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Abstract

A definition of open string period integrals for noncompact Calabi-
Yau manifolds is given. It is shown that the open string Picard-Fuchs
operators, originally derived through physical considerations, follow
from these period integrals. Also, we find that the natural extension
to the compact case does not yield the expected results.

1 Introduction.

For some time now, mirror symmetry and its mathematical implications have
provided unexpected connections between seemingly unrelated families of
Calabi-Yau manifolds. In particular, closed string mirror symmetry, under
which the complexified Kähler moduli space X of one Calabi-Yau family is
locally isomorphic to the complex moduli space Y of another family, has
proven to be a powerful tool of enumerative geometry [5],[18].

Closer to the present, there is the developing story of local mirror symme-
try [9],[4],[10]. Here, the relevant space X may be described as the variation
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of complexified Kähler moduli of canonical bundle KS of a Fano surface S.
The associated Gromov-Witten invariants have the (conjectural) interpre-
tation as the number of holomorphic curves lying in the surface S. When
compared with the compact case, the local periods take on a simplified form.

Finally, we come to the topic of interest, which is open string mirror
symmetry [1],[14],[16]. Mathematically, this represents an extension of the
moduli spaces considered in closed string mirror symmetry. We are now
interested, on one side of the duality, in the moduli space of a pair (X, L),
where we look at the complexified Kähler moduli space of X together with
deformations of a Lagrangian submanifold L ⊂ X. Throughout, we will
denote this moduli space as (X ,L). On the other side, we consider the
moduli space of (Y,C) with C a holomorphic curve in Y , in the sense of the
complex structure moduli space of Y and normal deformations of C in X;
this will be referred to as (Y , C). Then (X ,L) and (Y , C) are supposed to be
locally isomorphic, and the enumerative significance of this duality is given
the interpretation of counting the number of holomorphic maps f : D → X
such that f |∂D(∂D) ⊂ L, where D = {z ∈ C : |z| ≤ 1}.

In this paper, we will give a definition of period integrals defining the
moduli space (Y , C) in the noncompact case, and show that this is consistent
with physicists’ open string PF operators [14]. Moreover, we attempt to
extend this construction to include compact considerations, and show that
this does not seem to be the right approach. Physically, this is due to the
D-brane charge on C, which must be dealt with in a compact theory.

The organization of this paper is as follows. In section 2, we will review
the noncompact pairs of spaces (X, L) and (Y,C) that are used in local open
string mirror symmetry. Section 3 contains a definition of “open string period
integrals” on (Y , C), which are then shown to reproduce the known Picard-
Fuchs operators. Section 4 shows the failure of extending this idea to the
compact case, and finally, in section 5 we give an example in detail.
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2 Review of the spaces

2.1 Construction of (X ,L).

Although the primary focus of the present work is to define the moduli space
(Y , C), it is instructive to first carefully review the mirror (X ,L); moreover,
the holomorphic discs that are “counted” by open string mirror symmetry
actually lie in (X, L).

Following [2], we can define the spaces X as

Xr = {(z0, z1, z2, z3) ∈ (C4 − Z)|
3∑

i=0

li|zi|2 = r}/S1, (1)

where the S1 action is

S1 : zi −→ e
√
−1liθzi, i = 0, . . . , 3,

and r ∈ R+. Also, Z is the singular set implied by the relation
∑3

i=0 li|zi|2 =
r. For example, for the local P2 case, we have l = (−3, 1, 1, 1), and this means
that Z = {z1 = z2 = z3 = 0} here. Finally, we must impose the condition∑3

i=0 li = 0, which is equivalent to c1(Xr) = 0 (that is, so Xr satisfies the
definition of a local Calabi-Yau manifold).

Notice also that r is the single Kähler parameter on this space. To see
this, recall that in such a toric construction of X, the vector l corresponds
to a 2 cycle Cl ↪→ X. Then there is an element of cohomology ωl dual to Cl,
and we find that ∫

Cl

ωl = r

when appropriately scaled. Hence, if t is the coordinate on the complexified
Kähler moduli space of X, we may identify Re(t) = r.

In the interests of clarity, throughout the paper, we will consider spaces
with only one Kähler modulus. The inclusion of additional parameters is in
fact trivial [14].

Next, we should construct Lagrangian submanifolds L of X. These have
been worked out previously [1], and are given by

Lr,c = Xr ∩ {
∑

i

k1
i |zi|2 = c,

∑
i

k2
i |zi|2 = 0,

∑
i

arg(zi) = 0}.
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The convention used is that kj = (kj
0, . . . , k

j
3). Again, we must insist that∑3

i=0 kj
i = 0 for j = 1, 2, although this now has the interpretation of making

L a Lagrangian submanifold of X.
Then, according to local open string mirror symmetry, there should be a

family of spaces (Y , C), such that Y ∈ Y is Calabi-Yau and C is a holomorphic
curve in Y , such that (Y , C) ∼= (X ,L). This isomorphism is expected to
count genus 0 “open string Gromov-Witten invariants” on (X, L); these do
not yet have a good mathematical description [13], [6], but their supposed
interpretation is a count of holomorphic discs in X with boundary on L.

2.2 The mirror family (Y,C).

From the mirror constructions of e.g. [9],[1], we can immediately give a de-
scription of a mirror family Y for X, in the usual (closed string) sense of
mirror symmetry. This is

Yz = {uv +
3∑

i=0

yi = 0,
3∏

i=0

yli
i = z, y0 = 1}, (2)

where u, v are C variables and yi ∈ C∗. Also, the condition y0 = 1 is of
course arbitrary, and in practice we vary which yi should be set to 1 based
on convenience in studying the problem at hand.

One way to see that this is the right definition of a mirror Y to X is
to look at the local period integrals for Y . So, first use the constraints∏3

i=0 yli
i = z, y0 = 1 on the equation uv +

∑3
i=0 yi = 0, and rewrite

Yz = {uv + f(z) = 0},

where f is a function of e.g. y1, y2. Then we can define the period integrals
on Y to be [10]

ΠΓ(z) =

∫
Γ

dudvdy1dy2/(y1y2)

uv + f(z)
(3)

Here we have Γ ∈ H4(C2×(C∗)2−Y, Z). These period integrals will reproduce
the enumerative information relevant to counting holomorphic curves in X.
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The reason for this is the same as in the usual formulation of Batyrev mirror
symmetry [3], because of the use of l to define the polynomial for Y .

Next, we would like to see how mirror symmetry acts on the Lagrangian
submanifolds L of X. In a sense, the mirror family Y (parameterized by z)
of X was simply defined by exponentiation of the defining vector l. In the
same way, we have but to exponentiate k1, k2 to get the mirror curve C to
L. This yields

Cz,w = Yz ∩ {
3∏

i=0

y
k1

i
i = w,

3∏
i=0

y
k2

i
i = 1}. (4)

In practice, the equation
∏3

i=0 y
k1

i
i = w will always take the form yiy

−1
j = w,

after accounting for the imposition of the constraint y0 = 1.
Then, the moduli space (Y , C) is supposed to be locally isomorphic to

(X ,L). The next section will explore a way in which to make this correspon-
dence precise.

3 Period integrals for (Y , C).

3.1 Periods and Picard-Fuchs operators for Y.

From the above, we have integrals

ΠΓ(z) =

∫
Γ

dudvdy1dy2/(y1y2)

uv + f(z)
(5)

which determine the complex structure of Y . Rather than directly integrating
the ΠΓ, it is often easter to determine a set of Picard-Fuchs operators which
annihilate these, and then write down a basis of solutions. Here, this process
will be interpreted in a slightly different way from the conventional, which
will make the constructions of the following section natural.

First, looking back at (2), note that this can be written as

Yz = {uv + 1 + y1 + y2 + (zyl1
1 yl2

2 )1/l3 = 0};

From here, define

Ya0,...,a3 = {uv + a0 + a1y1 + a2y2 + (a3y
l1
1 yl2

2 )1/l3 = uv + f(a, y) = 0}.
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This means that the C∗ variables (a0, . . . , a3) are considered to be homo-
geneous coordinates for the complex structure moduli space Y . Then the
period integrals

ΠΓ(a0, . . . , a3) =

∫
Γ

dudvdy1dy2/(y1y2)

uv + a0 + a1y1 + a2y2 + (a3y
l1
1 yl2

2 )1/l3
(6)

are annihilated by the GKZ differential operators, given by

L =
∏
li>0

∂li
ai
−

∏
li<0

∂−li
ai

(7)

and another operator. However, the addition of the second GKZ operator is
equivalent to the statement that ΠΓ(a0, . . . , a3) is actually a function of only
one complex parameter, which we can identify as

z =

∏
li>0 ai

li∏
li<0 ai

−li
. (8)

Then, as is well known, we can reduce L via (8) to obtain a Picard-Fuchs
differential operator

D =
∏
lk>0

lk−1∏
n=0

(lkθ − n)− z
∏
lk<0

−lk−1∏
n=0

(lkθ − n). (9)

As usual, θ = z d
dz

. Then the solution set of Df = 0 is supposed to yield the
periods of Y .

3.2 Extension to (Y , C).

It was proposed in [16] that the moduli space (Y , C) should be thought of
as a variation of mixed Hodge structure of relative cohomology H3(Y,C; C).
Taking this as a starting point, note that there is an isomorphism H3(Y, C) ∼=
H3

c (Y −C),where the subscript c denotes forms with compact support. Now,
from the defining equations (5), since Y is given as a hypersurface, we are
led to consider derivatives of the differential form

dudvdy1dy2/(y1y2)

uv + f(z)
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to determine the Picard-Fuchs operator, and hence the period integrals.
In the same spirit, from the equation of the curve C,

Cz,w = Yz ∩ {
3∏

i=0

y
k1

i
i = w,

3∏
i=0

y
k2

i
i = 1},

set

g(w) =
3∏

i=0

y
k1

i
i − w, h =

3∏
i=0

y
k2

i
i − 1.

Then the natural differential form to look at, which lies in H3
c (Y − C), is

dudvdy1dy2/(y1y2)

(uv + f(z))g(w)h
. (10)

This leads us to make the

Definition. The relative period integrals on the moduli space (Y , C) are
given as

ΠΓ(z, w) =

∫
Γ

dudvdy1dy2/(y1y2)

(uv + f(z))g(w)h
(11)

for Γ ∈ H4(C2 × (C∗)2 − Y, Y − C, Z) .

An important feature of these integrals is that, as g is independent of z, the
usual Picard-Fuchs operator (9) still annihilates ΠΓ(z, w). Thus, the period
integrals for Y are a subset of those in the definition.

Next, it will be shown that this definition indeed reproduces the extended
Picard-Fuchs system associated to the pair (Y , C) [14]. To this end, it is
useful, as in the previous section, to first consider a different set of integrals
which are annihilated by an extended GKZ system. Afterwards, the resulting
GKZ operators will be reduced via canonically defined coordinates, and the
result will be a relative Picard-Fuchs system consistent with that of the
literature.

Proposition 1 The period integrals defined in (11) reproduce the known ex-
tended Picard-Fuchs differential operators definind the moduli space (Y , C).
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Proof. It is useful to write the period integrals ΠΓ(z, w) in a slightly different
form, as was done for the periods on Y in the previous section. For simplicity,
take the defining equation of g to be given as g(w) = y1 − w. Then, set
g(b) = b0 + b1y1, and consider the integrals

ΠΓ(a0, . . . , a3, b0, b1) =

∫
Γ

dudvdy1dy2/y1y2

(uv + f(a, y))g(b)h
=

∫
Γ

dudvdy1dy2/y1y2

(uv + a0 + a1y1 + a2y2 + (a3y
l1
1 yl2

2 )1/l3)(b0 + b1y1)h
. (12)

This is, of course, inspired by the process used above when considering (6)
in place of (5). The interpretation is that (a0, . . . , a3, b0, b1) ∈ (C∗)6 are
homogeneous coordinates for the moduli space (Y , C).

From the explicit form (12), it is easy to see that ΠΓ(a, b) is still annihi-
lated by L (7), and one immediately has that

L′ = ∂a0∂b1 − ∂b0∂a1 (13)

also sends ΠΓ(a, b) to 0. So, take L = Lz, L′ = Lw. There are then two
canonically defined coordinates, based on these operators:

z =

∏
li>0 ai

li∏
li<0 ai

−li
, w =

a0b1

a1b0

. (14)

The moduli space defined by (12) is larger than that of (6). This extended
moduli space can be realized as a pair of vectors:

lz = (l0, . . . , l3, 0, 0), lw = (1,−1, 0, 0,−1, 1). (15)

These new vectors, in turn, are equivalent to the GKZ operators {L,L′}.
Hence, we may take {lz, lw} as toric data for the moduli space of the pair
(Y , C). �
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3.3 Extended Picard-Fuchs operators and solutions.

The vectors (15) were found previously through physical considerations [14].
Thus, at this point the equivalence of the definition (11) to the physical
calculations of [14],[16] has already been demonstrated. For completeness,
we will present the extended Picard-Fuchs operators and solutions that follow
from (15).

Let z = z1, w = z2, and change all other indices accordingly, so e.g.
lz = l1. Writing the operators {L1,L2} in the variables (14), we find

Dk =
∏
lki >0

lki −1∏
n=0

(
2∑

k=1

lki θk − n)− zk

∏
lki <0

−lki −1∏
n=0

(
2∑

k=1

lki θk − n). (16)

The notation used here is lk = (lk0 , . . . , l
k
3). This is nothing other than the

noncompact Picard-Fuchs system associated to the vectors {l1, l2}, so we can
use the results of [4] to immediately write down a generating function for the
solutions:

ω0(z, ρ) =
∑
n≥0

c(n, ρ)zn1+ρ1

1 zn2+ρ2

2 , (17)

where
c(n, ρ)−1 =

∏
i

Γ(1 +
∑

k

lki (nk + ρk)).

Then ω0(z, 0) is constant, and there are two logarithmic solutions ti(z) =
∂ρi

ω0(z, ρ)|ρ=0 providing the mirror map between (X ,L) and (Y , C). Accord-
ing to [16], the function that is relevant for counting discs on (X ,L) is

W (z1, z2) =
∑
n≥0

(∂2
ρ2

c(n, ρ)|ρ=0)z
n1
1 zn2

2

This is obtained by ignoring the logarithmic terms of ∂2
ρ2

ω0(z, ρ)|ρ=0.
Numerous examples have already been worked out [16] as evidence that,

upon insertion of the inverse mirror map into W , the conjectural open Gromov-
Witten invariants can be extracted, after accounting for the multiple cover
formula [13]. Next, we would like to see whether the above considerations
can be extended to the compact setting.
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4 An attempt at the compact case.

From the mirror symmetry constructions of [1], it is evident that we cannot
distinguish the compact and noncompact cases at the level of GKZ operators.
That is to say, the GKZ system associated to the mirror family of the quintic
(i.e., a zero section of O(5) → P4) is identical to that derived from the
mirror family of the (complex dimension 5) noncompact Calabi-Yau space
O(−5) → P4. This statement continues to hold true in the open string
setting.

This means that the distinction of compact and noncompact geometry
is made through the transition from GKZ to Picard-Fuchs operators. The
reason for this is easy to explain: in the noncompact case, the differential
form

dudvdy1dy2/(y1y2)

uv + a0 + a1y1 + a2y2 + (a3y
l1
1 yl2

2 )1/l3

is invariant when we pass to the quotient defined by the variable (14). How-
ever, in the compact case, we are working with a differential form

Ω =

∏
i dyi/yi

a0 +
∑

i>0 ali
i

,

which has an additional C∗ action on the denominator. Hence, we must mod-
ify the differential form as well as the GKZ operator, to maintain invariance
under this new C∗ action:

Ω → a0Ω, L → La−1
0 .

Naturally, the Picard-Fuchs operator arising from La−1
0 will be different from

that in (9).
From these considerations, as well as the mirror construction in [1], it is

evident that the form

Ω1 =

∏
i dyi/yi

(a0 +
∑

i>0 ali
i )(b0 + b1y1)h

will be the natural object of interest in the context of compact open string
mirror symmetry. This now takes on the form from the complete intersection
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case [11], and it follows that invariance under the quotient given by (14)
requires the modification

Ω1 → Ω1a0b0, Li → Lia
−1
0 b−1

0 .

Then we have new Picard-Fuchs operators

Dk =
∏
lki >0

lki −1∏
n=0

(
2∑

k=1

lki θk − n)− zk

∏
lki <0

−lki∏
n=0

(
2∑

k=1

lki θk − n)

and their associated solution set, which is given in full detail in [11]. The
point now, though, is that the associated double logarithmic solution of
{D1,D2} will yield nontrivial numbers, after the insertion of the inverse
mirror map. However, as was pointed out in [1], a holomorphic family of
curves in a compact Calabi-Yau, such as that given by {b0 + b1y1 = 0} in
{a0 +

∑
i>0 ali

i = 0}, should have no double log solution. This is because such
a family will have a vanishing disc number in the mirror. Thus, we cannot
naively apply the techniques of [16] to compact situations.

5 An example.

Finally, it will be shown how the application of the above ideas reproduces
the results of both [6] and [14], in the case of KP2 = O(−3) → P2.

First, we take KP2 =

Xr = {(z1, . . . , z4) ∈ C− Z : |z1|2 + |z2|2 + |z3|2 − 3|z4|2 = r}/S1,

where Z = {z1 = z2 = z3 = 0}, and the S1 action is determined by the vector
l1 = (1, 1, 1,−3). Also, consider the Lagrangian submanifolds

Lr,c = Xr ∩ {|z1|2 − |z4|2 = c, |z2|2 − |z4|2 = 0,
∑

i

arg(zi) = 0},

L′
r,−c = Xr ∩ {|z1|2 − |z4|2 = −c, |z2|2 − |z1|2 = 0,

∑
i

arg(zi) = 0}.
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Here, r, c ∈ R+.
Then, as in previous sections, the moduli space (Y , C) can be specified by

the toric data

l1 = (1, 1, 1,−3, 0, 0), l2 = (1, 0, 0,−1,−1, 1),

while that of (Y , C ′) is given as {l1,−l2}.
The vectors {l1, l2} immediately give GKZ operators

L1 = ∂a1∂a2∂a3 − ∂3
a0

, L2 = ∂a1∂b0 − ∂a0∂b1 ,

and these are the annihilators of the modified period vectors

ΠΓ(a, b) =

∫
Γ

dudv dy1

y1

dy2

y2

(uv + a0 + a1y1 + a2y2 + a3y
−1
1 y−1

2 )(b0 + b1y1)(y2 − 1)
.

These period vectors are, of course, arising from the mirror geometry to
(X ,L). This may be described by a pair (Y,C) ∈ (Y , C), where Y is the
family of hypersurfaces

Yz1 = {(u, v, y1, y2) ∈ C2 × (C∗)2 : uv + 1 + y1 + y2 + z1y
−1
1 y−1

2 = 0}

together with the curves

Cz1,z2 = Yz1 ∩ {1− z2y1 = 1− y2 = 0}.

Then, the GKZ operators {L1,L2} produce Picard-Fuchs operators

D1 = (θ1)
2(θ1 + θ2) + z1(3θ1 + θ2)(3θ1 + θ2 + 1)(3θ1 + θ2 + 2),

D2 = (θ1 + θ2)θ2 − z2(3θ1 + θ2)θ2.

The double logarithmic solution of the system {D1,D2} is, modulo logarith-
mic terms,

WKP2 =
∑

n1≥0,n2≥1

(−1)n1(3n1 + n2 − 1)!

n2(n1 + n2)!(n1!)2
zn1
1 zn2

2 .
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This is exactly the superpotential of [6], which was computed through explicit
localization calculations on (X ,L).

To reproduce the results of [14], use instead the moduli space of (Y , C ′),
which is defined by the vectors {l1,−l2}. Then there are new Picard-Fuchs
operators {D′

1,D′
2} which have a double log solution (again suppressing log

terms)

W ′
KP2

=
∑

n1≥0,n2>n1

(−1)n1(n2 − n1 − 1)!

n2(n2 − 3n1)!(n1!)2
zn1
1 zn2

2 .

This is the superpotential of [14].
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