dimensional R-matrix [1, 2, 3] with spectral parameter, and, by
means of the Fourier transformation of this R-matrix, found the solutions
of the quantum Yang-Baxter equation on a function space called the R-
operators. There are three kinds of the R-operators expressed in terms of
the elliptic, trigonometric, and rational functions, respectively.

The elliptic R-operator has been studied most in three kinds. The el-
liptic R-operator is obtained from the limiting case n — oo of Belavin’s
R-matrix [1}. Felder and Pasquier showed that Belavin’s R-matrix can be
obtained through restricting the domain of a modified version of the elliptic
R-operator to a suitable finite-dimensional subspace [4]. The author con-
structed the incoming and outgoing intertwining vectors and the factorized
L-operators, and proved the vertex-IRF correspondence [5]. By means of
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the results of Felder and Pasquier, he reproduced the vertex-IRF correspon-
dence and the factorized L-operators for Belavin’s R-matrix from those of
the elliptic R-operator. '

Hikami and Komori constructed the commuting difference operators [6],
Ruijsenaars operators [7], by virtue of the elliptic R-operator. Hikami found
the elliptic K-operator [8], the solutions of the boundary (quantum) Yang-
Baxter equation and they, in addition, constructed the commuting difference
operators called generalized Ruijsenaars operators [9] by means of the elliptic
R-operator and K-operator. Fan, Hou and Shi constructed another elliptic
K-operator [10]. '

It is also one of the most important problems to classify the solutions
of the Yang-Baxter equation. Belavin and Drinfel’d studied the solutions
of the classical Yang-Baxter equation associated with complex simple Lie
algebras and gave an almost complete classification of the nondegenerate
r-matrices [11] with spectral parameter, the solutions of the classical Yang-
Baxter equation. Later Stolin considered the rational case [12].

The aim of this article is to classify the R-operator with some properties.

First we introduce the R-operator. For z1,zs,... ,2, € Cand r > 0, let
C(z1,7) :={z € C; |z — xo| < r} and C((z1,2, ... ,Zn),7) := Clz1,7) X
C(z2,7) X+ X C(zp,T).

Definition 1.1. Let functions A(z) and B(u, z) be meromorphic on C(0, r)
and C((0,0), r), respectively. For a function f meromorphic on C((0,0),r/2),
we define the function (R(u)f)(21, 22) meromorphic on C(0,7)x C((0,0),7/2)(3
(u’ 21y 22)) as ’

(R(u)f) (21, 22) = A(21 — 22) f (21, 22) — B(u, 21 — 22) f (22, 21).-
We call this operator R(u) the R-operator.
 If the functions A(z) and B(u, z) satisfy the equations
B(u~ v,z +)(A(2)A(-a) — Ay)A(-y))
=B(u - v,z +y)(B(u, z) B(u, —z) — B(u,y) B(u, —y)) (1.1)

(B(’U,, .’IJ)B(—’U, z+ y)
=B(u — v,z + y)B(u, —y) + B(—v,y)B(u — v, ) (1.2)

on C((0,0,0,0),7/2), then the R-operator R(u) satisfies the (quantum)
Yang-Baxter equation

(Ri2(u)Ris(u + v)Res(v) f)(21, 22, 23) = (Ra3(v) Ris(u + v) Ria(u) f) (21, 22, 23)



as the meromorphic functions on C((0,0,0,0,0),7/2), where a function f is
‘meromorphic on C((0,0,0),r/2).

The main purpose of this article is to give the complete cla531ﬁcat10n of
the R-operator satisfying the functional equations (1.1) and (1.2).

Theorem 1.1. The meromorphic solutions A(z) and B(u,z) of the equa-
tions (1.1) and (1.2) defined on the polydiscs C(0,r) and C((0,0),r) respec-
tively are one of the following:

0. trivial case

1. generic case

1—1. elliptic

1 — 2. trigonometric

1 — 3. rational

2. singular case

A(z) is arbitrary ,
B(u,z) = 0.

o(z + s;711,72)
o(x;m,m2)0(s;T1,72)’
o(z + au; 1, T2)
o(z; 1, mo)o(au; 11, T2)
(a,c, 71,7 € C\ {0},Immy/m > 0,5 € C \ (Zm + Z7y),
peC)

A(z) = ch(x)

B(u, z) = cexp(pux)

Ch( ) sinh —JLE

A(:D) — smh $sinh §
ch(z) ==

mh

e
cexp(pux) ——r2- ’Scf’n(h ? 2

(a,c, A € C\ {0},s EC\ZW\/—_I)\,pE C)
Az) = {Ch(x)m”;s’

sinh ﬂ——~!““‘
B(u, :L') — cexp(pua:) sinh £ 5 sinh 5

ch(z)L

z+au

B(u,z) = {cexp(pux) azu ,

cexp(puz) .
(a,c,s € C\ {0},p€C)

A(z) = e1h(z),

B(u,z) = ¢ exp(pux)%.
(c1,p€C,c € C\ {0})

Here the function h(zx) is a meromorphic function defined on the disk C(0, r)
satisfying the relation h(z)h(—x) = 1, and the function o(z) = o(z; 11, T2)



is the Weierstrass sigma function.

o(z;T,T2) =2 H {1-

(ml 2 ) €Z2\{ (070)}

2

]
z m1"'1+1n2‘r2) }

miT + moTe

1
)eml‘rl:-mz-rz +§(

Our strategy to solve the functional equations (1.1) and (1.2) is as fol-
lows. We reduce the functional equations (1.1) and (1.2) to the functional
equation introduced by Braden and Buchstaber [13].

¢1(z + y)($4(2)¢5(y) — ¢a(y)s(2)) = ba(x)¢3(y) — d2(y)ds().

They proved that the solutions of this functional equation above are charac-
terized by those of the functional equation discussed by Bruschi and Calogero
(14, 15].

a(z)d/(y) — o (z)e(y) = (a(z +y) — a(z)e(y)) (n(z) — n(y))-

Since Kawazumi and the author [16] gave the complete classification of the
meromorphic solutions near the origin of the equation above, we obtain all
the meromorphic solutions of (1.1) and (1.2) near the origin.

This article is organized as follows. In Section 2, we review the solutions
of the functional equations above, and define the R-operator. After showing
that B = 0 is a solution of the equations (1.1) and (1.2) with an arbitrary A,
we solve the equations (1.1) and (1.2) under the assumption that B # 0 and
A(z)A(—z) is not identically constant in Section 3. There are three kinds
of the meromorphic solutions of the equations (1.1) and (1.2) expressed in
terms of the elliptic, trigonometric, and rational functions, respectively. We
discuss the elliptic case in Section 4, the trigonometric case in Section 5,
and the rational case in Section 6, respectively. In Section 7, we solve the
equations (1.1) and (1.2) under the assumption that B # 0 and A(z)A(—z)
is identically constant. We can reduce the functional equations (1.1) and
(1.2) to the functional equation introduced by Bruschi and Calogero directly.
Finally, in Appendix, we give the proof of a proposition in Section 4.

2 Reviews of certain functional equations of addi-
tion type and R-operator

In this section, we review the solutions of the functional equations of addition
type . '

a(z)d (y) - o/ (z)a(y) = (a(z +y) — a(z)a(y))(n(z) - n(y)), (2.1)



a(z +y) — a(@)a(y) = e(z)e¥)P(z +y), (2:2)
¢1(z + y)(94(2)P5(y) — P4(y)P5(x)) = pa(z)¢3(y) — d2(y)¢s(z),  (2.3)

and the properties of the R-operator.

2.1 Solutions of the equations (2.1) and (2.2)

Bruschi and Calogero have investigated the general analytic solution of the
equations (2.1) and (2.2) [14, 15]. They have obtained the solution ex-
pressed by the elliptic functions in the most general case, and they had
some trigonometric and rational solutions by degenerating the periods of
the elliptic functions.

Kawazumi and the author classified the meromorphic solutions near the
origin of the equations (2.1) and (2.2) [16].

Theorem 2.1 (Kawazumi-Shibukawa [16]).

(1) Let a and n be holomorphic functions defined on a punctured disk {z €
C;0 < |z| < '} for some r' > 0. If they satisfy the functional equation
(2.1), then they are equal to one of the following functions.

(0-1) af(z) =0 ore” (peC), n:arbitrary,
(0 —ii) a(z) = Ce®, n: constant,
(1) : a(z) = e/;mo-(y; 71, 72)0 (T + p5 71, T2)

o(p; 1, m2)o(z + v 71, T2)

n(z) = ((z;71,72) = {(2 + v;71,72) + C,

(o, pyv,C €C, 1,70 € C\ {0}, Im7y/7; >0,
pov @ Zry + Zro, p—v ¢ Zmy + Z1y)

a(e®®/* —1)+b

c(e2®/> —1)+b "’

9\~1leg2z/A 2)\—1ce2x//\

) = g1 (AT +b +C,

(A p,a,b,e,C€C, A#0, bla—c) #0)

_ pmazz:+b =L
Uy a(e) =T, (o) = s +C

(p,a,b,¢,C €C, bla—c) #0)

(I1) a(z) = e’

All the solutions except for the case (0-i) extend themselves to meromorphic
functions defined on the whole plane C.



(2) Let a, ¢ and 9 be holomorphic functions defined on a punctured disk
{zx € C;0 < |z| < "} for-somer” > 0. If they satisfy the functional equation
(2.2), then they are equal to one of the following functions.
(0—-1i) ofz)=0ore” (peC),
v =0 and 9 : arbitrary, or ¢ : arbitrary and v = 0,
(0-ii) a(z)=Ce”, ¢=C1e%", P(z)=C(1 - C)Cy2elP—Ca)z,
(C,p,C1,C2€C,C#0,1,C1 #0) .
(I) Oé(IL‘) — epma(V; T1, 7-2)0-(:1" + W5 71, 7'2)
o(p; 11, 72)o (T + v 71, T0)’

o(z) = exp(C1z + Cz);(%%)—y) )

_ _ oo Wo(p—v)o(z + p+v)
’l/)(.’L') - exp((p Cl).’L' 202) V0'2(/J«)0'($ I 1/)
(ps14,v,C1,C2 € C, 11,72 € C\ {0}, Im7p/7; >0,
pv & Zmy+ Ly, p—v ¢ Zm + Zmo)
2z /X _ 1 b 2z/X\ __ 1
— oPT a(e ) + _ Ciz+C: €
(I1) a(z) =e (P -1 15 p(z)=¢€ 26(6%//\ e
_ rama0s (= ) =ae(®A — 1) + ¥~ bla+ )

3

(A py0,b,¢,C1,C € C, A#0, bla— c) #0)

— P azr + b — Ci2+C> x
(I ale) = —-— Ty Pl =e presrs
— (p—C1)z—2C; (c —a){acz + b(a + ¢)}

(p,a,b,c,C1,Cy € C, b(a - c) #0)

All the solutions except for the case (0-i) extend themselves to meromorphic
functions defined on the whole plane C.

Remark. (1) In Theorem 2.1 (I), we use 71,72, p and v instead of 71 /A, 72/ X, i1/ A
and v/X in the paper [16]. We note that we do not need the parameter \ in
the non-degenerate case in the paper [16].

(2) We note that the condition p — v ¢ Zr; + Z7y in Theorem 2.1 (I) is
dropped in the paper [16]. Because —u/) is a pole of the function « and
(=v/A) + Z(11/X) + Z(12/X) is the set of zeros of @, we conclude —u/\ ¢
(=v/X) +Z(71/X) + Z(r2/ N}, which implies the condition yu— v ¢ Zr, + Zr,.



2.2 Solutions of the equation (2.3)

Braden and Buchstaber have investigated the functional equation (2.3) [13].
They have shown that the solutions of the equation (2.3) are characterized
by the solutions of the equation (2.1). We shall briefly review the results
obtained by Braden and Buchstaber.

Let g € C and 79 > 0. Let ¢; be a holomorphic function on C(2z¢, 2r9),
and let ¢2, ¢3, ¢4 and ¢5 be holomorphic functions on C(zg, o) such that

(1) equation (2.3) for all z,y € C(zo, 7o),
(2)  d2(z0)¢3(x0) — Pa(zo)¢3(o) # O,
(3)  da(wo)ds(wo) — da(zo)ds(zo) # 0.

Lemma 2.2. We define the function é1 holomorphic on C(0,2rg) and the
functions ¢g,. .. ,¢s holomorphic on C(0,79) as follows.

$1(z) = cd1(z + 2z0),
<~€£2k(3’3) ) _ ( 2%(T0)  ¢2x(z0) >_1 ( Par(z + o) ) (k=1,2),

bok+1(x) Gor41(z0)  Pakt1(zo) $ok+1(z + zo)

where

_ ¢a(zo) da(z0) #5(z0)  b2(20)
€= det (¢§(wo> ¢s<wo>) f det (¢§(wo> ¢3(wo)) '

Then they satisfy
1(2 + )($a(2)$5(y) — $a(v)P5(z)) = ()P (y) — po(y)Ps ()
for all z,y € C(0, 7). |

By the straightforward computation, we deduce $2k(0) = &’% +1 0)=0
and ¢, (0) = dak41(0) = 1 for k = 1,2.

Lemma 2.3. There exzist (0 <)ry < 71, the functions v and & (k = 1,2)
holomorphic on C(0,r2) such that y(z) # 0 for all z € C(0,72),

() =5 ()

for all x € C(0,72), &(0) =0, and &,(0) = v(0) = 1.




For k = 1,2, define x(z) = exp(—Mgz)&k(z), where N\ = ——¢~S’2’k(0)/2.
Then the functions &x(z) are holomorphic on C(0,72) and satisfy
& (0)=&i(0)=0, §(0)=
Define the functions &(x) := e1=22)2g, () for z € C(0,2r9) and y(z) :=
e2M1=22)2, () /41 (z) for z € C(0,73).

Lemma 2.4. (1) The function &,(z)/€(x) is holomorphic on C(0, T3).
(2) For all z,y € C(0,72)

éo(z +9)(@@)Ev) ~ £u)é (@) = 1(=)vH)E@)E ) - &£ ©)E ().

The functions fk (k = 1,2) holomorphic on C(0,r3) are not identically
zero because of Ek(O) = 1. Since £,(0) = 0, there exists (0 <rg < 7y
such that & () # 0 and &(z) # 0 for all z € C(0, (0,73) \ {0}. Braden and
Buchstaber proved

Theorem 2.5 (Braden—Buchstaber [13]).

(1) 7(2) = (a(2) /&1())? and &(x) = &()/E1(z) for all z € C(0,r3).
(2) We define the function a holomorphic on C(0,73) and the function n
meromorphic on C(0,r3) as

o(z) = &a(2)/éi(2), n(2) = &(x)/&(x).
Then they satisfy the equation (2.1) for all z,y € C(0,73/2) \ {0}.
We can reconstruct the solutions ¢y, ... ,¢s of the equation (2.3) from
the functions o and 7 in the theorem above.
2.3 R-operator

First we define the R-operator.

Definition 2.1 (Shibukawa-Ueno [1]). Forr > 0, let functions A(z) and
B(u, z) be meromorphic on C(0,7) and C((0,0),r) respectively. For a func-
tion f meromorphic on C((0,0),7/2), we define the function (R(u)f)(21, 22)
meromorphic on C(0,7) x C((0,0),7/2)(3 (u, 21, 22)) as :

(R(u) f)(21,22) = A(21 — 22) f(21, 22) — B(u, 21 — 22) f (22, 21). (2.4)

We call this operator R(u) the R-operator.



We state a sufficient condition for the R-operator to satisfy the (quan-
tum) Yang-Baxter equation (2.7).

Proposition 2.6 (Hikami-Komori [17]). If the functions A and B sat-
isfy the equations below

B(u— v,z +y)(A(z)A(-7) — A(y)A(-))

= B(u — v,z + y)(B(u, z) B(u, —-’B) B(v,y)B(u,—y)),  (2.5)
B(u,z)B(—v,z +y)

= B{u— v,z + y)B(u, —y) + B(—v,y)B(u — v, 1) (2.6)

as meromorphic functions on C((0,0,0,0),r/2), then R-operator R(u) sat-
isfies the Yang-Bazter equation

(Ra2(u) Ri3(u + v) Ros(v) f) (21, 22, 23)
=(R23 (U)ng (u + ’U)R12 (u)f)(zl, 29, z3) (2.7)

as meromorphic functions on C((0,0,0,0,0),7/2), where a function f is
meromorphic on C((0,0,0),7/2).

The aim of this article is to give the complete classification of the R-
operator (2.4) satisfying the equations (2.5) and (2.6).

3 Trivial and Generic case

3.1 Trivial case

If B =0 on C((0,0),7), the equations (2.5) and (2.6) hold for any A. Thus,
for an arbitrary A meromorphic on C(0,r), the R-operator (2.4) satisfies
the Yang-Baxter equation (2.7).

3.2 Generic case

In this section, we assume B # 0 on C((0, 0), 7). With the aid of Proposition
2.6 and the identity theorem for the meromorphic functions, we have

Lemma 3.1. The equations (2.5) and (2.6) on C((0,0,0,0),7/2) are equiv-
alent to the equations (2.6) on C((0,0,0,0),7/2) and

A(z)A(—z) - A(y)A(~y) = B(u,z)B(u, —z) — B(u,y)B(u, —y) (3.1
on C((0,0,0),r).



- We shall solve the equations (2.6) on C((0,0,0,0),7/2) and (3.1) on
C((0,0,0),r) with the condition B # 0 on C((0,0),r)
We also assume the following.

Assumption 3.1. The meromorphic function A(z)A(—z) is not identically
constant on the disk C(0,7).

From the equations (2.6) and (3.1), we get (See Braden-Buchstaber [13,
Lemma 5].)

Lemma 3.2. The meromorphic solutions A(z) and B(u, ) of the equations
(2.6) and (3.1) on C((0,0,0,0),7/2) satisfy the equation

B(v,z + y)(A(z)A(~z) — A(y)A(-y))

=B(u, —z)B(u + v, z)B(v, y) — B(u, —y)B(u +v,y) B(v, z) (3.2)
as meromorphic functions on C((0,0,0, 0),r/2).

In the sequel we solve the equation (3.2) making use of the method in
Section 2.2 obtained by Braden and Buchstaber [13].

Theorem 3.3. (1) Under Assumption 3.1, the function A(z)A(—x) mero-
morphic on the disk C(0,7) is one of the following:

_a1p(x; 71, T0) + ag

elliptic: Al)A(—z) =
! (D)A=2) a3p(x; 71, Te) + ay’
trigonometric: A(z)A(~z) = @1 an _2(,\) + az,
as sinh (%) +ay
V -2
; ‘ a1z “+ ag
t : —_) =
rational A(z)A(-2) P Sy

where p(z) = p(x;71,72) is the Weierstrass pe function

_d d(z;7m,7)
dz " o(z; 71, T2)

p(z;71,72) = )

and the constants 11, 72, A € C\{0} and a1, a3, a3, a4 € C satisfy the relations
Im 7o/71 > 0 and a1a4 — azas # 0.

(2) Under Assumption 3.1, there ezists C(uy,r1) C C(0,r/4) such that the
function B(u,x) is one of the following:

o(z + a(u); 11, 72)

elliptic: B(u,z) = e"™%p(y) P
3 T1, T2

—10—



Y(u,z) € D1 N DN (C(ui,r1) x C(0,7)),

eP(u)zp(y) S5 S)
. . sinnf ¥
trigonometric: ~ B(u,z) = p(t zﬁagug)

ep(“)mb(u)e——mbr—
¥(u,z) € D1 N D* N (C(uy, 1) x C(0,7)),

rational: B(u, x) = e”(“)”w
Y(u,z) € Dy ﬂa;)’" N (C(u1,m1) x C(0,7)),

where p(u), a(u),b(u) € C for all u € C(uy,ry). Here Di(C C((0,0),r)) is
the domain of the meromorphic function B(u,z) and

D¢ =C(0,7) x (C(0,r) \ (Zn1 + Z73)),
D' =C(0,7) x (C(0,7) \ Znv/—1)\),
D™ =C(0,7) x (C(0,r) \ {0}).

For the proof, we need the lemma below.

Lemma 3.4. For any C((ug, z),74) C C((0,0),7/2), there exist (u1,x1) €

C((ug, zp),7g) and r1(> 0) such that

(0) Cl(u, 21), 1) € Cl(uh, ), 75),

(1) B(u, ) is holomorphic on C((u1,%1),71), C{u1,m1) x C(2z1,2r1) and
C(2u1,2r1) x C(z1,71),

(2) B(u,—x) is holomorphic on C((u1,21),71) and C(u1,r1) x C(2z1,2r1),

(3) A(z) is holomorphic on C(z1,71) and C(2z1,2r1),

(4) A(—z) is holomorphic on C(z1,71)and C(2z1,2r1),

(5) B(u,z) # 0 for all (u,z) € C((uy,21),71)-

Proof. Since the meromorphic functions B(u,z) and A(z) are defined on
some dense open subsets of C((0,0),r) and C(0,7) respectively, for any
C((ug, xp),m0) € C((0,0),7/2), there exist (u1,z1) € C((uh,zp),rh) and
r1(> 0) such that the conditions (0), (1), (2), (3) and (4) hold.

With the aid of B(u, z) # 0 on the polydisk C((0,0),r) and the identity
theorem for the meromorphic functions, there exists (u}, z]) € C((u1,z1),7m1)
such that B(uj,z}) # 0. Because the function B(u,z) is continuous on
C((u1,%1),71), there exists 71 (> 0) such that C((u}, z}), 1) € C((u1,z1),71)
B(u,z) # 0 for all (u,z) € C((u},z}),r]). Then (u1,z1) := (u},z}) and
r1 = r{ satisfy the conditions (0), (1), (2), (3), (4) and a part of (5).

Repeating this procedure, we can take (uj,z1) € C((ug, zg),7h) and
r1(> 0) satisfying the conditions in this lemma. O



By the lemma above for C((ug, z5),rg) := C((0,0),7/4), we take (u1, 1) €
C{(0,0),7/4) and r1(> 0) satisfying the conditions in the lemma above.
Lemma 3.5. (1) £(A(z)A(~2)) %0 on C(z1,7r1).

(2) For all u,v € C(uy,m1),

B(u’ ——:II)B(U + v, x) 6%(3(“, —a:)B(u +v, x))

B(v, ) 38 (4, ) #0

on C(z1,71).

Proof. (1) It is obvious by Assumption 3.1.
(2) The proof is by contradiction. Assume the assertion were false. Then
there would exist ug, vg € C(u1,71) such that

‘B(Uo, _m)B(U‘O + vo, IL‘) %(B(U'Oa —x)B(uO + vﬂ’vx)) =0

B(vg, x) ?Tf(vo, z)
on C(z1,71). Then
i(B(’lLo, —w)B(Uo, +vo,
dx B(v, z)
Thus there exists ¢ € C such that
B(an —x)B(UO + v, 23) —
B(vy, z) -

By the equation (3.2), we have B(vp, z +y) = 0 for all z,y € C(z,71), that
is to say, B(vo,z) =0 on C(2z1,2r1). Therefore A(z)A(—=z) = A(y)A(-y)
for any z,y € C(2x;,2r;) from the equation (3.1), which is a contradiction
of Assumption 3.1. O

.’E)) =0 on C(:ﬁl,Tl).

on C(z1,71).

Let ug,vo € C(u1,71). Lemma 3.2 says that, for all z,y € C(z1,71),
B(vo, z + y)(A(z) A(—2) — A(y) A(—y)) ,
=B(uo, =) B(uo + vo, z) B(vo,y) — B(uo, —y)B(uo + vo,y) B(vo, z).
The lemma above tells us that there exists o € C(z1,71) such that

Zi% (A(z)A(-=z)) |lz=zo # O,

B(uo, —z0)B(uo + vo, Zo) %(B(UO, —z)B(ug + v, Z))|z=z0

0,
B(uo, o) 35 (40, 20) 7

and there consequently exists ro(> 0) satisfying the conditions



(1) C(xo,70) C C(z1,71),

(2) ¢1(z) := B(vo, z) defined on C(2zg,2rp), ¢2(z) := B(ug, —z)B(ug +
v, Z), $3(x) := B(vg, z), da(z) := A(z)A(—zx), and ¢5(z) = 1 defined
on C(zo,70) satisfy the condition (1), (2) and (3) above Lemma 2.2:

From Theorems 2.1 and 2.5, the function a(z) = é5(z)/€1(z) defined near
the origin is one of the following. '

(0) a(z) = Ce"™,

_ pmd(#, 71, T2)0 (AT + V; T1, T2)
(I) a(m) (V T1, 7-2)0'()“’1" + p; 7, T2)
a(e®®* —1) +b

— PT

(1) ole) = ¢ D 1
_ pza:z:+b

(I1I) alz) =e PR

Lemma 3.6. a(z) # Cef®.

Proof. The proof is by contradiction. Assume the assertion were false. With
the aid of Lemma 2.2 and Theorem 2.5, B(vg,z) = c~1Ce(P—A1+A2)(z~2z0)
near 2zg. By virtue of the equation (3.1), A(z)A(—z) — A(y)A(-y) = 0
near 2xg, which is a contradiction of Assumption 3.1. O

Proof of Theorem 3.3 (1). We first note that Assumption 3.1 implies the
condition aja4 — asas # 0.

We derive the functions {1 (z) and é3(z) from Theorems 2.1 and 2.5 by
means of £(0) = £”(0) = 0,£,(0) =1 (k= 1,2).

3 Tr)=e ( )xO'([J,) (IL’) "3 ) = (eZ\VJO\) U(V) (w)
(1) €1(z) = W oz +p)’ bl2) = o(zx+v)’
sy 2a—1 ., 3(exp(%E)-1)
(IT) §1(z) = exp( ) x)a(pr(gf-),\— 1)+1’

z 2c-1 %(exp(sz) -1)

£2(w) = exp( A z) (exp( 2’”) 1) +1’.
z x
I - azx —
M E@=er—to G =t
where ((z) = ((z;71,72) is the Weierstrass zeta function ((z;7(,73) =

o'(x;11,72)/0(x;71,72). From ¢s(z) = 1, we have &5(:1:) =1 and y(z) =



&4 (z), and $4(x) = £3(x)/€5(x) as a result. By the definition in Lemma 2.2,
we are led to

A(z)A(-z)
( . &4 (o)
94(20)¢4(20) + Tz el o I TRTCE) (I
¢4 (x0)Pa(zo)

=9 #4(@o)(exp(HE570) 1) {e(exp( X720 —1)+1) (In)
(Az+2°—;1-)(exp(."fT;:°lg(—1){c(e:)<?((2‘”—;’f;l)1—}1)+1}+§exp<2—<£;—%’
" (20)(x~—20){c(x—20)+
(9a(z0)¢a(@0) + (r o) ete-z 11T (1)

near xo. With the aid of the identity theorem for the meromorphic functions,
the equation above holds on C(0,r).
Because A(z)A(—xz) is an even function on C(0,r), we obtain

(D o(v —2z0) =0,
(II) ¢ = exp(4xo/A)/(exp(4zo/A) — 1),
(III) cxp = 1/2.
By the straightforward computation, we get the desired result. O

Now we prove Theorem 3.3 (2).

Proposition 3.7. Let up € C(u1,71). Under Assumption 3.1, for any
vo € C(u1,11), there ezist zo(vo) € C(z1,71) and ro(vo)(> 0) such that
the function B(vo, z) is one of the following: For all x € C(2x9(vo), 2(v0))

a(z + a(vo); 71, T2)

lliptic: B — p(’l)o):l:b
elliptic (vo,z) =€ (vo) e gy
: x+a(vg)
p(vo)mb sxnhg——xl)
trigonometric: B(vg,z) = € (o) sinh(Z)
ep(vo)wb(vo)ﬁ@,
rational: B(Uo, .'1:) = eﬂ(Uo)Zé@P)w—:_M.

For the sake of brevity we only show the elliptic case.

For any vo € C(u1,71), there exists C(zo(vo),ro(ve)) C C(z1,71) \
(Zmy + Zry) such that ¢1(x) := B(vp,z) defined on C(2xo(vo), 2r0(v0)),
¢2(z) := B(ug, —z)B(uo + vo, ), ¢3(z) := B(vp, z), da(z) := A(z)A(~2),
and ¢5(z) = 1 defined on C(zo(vo),ro(vo)) satisfy the conditions (1), (2)
and (3) above Lemma, 2.2 by means of Lemma 3.5.



Lemma 3.8. The function §~2 is expressed as

¢, = $(2zo(vo)iT1,m2)2 o (2z0(v0); 71, T2)0 (3 71, T2)
52(3?)_ € o(x + 2z0(vo); 71, o)

where 71 and o are in Theorem 3.3 (1).

The lemma below and the formula (See, for example, [18, pp. 459].)
2¢(2z) — 4¢(z) = p"(z) /¢’ (z) imply the lemma above.

Lemma 3.9.

(1) asp(zo(vo); 11, 72) +ag # 0.
(2)  ¢'(zo(vo);m1,72) #0.
7 (asp(zo(vo); 71, T2) + a4)
3 )=
O o = et ra)eap(e + zooo)i i 7) + a)
X (p(z + zo(vo); T1, T2) — p(x0(vo); 71, T2))-
a3p’(Zo(vo); 71, T2)
4 z) = exp((2¢(z 3T, Te) + x
(4)  &f(z) = exp((2¢(zo(v0); 1, T2) agp(xo(vo);rl,72)+a4) )
o(2xo(vo); 1, T2)o(z; 11, T2)
O'(CC + 2.’1:0(’(10);7'1, ‘7'2)
__ #"(zo(v0); 11, T2) asg’ (zo(vo); 11, T2)
(5)  A=-—= A
2¢'(zo(v0); T1,72)  asp(zo(v0); T1,72) + a4
Proof. We only prove (1) and (2).
(1) By Theorem 3.3 (1), we have ¢4(z) = (a1p(z) + az)/(asp(z) + a4).
Since the function ¢4(x) is holomorphic at z = zo(vo), da(xo(vo)) € C. If
azp(zo(vo))+as = 0, then a;p(zo(vo))+az = 0. This implies a;a4—azaz = 0,
which is a contradiction.
(2) By definition, ¢}(z) = (a1a4 — aga3)p’(z)/(azp(z) + a4)?. From the
condition (4) above Lemma, 2.2, ¢}(zo(vo)) # 0, which means p'(zo(vo)) #
0. ' O

Proof of Proposition 3.7. Lemma 3.8 tells us that the zeroes of the function
£~2 is Zty + Zmy, and, as a consequence, the periods of the Weierstrass sigma
function ¢ in the function o are 7, and 7, (See [16, Sections 3 and 4].). Thus
there exists (0 <)ry < 2rp such that

€~1($) - eC(u;n,n)’xU(ﬂ;Tl,Tz)U(I;Tl,ﬁ)
o(z + p; 11, T2)

on C(0,r3). From Theorem 2.5, Lemmas 2.2 and 3.8 and ¢:(z) = B(vp, z),
we have proved the proposition. ‘ O



Proof of Theorem 3.3 (2). For the sake of brevity we only prove the elliptic
case. :
Because the polydisk C((0,0),r) is Stein with H2(C((0,0),7),Z) = 0,
the sharp form of the Poincaré theorem holds on C((0,0),r) (See, for ex-
ample, [19, Chapter V, section 2] and [20, Sections I and K].); there exist
two functions g and h holomorphic on C((0,0),r) such that h is not identi-
cally zero, B(u,z) = g(u, z)/h(u,z), and the functions g and h are coprime
locally.

Since the function B(u, z) is holomorphic on C((u1, z1),71) C C((0,0),7),
we have h(vg,z1) # 0 for any vg € C(uy,71), which implies h(vg, z) # 0 on
C(0,7). Thus the function g(vg, z)/h(vo,z) is meromorphic on C(0,r). On
the other hand, by Proposition 3.7,

9(¥0,2) _ p(uo)a o2&+ alv0))
ooz T

on some small disk in C(0,r). Because the right hand side of the equation
above is meromorphic on C(0, r), for any vo € C(u1,71),

g(’Uo,:E) —e (vo)x v 0’(.'12+a(’00))
Mwa) % YT o)

as the meromorphic functions on C(0,r). This implies

— Py 2 & T a(u)
B(u,z) = e”"%b(u) @)
for any (u,z) € D1 N DN (C(uy,r1) X C(0,7)), thereby completing the
proof. |

4 Elliptic case

In this section, we shall solve the equations (2.6) and (3.1) in the elliptic case
of Theorem 3.3; under Assumption 3.1, there exists C(u1,r1) C C(0,7/4)
such that

_ap@te oo
A(z)A(—z) = 239(@) + a1 .C’(O, )s (4.1)
B(u,z) = e"(u)xb(u) _—_a(x -; a)(u))
for all (u,z) € DN D® N (C(u1,m1) x C(0,7)). (4.2)



Lemma 4.1. For all u € C(u1,71), o(a(u)) # 0 and b(u) # 0.

- Proof. It is easy to see that b(u) # 0 for all v € C(u1,71) because of Lemma
3.4 (5).

The proof of o(a(u)) # 0 for all w € C(uj,r1) is by contradiction.
Assume the assertion were false. Then there would exist u € C(uy,r;)
such that o(a(u)) = 0, and there consequently exist mj, my € Z such that
a(u) = m171 + ma7y. By means of the equation (4.2), there exist functions
p and b such that

B(u,z) = P Weh(y)

for all x € C(z1,71)\(Z7 +Z72). We note that (u, —z) € Dy ifz € C(z1,71)
because of Lemma 3.4 (2). From the equation (1.1), this contradicts As-
sumption 3.1. O

By virtue of the equations (3.1), (4.1) and (4.2), we conclude the lemma
below.

Lemma 4.2. We have a3 = 0, that is to say,
A(z)A(—z) = G1p(z) + G2
on C(0,r), where &1 = a1/a4 and Gz = az/ay.

We note that the relation ajas — asaz # 0 implies d@; # 0. The lemma
above and the equation (3.1) imply

d1p(z) + G2 — b(w)*0?(a(w))(p(a(u) ~ p(=))
=a1p(y) + 2 — b(u)?*o”(a(w))(p(a(u)) — p(¥))

for all (u, ), (u,y) € D1NDN(C(u1,71)xC(0,7)) such that (u, —z), (u, —y) €
Dy N D*N (C(uy,r1) X C(0,7)), and, consequently, b(u)?0?(a(u)) = —a, for
all u € C(uy,r1)-

Lemma 4.3. There ezist c € C\ {0} and C(uz,72) C C(u1,7m1) such that
b(u)o(a(u)) = ¢ for all u € C(ug,r2), and

o(z + a(u))
o(a(u))o(z)
for all (u,z) € D; N D® N (C(ug,r2) X C(0,7)) as a result.

B(u,z) = cepe 2

For the proof, it suffices to show the lemma below.



Lemma 4.4. There exists C((ug,0),72) C C(ug,71) X C(0,7) such that the
function B(u,x)o(z) is holomorphic on C((uz,0),72).

Proof. Since the sharp form of the Poincaré theorem holds on C((0,0),r)
(See the proof of Theorem 3.3 (2).), there exist two functions g and A holo-
morphic on C((0,0),r) such that h is not identically zero, B(u,z)o(z) =
g(u, z)/h(u, z), and the functions g and h are coprime locally. By the equa-
tion (4.2), g(u,z) = e#Wb(u)o(x + a(u))h(u,z) for all (u,z) € D; N DN
(C(uy,r1) X C(0,7)).

We fix Yu € C(u1,r1). Because the function e”™%b(u)o(z + a(u)) is
holomorphic on C(0,7) and g(u,z) = e’ ™*b(u)o(x + a(u))h(u,z) for all
z € C(z1,71) \ (Zr1 + Z3), we have g(u,z) = " Web(u)o(z + a(u))h(u, z)
for all z € C(0,r). Thus g(u,0) = b(u)o(a(u))h(u,0), which tells us that
(u,0) is not a pole of the function B(u, z)o(z) for all u € C(u},r}). Since the
set of points of indeterminacy of the meromorphic function of two variables
is isolated, there exists a regular point (ug,0) € C(ui,r]) x C(0,7) of the
function B(u,z)o(z). We have thus proved the lemma. O

We note that ¢ # 0 because the constant ¢ above is one of the square roots
of —-6,1.
Using the equation (4.1), we are led to

Theorem 4.5. The elliptic solution A(z) defined on C(0,r) is

o(xz+s)
A = _ .
(@) = ehl) Z5 (43)
where s is a complex constant such that p(s) = —aa/a;1, and h(z) is a

meromorphic function defined on C(0,r) satisfying the relation h(z)h(—z) =
1.

Proposition 4.6. There exists C(us,r3) C C(u1,71) such that

U,T)=¢€ 1(u)xw_))_
B(u,z) = €’ (e @)o (e (4.4)

as meromorphic functions on C(us,r3) x C(0,r), where the functions p; and
ay are holomorphic on C(ug,r3). ’

By Lemma 4.3 and Theorem 4.5, we have
p(a(u)) = c~*(B(u, z) B(u, —z) — A(z)A(—z)) + p(s)

for all (u,z) € C(ug,r2) x (C(z1,71) \ (Z11 + Z72)). Thus p(a(u)) is holo-
morphic on C(ug,72). ' '
First we prove



Lemma 4.7. There exists C(uj,d’) C C(ug,73) such that

stuge (2 + a1(w)

B(u,z) = ep(“)wa(x— 4.5

) = e w)ota) (49

for all (u,z) € Dy N D®N(C(uf,d') x C(0,r)), where the function a1 is
holomorphic on C(uj,d').

Proof. (1) We assume that there would exist v; € C(ug,r2) such that

©'(a(v1)) # 0. The function p(z) is holomorphic at = = a(v;) by using

Lemma 4.1, and the function p has a holomorphic inverse g near a(v;) as

a result (See, for example, [21, pp. 215].). Then there exists C(v1,8) C

C(ug,r2) such that p(a(u)) is in the domain of the function g for all u €
C(v1,6). Define a function @ holomorphic on C(v,4) as

a(u) = g(p(a(u))).
~ Hence there exist functions e(u) € {0,1} and my(u), mo(u) € Z such that
a(u) = (=1)*™a(u) + my (u)ry + ma(u)r

for all u € C(v1,6), and consequently

; + (-1 ()
B(u,z) = ePlwz (1 a(u)a(m = ,
G
for all (u,z) € D1 N D®N(C(vy,8) x C(0,7)), where (u) € C.
The proposition below implies the desired result immediately, which we
shall prove in Appendix.

Proposition 4.8. There exist C(v},d') C C(v1,d) and m/(u),mh(u) € Z
such that a(u) = @(u) + m{(u)m1 + mhy(u)ry for all w € C(v},d) or a(u) =
—a(u) + my(u)m + mh(u)re for allu € C(v],d")..

(2) We assume that p'(a(u)) =0 on C(ug,rs). Then
a(u) = 711/2,(11 + 12)/2,72/2 (mod Zm + Z7s),

and, consequently, p(a(u)) = p(11/2), p((11 + 72)/2), p(12/2). By virtue of
the identity theorem for the holomorphic functions, the function pla(w)) is
constant on C(uy,r1). Without loss of generality, we may assume p(a(u)) =
©(11/2). Hence, for all u € C(ug,r2), there exist mi(u), ma(u) € Z such
that a(u) = 71/2 + my(u)m + mo(u)m, and, as a result,

olz+ %)

Blu,z) = cexp(p(v) +n(w)) Zry v



for all (u,z) € D1 N DN (C(ug,r2) X C(0,7)). Here n(u) = my(u)m +
ma(u)ne. Thus we have proved Proposition 4.7. ]

Proof of Proposition 4.6. For the proof, we need

Lemma 4.9. There exists C((u3,0),8") C C((u},0),d") such that the func-
tion f(u,z) := e”®a(z + ay(w)) is holomorphic on C((u4,0),48").

Proof. We note that f(u,z) = ¢! B(u, x)o(z)o(a1(u)). The proof is similar
to that of Lemma, 4.4, so we omit it. O

By virtue of f(u,z) = e ®q(z + a;(u)),

2 (4,0) = plu)o(as (w)) +o'(ar(w).

If there exists v € C(u3,d"”) such that o(a;(v)) = 0, then o(a(v)) =
o(xa1(v)) = 0, which contradicts Lemma 4.1. Hence o(a1{u)) # 0 for all
u € C(u3,d"). Since all the functions (8f/8z)(u,0), o(a1(u)) and o'(a1(u))
are holomorphic on C(uj, "), so is the function g. O

Now we are in the position to determine the functions p; and a; by
means of the equation (3.2).

Lemma 4.10. There ezxist C(u4,74) C C(us,r3) and a function a4 holo-
morphic on C(ug,r4) such that o(as(u) + a1(v)) # 0 for all u,v € C(uq,74)
and o(aq(u)) # 0 for all u € C(ug,r4).

Proof. If there exists C(ug,74) C C(us,r3) such that o(a1(u) + a1(v)) # 0
for all u,v € C(u4,74), then ag(u) := a1(u).

We assume that, for all C(u,r) C C(us,r3), there would exist ug,vg €
C(u,r) such that o(a;(uo) + a1(vo)) = 0. Then o(2a;(u)) = 0 for all u €
C(us,r3), and there exists d € Zm + Zry such that a;(u) = d/2 for all
u € C(us,r3) as a result. We note that a1(u) € Zm + Z7m by means of
Lemma 4.1. Define the function a4 holomorphic on C(ug,r3) as

2 a1(u) =%  (mod Zn + Zm),
ag(u) =< 2 a1(v) = 232 (mod Zmy + Zry),

i gi(u) =2 (mod Zmy + Zny).

This a4 is the desired one. | |



We take C(Z1,71) C (C(z1,71) \ (Zm1 + Zmy)) such that C(2%,271) N
(Zty + Z1y) = 0. From Theorem 4.5 and the three term identity of o (See,
for example, [22, pp. 377] and [18, pp. 461].),

B(v,z +y)(A(z)A(-z) - A(y)A(-y))
B(v,z)B(v,y)
@)
o(aq(u))o(as(u) + a1(v))
(U(w +a4(u) + a1(v))o(z — a4(u)) oy +as(u) + a1 (v))o(y — ag(u))
o(z)o(z + a1 (v)) o(y)o(y +a1(v))
for all u,v € C(u4,74) and z,y € C(Z1,71). By virtue of the equation (3.2),
for all u,v € C(u4,rs), there exists a constant y(u,v) € C such that

)

B(u,—z)B(u + v, z)
B(v,z)
_co(a1(v))o(z + as(u) + a1(v))o(z — as(u))
 o(@)o(z + a1(v))o(as(w))o(aa(u) + a1 (v))
for all z,y € C(:Z'l,.ﬂ).
By definition, C((2u4,2z1),2r4) C C((0,0),7/2). From Lemma 3.4,
there exist (u},z]) € C((2u4,2z;),2r4) and r1(> O) such that the condi-

tions in Lemma 3.4 hold. Making use of 4}, } and r} instead of u;, 2! and
71 in Section 3.2 and this section, we obtain

+ v(u, v) (4.6)

Lemma 4.11. There exists C(uj,73) C C(u},r]) such that
+ as(u))
B(u,z) = icePZ(“)mL 4.7
e o(@)o(ar(w) “n
as meromorphic functions on C(uj,r3) x C(0,7) with the functions ps and

ag holomorphic on C(uj,74).

Lemma 4.12. p1(u) = pu + p3, p2(u) = pu + p4, a1(u) = au + a3, and
as(u) = au + a4, where p, ps, pa, a, az and ag are complex constants.

Proof. We note C(u3/2,75/2) C C(us,3). By the equations (4.4), (4.6) and
(4.7), for u,v € C(u}/2,75/2),
+ elp2(utv) =P (W) -p1 W)z g (g ai(u))o(z + az(u + v))o(ai(v))o(as(u))
x o(ag(u) + a1(v))
—o(@1(4))o (@ + as(u) + a1(0))o(z — as(w)o(a1 (W)o(as(u +v)
+ (v, v)o(ag(u))o(z)o(az(u + v))o(z + a1(v))o(as(u) + a1 (v))



for all z € C(#1,71). The equation above also holds on C(3 ) by means
of the identity theorem for the holomorphic functions. The both sides of
the equation above is quasi-periodic with the periods 7, and 75, and, conse-
quently, ’

exp(mi(az(u + v) — a1(u) + 2z + 7)) + i (p2(u + v) = p1(u) — p1(v)))
=exp(ni(a1(v) + 2z + 7))

for i« = 1,2. This implies that, for all u,v € C(u}/2,75/2), there exist
n1(u,v), n2(u,v) € Z such that

pa(ut0) = pr(u) = pL(v) = mau,v)m —mi(w, v, (48)
az(u + v) — a1(u) — a1(v) = —ng(u, v)11 + n1(u, v)7o. (4.9)

Since the functions a; and ag are holomorphic and the set Zm + Zm is
discrete, ny(u,v) and ny(u,v) are constant on C((u}/2,u5/2),74/2), and, as
a result, the functions pa(u+v) — p1(u) — p1(v) and az(u+v) —a1(u) — a1 (v)
are constant functions on C'((uj/2,u5/2),7%4/2). In view of this, we get the
desired result. O

Theorem 4.13. The elliptic solution B(u,xz) of the equations (2.6) and
(3.1) defined on the polydisc C((0,0),r) is

o(z +>au)

B(u, ) = cexp(puzx) o (@)o(an)’

(4.10)

Here a is a non-zero complex constant and p is an arbitrary complex con-
stant.

Proof. From the lemma above, we deduce

L elPutoa) a(z + au + a4) — celoutpa)e o(z + au + a3)
o(z)o(au + a4) o(z)o(au + a3)’

By virtue of the quasi-periodicity of the equation above combined with the
equations (4.8) and (4.9) there exist ny, ng, n,n, € Z such that

p3 = (ny — ng)m + (n1 — ni)ng,
a3 = (ng — ny)11 + (n] — n1)7,

which implies the desired result.
We note that the constant a is not zero on account of Lemma 4.1, thereby
completing the proof of the theorem. O



Conversely we can show the propsition below by using the three term identity
of o.

Proposition 4.14. The functions A (4.3) and B (4.10) meromorphic on
C(0,r) and C((0,0),r) respectively satisfy the equations (2.6) and (3.1).

5 Trigonometric case

In this section, we solve the equations (2.6) and (3.1) under the conditions
in Theorem 3.3

_a sinh_2(:1:) + ag

A(2)A(=2) as sinh_Q(m) + a4

on C(0,r),

inh(—”""’(")

; eP(W)zp(e,) 200 2 ),
T

x z+a(u)
Pz (y) %@H,

Y(u,z) € D1 N D*N (Clug,r1) x C(0,7)).

The proof of the theorem below is the same as that in Section 4, so we
omit the proof.

Theorem 5.1. (1) The trigonometric solution A(z) of the equations (2.6)
and (3.1) defined on the polydisc C(0,7) is
sinh 22
Alz) = ch(z)m, | (5.1)
Ch(il))m%-,

where ¢ € C\ {0}, s € C\ Znv/—=1) and h(z) is a meromorphic function
defined on C(0,7) satisfying the relation h(z)h(—z) = 1.

(2) There exists C(us,r3) C C(u1,r1) such that the trigonometric solution
B(u, z) of the equations (2.6) and (3.1) is expressed as

cep1(w)z _Sinh v
sinh -‘ﬂf‘i sinh § !
B(u,z) = on C(ug,r3) X C(0,7).
cePt(u)r Sm}l T,
Here the functions py and a1 are holomorphic on C(us,r3).
(3) There ezist C(ug,m4) C C(us,r3) and a function ay holomorphic on



C(u4,71) such that

sinh %@-j\'&l@ #0 Vu,v € C(ug,r4),
sinh ﬂ“)\ﬂ)- #0 Yu € C(ug,r4)-
(4) There exists C(uj,13) C C(2uq,2r4) such that the trigonometric solution
B(u,x) of the equations (2.6) and (3.1) is expressed as follows.
pa(u)e_Sinh L)
:i:?c’, sinh 22 sinh £’
B(u,z) = on C(uj, ) x C(0,7).

p2(u)e __ 1
tce sinh XE ’

Here the functions p2 and az are holomorphic on C(uj,r3%).
We take C(£1,71) C (C(z1,71)\Zrv/—=1)) as C(2%1, 271 )NZr/—1A = 0,
and fix Vu,v € C(u3/2,75/2). Because there exists y(u,v) € C such that
B(u,—z)B(u + v, x)
B(v,z)

esinh 12 ginhy x+a4(";+°1(v) sinh ‘T_af(u)

sinh a4(")1’a1(") sinh a4§") sinh £ sinh __l""“’\ ) + 7(u’ ’U),

S8 +(w,0),
for all z € C(#1,71), we are led to the four cases below.
sinh z+a2)(‘"+v) sinh _z+§ 1 sinh al)(\”)

sinh 22 (’;"'v) sinh 2 §u)

F elP2(utv)—p1(w)=p1 (v))e

csinh 2 ginp 2HoaWrai ) oy z-ea(u) .. Z . zH+a(v
= )\. aq(u)+a ('u,\) . aq(u) 2 + ’)’(U, ’U) sinh - sinh _il,
sinh =5=72022 ginh 44 by b\
(5.2) -

.sinh _z+; 1) ginh al)(\”)

sinh 91—:12

F elp2(utv)—p1(w)~p1(v))

inh ai1(v) _: h z+ag(u)+ai(v) . h x—aq(u)
_ ¢sinh =57 sin % sin 3 4 (u,)sinh ; sinh EF ;\zl (v) ’

(5.3)

sinh a‘*(u)“;al(”) sinh a“i“)

: z4+az(utv
sinh —J—Z)‘

+0)=p1(w)=p1(v) = —ce~} inh =
F celp2(utv)=p1(u)~p1(v))z —= 1;‘+v) = —ce” > +v(u,v) smh)\, (5.4)

F celre(utv)=pW)=n ()2 — _ce=% 4 (u, v)sinh 2 (5.5)



for all z € C(%1,71). We note that the equation above holds on C. By
z = 0, all the signatures of the equations above are —1.
From the periodicity of the equations above

LeP2(utr)=pr()-pr (VTN g  (56)

and, as a result,

Lemma 5.2. There exist p,p3,ps € C such that p1(u) = pu + p3 for all
u € C(us,73) and p2(u) = pu+ ps for all u € C(u},r}).

In case of (5.4),

1
B — celputps)e ___ —
(u,2) = ce sinh £

on C((0,0),7) because of the identity theorem. From
sinh ——M“f u)

B(u, z) = celPutra)e
(1) sinh %\ﬁ sinh §

on C(ug,r5) x C(0,7), we deduce a contradiction.

Proposition 5.3. On C((0,0),r)

(putps)e_sinh ZFeutes
B(u,z) = o ’ sinh £ sinh 2423 for (5.2),
Ce(ﬁu+/04)acSin_}l__ﬁ!_X for (5.3) and (5.5),

where a,a3 € C,

Proof. We prove in case of (5.2) only.

There exists n € Z such that ps — 2p3 = n/X from the equation (5.6).
One can regard the equation (5.2) as a polynomial of the variable (/).
Hence we conclude n = 0, and consequently

h x+a2§u+v) sinh _m+j\z 1) ginh aliv)

sinh az(t‘\'*'”) sinh aliu)

csinh a‘ﬁ”) sinh m+a4(u£+a,1(v) sinh &=%a(w)

sin

—C

+ v{(u, v) sinh § sinh Eiil—(v)

sinh a"'(")j\"al(”) sinh a“)(\“)

on C. Thus we are led to

2(az(u+v)—f;‘1(u)—¢=1 (v))

=1
for all u,v € C(u3/2,75/2), thereby completing the proof. a



From the equation (2.6), we get p3 = pg = a3z = 0, that is to say,

Theorem 5.4. The trigonometric solution B(u,x) of the equations (2.6)
and (3.1) defined on the polydisc C((0,0),r) is

cePVr Ay sinh £ ,

B(u, .’L‘) — sn;h 5 sinh 52 (5'7)
cePut L2
sinh ¥

Here c is in Theorem 5.1, a is a non-zero complex constant and p is an
arbitrary complez constant.

Conversely
Proposition 5.5. The functions A (5.1) and B (5.7) meromorphic on C(0, r)
and C((0,0),7) respectively satisfy the equations (2.6) and (3.1).

6 Rational case

In this section, we solve the equations (2.6) and (3.1) under the conditions
in Theorem 3.3

-2
A()A(—z) = H on C(0,r),
B(u,z) = epwz W)z + au)

’ x

Y(u,z) € D1 N D" N(C(u1,71) x C(0,7)).

The proof of the theorem below is the same as that in Section 4, so we
omit the proof.

Theorem 6.1. (1) The rational solution A(x) of the equations (2.6) and
(3.1) defined on the polydisc C(0,r) is

z+s

o= {oo =

where ¢ and s are non-zero complex constants and h(z) is a meromorphic

function defined on C(0,7) satisfying the relation h(z)h(—z) = 1.
(2) There ezist C(us,r3) C C(u1,71) and C(ug,r3) C C(2us,2r3) such that



the rational solution B(u,x) of the equations (2.6) and (3.1) is expressed as
follows. '

B(u 2) = epl(u)m_aﬂ%gz_—*-c, on C(U3,7‘3) X C(O,""),
! erWemlze o0 oyl ph) x (0, 7).

Here the functions py and a1 are holomorphic on C(ug,r3) and the functions
p2 and az are holomorphic on C(uj,7%).

We fix Vu,v € C(u§/2,75/2). Because there exists v(u,v) € C such that
3 3

2
B(u, 2)(5’(5)4- v,3) _ _x(al(:)x — + v, v)
for all z € C(z1,71) \ {0}, we are led to
elP2(utv)—p1(u)—p1(v))z
c? v(u, v)z(a1(v)z + ¢)

= (—a1(w)z + c)(az(u + v)z £ c) - (—a1(w)z + &) (aa(u + )z £ o) (6.2)

for all z € C(z1,71) \ {0}. We note that the equation above holds on C.

If pa(u + v) — p1(u) — p1(v) # O, then the left hand side of the equation
above has an essential singularity at infinity. On the other hand the right
hand side of the equation above has a pole or a regular point at infinity
since the right hand side is a rational function. It is a contradiction. Hence
p2(u +v) — p1(u) — p1(v) = 0 for all u,v € C(u}/2,75/2), and, as a result,

Lemma 6.2. There ezist p, p3 € C such that py(u) = pu + ps for all u €
C(us,13) and pa(u) = pu + 2p3 for all u € C(uh,r}).

From the equation (6.2)
a1(u)az(u + v) = (a1(u) — az(u + v))ay (v)
for all u,v € C(u§/2,75/2), which implies

Lemma 6.3. The function a;(u) is identically zero on C(us,r3), or there
ezrists a,a3 € C such that

c
1  __ au 2g, 10
vy _c'a', V'Uc S C(U3,T3).

{E]T%ZJ = U -+ %3-, Yu S C(’U,3,7'3),
az{u +

By the straightforward computation



Theorem 6.4. The rational solution B(u,x) of the equations (2.6) and
(3.1) defined on the polydisc C((0,0),7) is

i cePuT Ttau
B(u,z) =% e (6.3)
ce ="

Here c is in Theorem 6.1, a € C\ {0} and p € C.
Conversely ‘

Proposition 6.5. The functions A (6.1) and B (6.3) meromorphic on C(0,1)
and C((0,0),r) respectively satisfy the equations (2.6) and (3.1).

7 Singular case

In this section, we assume that, for some complex constant a,
A(z)A(—z)=a
on C(0,r). The assumption above and the equation (3.1) imply
B(u,z)B(u, —z) = B(u, y)B(u, —y) (7.1)

on C((0,0),r). Let D1, Dy C C((0,0),7) be the domains of the meromorphic
function B(u,z) and B(u,—z), respectively. From the equation (7.1), for
all u € C(0,r) such that (u,z) € D; N Dy, there exists a(u) € C such that

B(u,z)B(u,—z) = a(u) Vz € C(0,7)s.t. (u,z) € D; N Ds. (7.2)

It follows immediately that a(u) is holomorphic at u = wug if (uo,%0) €
DN Dsy.

Lemma 7.1. If (uo,y0) € D1N Dy, then (ug,0) is not a pole of the function
B(u,z).

Proof. The proof is by contradiction. A<sume the assertion were false. For
all n € N, there would exist (uy,z;,) € C((0,0),r) such that (u,z}) €
C((u0,0),1/n) N Dy. Then there exists 7, > 0 such that C((u,,z}),7)) C
C((u0,0),1/n) N D;. Hence there exists (un, zp) € Dy such that (up,z,) €
C((un, zy,), ). Because (un,zp) € C((ug,0),1/n) N Dy N Do, limy o0 up =
ug and limp, 0 Zn = 0. Since (ug, 0) is a pole of B(u, z), limp o0 | B(un, Tn)| =

limy, o0 | B(tn, —2n)| = o0, and limp o0 | B(tn, Tn)B(un, —T5)| = 0o as a
consequence.

On the other hand, the lemma above says that lim,_,. a(u,) = a(ugp),
which is a contradiction of the equation (7.2). O



Thus the point (ug,0) in the lemma above is a regular point or a point of
indeterminacy of B(u, z).

Lemma 7.2. For any (0 <)r' < r, there exists up € C(0,7') such that
(uo,0) is a reqular point of B(u,x).

Proof. 1t is enough to consider the case that (up,0) € C((0,0),7') in the
lemma above is a point of indeterminacy of the function B(u, z).

Because the set of the points of indeterminacy of the meromorphic func-
tion with two variables is isolated, there exists ro > 0 such that B(u, z) has
no points of indeterminacy in C((up, 0),70) \ {(u0,0)} and C((up,0),70) C
C((0,0),7"). That is to say, for any u; € C(ug,70)\{uo}, (u1,0) is not a point
of indeterminacy of B(u,z), and there exists C((u1,0),s) C C((uo,0),70) \
{(u0,0)} as a result. The meromorphic function B(u,z) has no points of
indeterminacy in C((uy,0), s).

Since the set D; and D; are dense in C((0,0),r), there exists (us,y3) €
Dy NDyN(C(u1,s) x C(0,7)). By means of the lemma above and (u3, y3) €
D1 N Dy, (u3,0) is not a pole of B(u,z). From (us,0) € C((u1,0), s), (u3,0)
is not'a point of indeterminacy of B(u, z). This point ug is the one what we
desire. O

Proposition 7.3. There exist ro(> 0) and ug € C(0,7) such that

(1)C((4uo, 0),4ro) C C((0,0),7),
(2)B(u, ) is holomorphic on C((ug,0),79) U C((2ug, 0), 2r¢) U C((4uo, 0), 4ro),
(3)B(u, z) # 0 for all (u,z) € C((ug,0), 7o) UC((2ug, 0), 2rg) U C((4uyp, 0), 4ro).

It suffices to show the lemma below.

Lemma 7.4. (1) If there ezists C((ug,0),70) C C((0,0),7) such that B(u, )
is holomorphic on C((uo,0),m0) and C((2up,0),2r¢) C C((0,0),r), then
there exists C((u1,0),71) C C((uo,0),70) such that B(u,z) is holomorphic
on C((2uy,0),2r1).

(2) If there ezists C((uo,0),70) C C((0,0),7) such that B(u,x) is holomor-
phic on C((uo,0),70), then there erists C((u1,0),71) C C’((uo,O),ro) such
that B(u,z) # 0 for all (u,z) € C((u1,0),71). '

Proof. (1) We take C((ug,y2),72) C (C(2ug, 2ro) x C(0,7)) N D1 N Dy, and,
for all u € C(ug,72), there exists y € C(yq,72) such that (u,y) € D1ND; as
a result. By Lemma 7.1, (u,0) is not a pole of B(u,z) for all u € C(ug, 7).

Because the set of the points of indeterminacy of the meromorphic func-
tion of two variables is isolated and u/2 € C(ug,7o) for all u € C(ug,r2),



there exists u; € C(ug, 7o) such that (2u;,0) € D;. Thus there exists r; > 0
such that C((u1,0),71) C C((uo,0),70) and C((2u1,0),2r;) C Dy, thereby
completing the proof.

(2) There exists u; € C(ug, 7o) such that B(ui,0) # 0 by using B # 0 and
the equation (7.1). Since B(u,z) is continuous at (u,z) = (uy,0), we get
the desired result. a

Lemma 7.5. For all u,v € C(ug,10/2), there exists v(u,v) € C such that

B?u(,u x-)*-B,U(’va?m) =7(wo) (v3)
for all x € C(0,79/2).

Proof. Let up and 7o be given in Proposition 7.3. From the equation (2.6)
for u,v € C(ug,70/2) and z,y € C(0,70/2),
B(u,z)B(u,y)B(v,z +y)
=B(u+ v,z + y)a(uv) + B(u,y) B(v,y) B(u + v, z). (7.4)

We interchange = with y in the equation above and subtract the result from
the equation above.

Butv,z) _ Butwvy)
B(u,z)B(v,z)  B(u,y)B(v,y)

for u,v € C(up,r0/2) and z,y € C(0,70/2). This completes the proof. O
Lemma 7.6. We fix Vu,v € C(up,70/2) and put

_ Bu+wv,z)
@) = —pa)
1
%) = Bl o)

¥(z) = a(uw)y(u,v)B(u + v, z).
They satisfy the equation (2.2) for all z,y € C(0,r0/4).

Proof. We note that y(u,v) # 0 for all u,v € C(ug,70/2) on account of
Proposition 7.3. From the equations (7.3)

Bu+ v,z +y) _
B(u,z +y)B(v,z + ¥)

Y(u,v)



and (7.4) for u,v € C(up,79/2) and z,y € C(0,79/4),
B(u+v,z+y)
(u,v)B(u,z +y)
B(u+v,y)
v(u,v)

We have thus proved the lemma. O

B(u, 2)B(u, y) 5

=B(u + v,z + y)a(u) + B(u + v, x).

With the aid of Proposition 7.3, the functions «, ¢ and 1 are all holomorphic
on C(0,79/2).

Lemma 7.7. For all x € C(0,70/2), o(z) # 0 and ¥(x) # 0.

Proof. We only show that a(u) # 0 for all u € C(ug,70/2). The proof is
by contradiction. Assume the assertion were false. Then there would exist
u € C(ug,70/2) such that a(u) = 0. Then B(u,z)B(u,—z) = 0 for all z €
C(0,r) such that (u,z) € D; N Dy. Because {u} x C(0,79) C C((ug,0), 7o),
B(u,z)B(u,—z) = 0 for all z € C(0,1g), which is a contradiction of Propo-
sition 7.3. O

The lemma above tells us that the functions ¢, ¢ and ¢ are the solution of
the equation (2.2) with the condition ¢(0) # 0 and a(z +y) — a(z)a(y) # 0
for all z,y € C(0,79/4). By virtue of Theorem 2.1 (2) we conclude

Proposition 7.8.

B(u,z) = c1(u) exp(py (u)z)

for u € C(ug,r0/2) and x € C(0,79/4), where c1 and p; are holomorphic on
C(uo,70/2). The function c1 satisfies c1(u) # 0 for all u € Clug, 70/2).

Proof. We prove that the functions ¢; and p; are holomorphic on C(ug, r9/2).
The function B(u,z) is holomorphic on C((ug,0),70) because of Proposi-
tion 7.3, and the functions c;(u) = B(v,0) and (8B/8z)(u,0) = c1(u)p1(u)
are holomorphic on C(ug,r0/2) as a consequence. The function ¢; satisfies
c1(u) # 0 for all u € C(ug,70/2) because of Proposition 7.3, which implies
the desired result. O

Making use of 2up and 2rg instead of ug and rg in this section, we obtain
Proposition 7.9. |
' B(u,z) = ca(u) exp(p2(u)z)

for v € C(2ug,m0) and z € C(0,79/2), where cy and ps are holomorphic on
C(2up,70). The function Cy satisfies Co(u) # 0 for all u € C(2ug, o).



By virtue of the equations (2.6) and (7.3) we deduce the theorem below.

Theorem 7.10. The singular solutions A(z) and B(u,z) of the equations
(2.6) and (3.1) defined on the polydiscs C(0,7) and C((0,0),r) respectively
are

A(z) = a1 h(z),
and
1
B(u,z) = ¢2 exp(pu:v)a.

Here ¢y and p are arbitrary complex constants, ¢y is non-zero complex con-
stant, and h(z) is a meromorphic function defined on C(0,7) satisfying the
relation h(z)h(—z) = 1.

Conversely

Proposition 7.11. The functions A and B in the iheorem above meromor-
phic on C(0,7) and C((0,0),r) respectively satisfy the equations (2.6) and
(3.1).

8 Conclusion

We need not use the sharp form of the Poincaré theorem in this article.
We have Theorem 3.3 (1) in exactly the same way. By the definition of
the meromorphic function, there exists (0 <)r’ < r satisfying the conditions
below.
(1) The sharp form of the Poincaré theorem for the function B holds on
C((0,0),7"). .
(2) The sharp form of the Poincaré theorem for the functions B(u, z)o(z)
B(u, z)sinh(z/)) and B(u, z)x holds on C((0,0),7'), respectively.
- We regard ' as r in this article and, consequently, we obtain Theorem
1.1 for C(0,7') and C((0,0),7'). From the identity theorem, Theorem 1.1
also holds for C(0,7) and C((0,0),7).
We use the sharp form of the Poincaré theorem for the sake of brevity.

b
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Appendix: Proof of Proposition 4.8

In this appendix, we shall prove Proposition 4.8.

Proposition A.1 (Proposition 4.8). There ezist C(v},d8') C C(v1,6) and
mi(u), my(u) € Z such that a(u) = a(u) + mi(u)my + mh(u)Te for all u €
C(v1,0") or a(u) = —a(u) + my(u)m1 + my(w)me for allu € C(v],d).

If there exists C(v},d') C C(v1,6) such that £(u) = 0 for all u € C(v},d')
or e(u) = 1 for all u € C(v},d’), we have nothing to do.

In the sequel, we assume that, for all C(u,d1) C C(v1,6), there exist
v,w € C(u,d;) such that e(v) # e(w). Since the sharp form of the Poincaré
theorem holds on C((0,0),7) (See the proof of Theorem 3.3 (2).), there
exist two functions g and h holomorphic on C((0,0),7) such that A is not
identically zero, B(u,z)o(z) = g(u,z)/h(u,z), and the functions g and h
are coprime locally. We omit the proof of the lemma below because it is
similar to that of Lemma 4.4. '

Lemma A.2. There exists C(u}, &) C C(v1,0) such that
(1) the function B(u,z)o(x) is holomorphic on C((u},0),5),
(2) for all (u,7) € O((u,0), ),

cePWz(_ cw @+ (~1)¥®g(u))
ey o(a(u))

By means of the lemma above,

h(u,z) = 9(u,z).

W2 (_1)e W g (5 1 (—1)F™a(w)) = ¢ 1 B(u, z)o(zx)o(a(w))

for all (u,z) € C((u5,0),8"). Since the function a(u) is holomorphic on
C(uf, "), the function f(u, x)
f(u,z) = ¢ B(u, z)o(z)o(a(u))
= P2 (1) Mo (e + (-1)"a(u) (A1)

is holomorphic on C((u3,0),d"). The function (8f/0z)(u,0) is consequently
holomorphic on C(uj,d'), and :

2L (4,0) = pw)o(aw) + (-1 o (a(u) (a2)

for all u € C(u§,?’).
By B # 0 and Lemma 4.1, we conclude



Lemma A.3. There exists C((ug,x5),6") C C((u3,0),d") such that
(1) C(a4,8") 30,

(2) f(u,z) # 0 for all (u, z) € C((u3,x5),6"),

(3) o(z — a(u)) # 0 for all (u,x) € C((uf, z5),d"),

(4) oo+ a(u)) £ 0 for all (u,2) € C((ul 2%), 8").

By means of the lemma above, the functions —f(u,z)/o(z — @(u)) and
f(u,z)/o(x + a(u)) are holomorphic on C((uj, z5),6"), and

—f(u,z)/o(z —a(u)) # 0, f(u,z)/o(z+a(u)) #0
for all (u,z) € C((u3,25),0").
Lemma A.4. For allu € C(uf,§"), 2d(u) € Zm + Zry
To prove Lemma A.4, it suffices to show the following,.

Lemma A.5. For all (u3,z3) € C((ug, 25),0"),

_o(@s+a(us)) _ awsc(a(us))
o(z3 — a(us))

Proof. We fix ¥(us,z3) € C((ul},2%),8"). Let Log™)(z) and Log?(z) be
branches of logarithm defined on open connected sets Vi1, Vo C C such that
ePu)zs € Y and (=1)°®8)H f(uz, x3) /o (x5 + (—1))F1G(uz)) € Vo, re-
spectively. Because the function (—1)(®)+1 f(u, z)/o(x + (—=1)5e)+15(w))
is continuous at (u,z) = (u3, x3), there exist £ > 0 and § > 0 such that

(1) C((=1)™)*1 f(us, z3) /o (23 + (—1)7)HG(ug)), ) C Vi,

(2) C((u3ax3) 5) Cc C((“B)"”S) 5”))

and

(3) for all (u,z) € C((us, x3),9),

(—1)£)+1 f o, 2) (—1) e (g zg)
o(@ + (0 a()) © olm 1 (CDF a(ug)

Let N € N such that 1/N < 8. By virtue of the assumption, for all n > N,
there exists @, € C(us, 1/n) such that e(@y,) # €(u3). Then we have &(4,) =
e(ug) + 1 (mod 2), lim,,o0 Uy, = u3, and

Lemma A.6. (—1)5W)tlf(q, x3)/0(zs + (—1)5@)+1G(a,)) € Vs for all
n>N.



From the equation (A.1) and the lemma above, (@)% ¢ V5 for all
n > N, and, consequently,

(=1)°@ I+ £ (G, z3)
o(xs + (—1)=)+a(in))

pltn)zs = Log(2)(

for all n > N. On account of the equation (A.2)

of .
%(umo) N

_)i o) ( ) (—_1)6 “ +1f(U3,$3) o a u _ E(’ug) lo_l a U \
P g’ (a(x3+(—1)€(ua)+1&(u3))) (@(us)) + (1) 0 (a(us))

as n — oo. Hence

27 tus, 0
- pne) (_l)e(ua)+1f(u3ax3) olalu __1\e(us) o' alu
T3 Log ? (0_(3:3 + (_1)€(u3)+ld(U3))) ( ( 3)) +(-1) * ( ( 3)) |

On the other hand, in view of ePlus)s ¢ v,

(_1)€(u3)f(u3’ m3)
o(zs + (—1)°)a(uz))”’

p(uz)zs = Log™M(

which implies

0
a_i(u& 0)

1o gy, (1)) f(ug, x3)
=% Log (G(x3+(_1)e(u3)&(u3))

Jo(@(us)) + (~1)7“)o’ (a(us)).

By the straightforward calculation, we obtain the desired result. O

Proof of Proposition 4.8 (Proposition A.1). Because the function 2a(u) is
continuous on C(uj, §") and the set Zr; + Zrs is discrete, there exist m,n €
Z such that 2a(u) = mm + nry for all u € C(uj,8”). Hence a(u) =
(—1)*™a(u) = a(u) (mod Zm + Zry) for all u € C(uf, 6"). O
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