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Abstract

We show the blow-up of smooth solution of viscous heat-conducting
flow when the initial density is compactly supported. This is an ex-
tension of Z. Xin’s result[4] to the case of positive heat conduction
coefficient but we do not need any information for the lower bound of
the entropy. We control the lower bound of second moment by total
energy.
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1 Introduction

In this paper, we consider the following equations for a compressible fluid
in Rn × R+ (n ≥ 1):

∂tρ + div (ρu) = 0, (1)

∂t(ρu) + div(ρu⊗ u) +∇p = div (T ), (2)

∂t(ρE) + div(ρuE + up) = div(uT ) + κ∆θ. (3)

Here ρ = ρ(x, t), u = (u1, · · · , un), θ, p and E denote the density, velocity,
absolute temperature, pressure and total energy, respectively. The total
energy E can be written by E = 1

2 |u|2 + e, where e is the internal energy.
T is the stress tensor given by

T = µ(∇u + (∇u)t) + λ(div u)I,

where I is the identity matrix, and µ and λ are the coefficient of viscosity and
the second coefficient of viscosity, respectively. We also denote by κ ≥ 0 the
coefficient of heat conduction. From the physical point of view, we assume

µ ≥ 0, λ +
2
n

µ ≥ 0.

If µ = λ = κ = 0, then we call the equations as compressible Euler equations
for gas, On the other hand, if µ > 0 and λ + 2

nµ ≥ 0, then we call the
equations as compressible Navier-Stokes equations. In particular, we call
the equations as heat-conducting compressible Navier-Stokes equations if
µ > 0, λ + 2

nµ ≥ 0 and κ > 0. A polytropic gas is a gas satisfying the
following state of equations:

p = Rρθ, e = cνθ and p = A exp(S/cν) ργ , (4)

where R > 0 is the gas constant, A a positive constant of absolute value,
γ > 1 the ratio of specific heats, cν = R

γ−1 the specific heat at constant
volume and S the entropy.

The blow-up of smooth solutions of compressible Euler equations has
been studied by several mathematicians. In 1985[3], T. C. Sideris showed
that the life span T of the C1 solution of the compressible Euler equations is

2



finite when the initial data have compact support and the initial flow velocity
is sufficiently large (super-sonic) in some region. In 1986[2], the blow-up of
smooth solutions of compressible Euler equations, without external force and
heat source, was shown on R3 by T. Makino, S. Ukai and S. Kawashima, in
case that the initial density and velocity have compact supports. In 1998[4],
Z. Xin showed, in a different way from [2] and [3], the same blow-up result
for the compressible Euler equations, when the initial density and initial
velocity have compact supports. In the paper, he also showed the similar
results for the compressible Navier-Stokes equations for polytropic gas with
zero heat conduction (that is, κ = 0) and without external forces and heat
sources, when the initial density has compact support. His theorem was
derived independently of the size of data, but his point of view cannot be
applied for κ > 0, since in his argument the estimation for the lower bound
of entropy is strongly necessary, which seems hard to be obtained for the
case κ > 0.

As for the positive result, one may refer to [1]. In the paper [1], the
authors showed the local existence of strong solutions of the compressible
Navier-Stokes equations with κ ≥ 0 and nonnegative density.

In this paper, we extend the Xin’s blow-up result to the heat-conducting
compressible Navier-Stokes equations, that is, for the case κ > 0.

Before stating our main theorem, we introduce some notations. We
denote by BR = BR(0) the ball in Rn of radius R centered at the origin. We
will use several physical quantities:

m0 =
∫

Rn

ρ0dx (initial total mass),

m1 =
∫

Rn

ρ0(x)|x|2dx (initial second moment),

m2 =
∫

Rn

ρ0u0(x) · xdx,

m3 =
∫

Rn

ρ0E0 dx (intial total energy).

We always assume that m0 > 0 and m3 > 0. We denote Hk = Hk(Rn) by
L2-Sobolev space of order k and C1([0, T ]; Hk) by the space-time function
space of functions whose C1-time derivative exists in space Hk-norm sense.
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For the proof of blow-up, we have only to prove the following theorem.

Theorem 1.1. We assume µ > 0, λ + 2
nµ > 0 and κ ≥ 0. Let γ > 1 and

T > 0. Suppose that (ρ, u, E) ∈ C1([0, T ];Hk), k > 2 + [n2 ] is a solution to
the cauchy problem (1), (2) and (3) with initial data (ρ0, u0, E0). Suppose
that the initial density ρ0 is compactly supported in a ball BR0. Then we
have

R2
0 ≥

m1

m0
+ 2

m2

m0
T + min(2, n(γ − 1))

m3

m0
T 2.

Remark 1.2. Let T ∗ be the life span of the solution (ρ, u, E). Then since m0

and m3 are strictly positive, the theorem implies that T ∗ should be finite for
γ > 1. The theorem also shows the relationship between the size of support
and the life span. For example, the range of life span can be extended as the
initial support of density become larger. Especially, we can expect the global
existence of smooth solution of compressible Navier-Stokes equations in case
that the initial density is positive but has decay at infinity.

Our proof is based on some elementary argument like integration by
parts and energy estimate. The key idea is to control the lower bound of the
second moment of solution by the evolution of total energy via a quantity∫

ρu(x, t)·x dx. The control of second moment by total energy enables us not
to rely on the lower bound of entropy. The argument can easily give another
proof for the compressible Euler equations with compactly supported initial
data. We leave the details of proof to the readers.

2 Preliminaries

Since we consider the case of compactly supported initial density, we
can assume that there is a positive constant R0 so that suppρ0 ⊂ BR0 . We
let (ρ, u, E) ∈ C1([0, T ]; Hk(Rn)), k > 2 + [n2 ], be a solution to the Cauchy
problem (1), (2) and (3), with initial data (ρ0, u0, E0) ∈ Hk(Rn). We denote
by X(α, t) the particle trajectory starting at α when t = 0, that is,

d

dt
X(α, t) = u(X(α, t), t) and X(α, 0) = α.

We set
Ω(0) = suppρ0
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and
Ω(t) = {x = X(α, t)|α ∈ Ω(0)}.

From the transport equation (1), one can easily show that

suppρ(x, t) = Ω(t)

and hence from the equation of state (4) that

p(x, t) = θ(x, t) = 0 if x ∈ Ω(t)c.

Therefore, from the equation (2) and (3), we observe that

div(T )(x, t) = 0 and div(uT )(x, t) = 0 if x ∈ Ω(t)c.

The following lemma was shown by Z. Xin in [4].

Lemma 2.1. We assume µ > 0, λ + 2
nµ > 0 and κ ≥ 0. Suppose that

(ρ, u,E) ∈ C1([0, T ]; Hk(Rn)), k > 2 + [n2 ], is the solution of (1), (2) and
(3). Then

u(x, t) ≡ 0 in x ∈ Ω(t)c.

Moreover, Ω(t) = Ω(0) for all 0 < t < T.

Proof. We observe that

div(uT )− udiv(T ) = 2µ
n∑

i=1

(∂iui)2 + λ(divu)2

+µ
n∑

i6=j

(∂iuj)2 + 2µ
∑

i>j

(∂iuj)(∂jui).

Assume λ ≤ 0. Then

div(uT )− udiv(T ) ≥ (2µ + nλ)
n∑

i=1

(∂iui)2 + µ
n∑

i 6=j

(∂iuj)2

+2µ
∑

i>j

(∂iuj)(∂jui)

= (2µ + nλ)
n∑

i=1

(∂iui)2 + µ
n∑

i>j

(∂iuj + ∂jui)2.
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Assume λ > 0. Then

div(uT )− udiv(T ) ≥ 2µ
n∑

i=1

(∂iui)2 + µ
n∑

i 6=j

(∂iuj)2

+2µ
∑

i>j

(∂iuj)(∂jui)

= 2µ
n∑

i=1

(∂iui)2 + µ

n∑

i>j

(∂iuj + ∂jui)2.

Therefore, both of the cases imply that

∂iui(x, t) = 0

∂iuj(x, t) + ∂jui(x, t) = 0,

for all i, j = 1, · · · , n and x ∈ Ω(t)c.
This again implies u(x, t) ≡ 0 on Ω(t)c. That is, u(X(α, t), t) = 0 if α /∈ Ω(0).
Thus we observe that

X(α, t) = α +
∫ t

0
u(X(α, s), s)ds

= α (if α ∈ Ω(0)c).

This implies that
Ω(t) = Ω(0) for 0 ≤ t ≤ T.

3 Proof of Theorem 1.1

Throughout this section we assume that Ω(t) = suppρ(·, t) is contained
in a ball BR(t).

Multiplying |x|2 to (1) and integrating it over Rn, we get the identity

d

dt

∫

Rn

ρ|x|2dx = 2
∫

Rn

ρu · x dx. (5)

If we take inner product by x to (2) and integrate it over Rn, then we also
get the identity

d

dt

∫

Rn

ρu · x dx =
∫

Rn

ρ|u|2dx + n

∫

Rn

p dx. (6)
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Integrating (3) over Rn, we finally get the identity

d

dt

∫

Rn

ρE dx = 0. (7)

The integration by parts applied for deriving the above identities can be
justified by Lemma 2.1.

Integrating (5), (6) and (7) over [0, t], respectively, we obtain the follow-
ing identities:

∫

Rn

ρ(x, t)|x|2 dx =
∫

Rn

ρ0(x)|x|2 dx

+ 2
∫ t

0

∫

Rn

ρu(x, s) · x dxds, (8)

∫

Rn

ρu(x, s) · x dx =
∫

Rn

ρ0u0(x) · x dx +
∫ s

0

∫

Rn

ρ|u|2(x, τ) dxdτ

+ n

∫ s

0

∫

Rn

p(x, τ) dxdτ, (9)

∫

Rn

ρE(x, s) dx =
∫

Rn

ρ0E0(x) dx. (10)

Using the definition of E, we have from (9) and (10)
∫

Rn

ρu(x, s) · x dx =
∫

Rn

ρ0u0(x) · x dx + 2
∫ s

0

∫

Rn

ρ0E0(x) dxdτ

+
(

n− 2
γ − 1

) ∫ s

0

∫

Rn

p(x, τ) dxdτ. (11)

Now we first assume (n− 2
γ−1) ≥ 0. Then by (11) we obtain

∫

Rn

ρu(x, s) · x dx ≥ m2 + 2m3s. (12)

Substituting (12) into (8), we get
∫

Rn

ρ(x, t)|x|2 dx ≥ m1 + 2m2t + 2m3t
2. (13)
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Secondly, we consider the case γ ∈ (1, 1 + 2
n). By the equation of state

p = (γ − 1)ρe and the identity (9), we have
∫

Rn

ρu(x, s) · x dx = m2 + 2m3s− (2− n(γ − 1))
∫ s

0

∫
ρe dxdτ. (14)

It follows from (10) and the definition of E that
∫

ρe dx ≤ m3. Substituting
this into (14), we have

∫
ρu(x, s) · x dx ≥ m2 + n(γ − 1)m3s. (15)

and hence from (8) and (15), we have
∫

Rn

ρ(x, t)|x|2 dx ≥ m1 + 2m2t + n(γ − 1)m3t
2. (16)

On the other hand, since Ω(t) ⊂ BR(t), we can estimate the upper bound
of the second moment as follows:∫

Rn

ρ(x, t)|x|2 dx =
∫

Ω(t)
ρ(x, t)|x|2 dx =

∫

|x|≤R(t)
ρ(x, t)|x|2 dx

≤ (R(t))2
∫

Rn

ρ(x, t) dx

= (R(t))2
∫

Rn

ρ0(x) dx. (17)

Thus from (13) and (17), we conclude that

m0R(t)2 ≥ m1 + 2m2t + 2m3t
2

for γ ≥ 1 + 2
n , and from (16) and (17) that

m0R(t)2 ≥ m1 + 2m2t + n(γ − 1)m3t
2

for 1 < γ < 1 + 2
n .

Since the solution is smooth in the time interval [0, T ], from lemma 2.1
we note that Ω(t) = Ω(0) for t ∈ [0, T ] and hence R(t) can be chosen to be
R0. Therefore we have that for γ ≥ 1 + 2

n

m0R
2
0 ≥ m1 + 2m2T + 2m3T

2

and for 1 < γ < 1 + 2
n

m0R(0)2 ≥ m1 + 2m2T + n(γ − 1)m3T
2.

This completes the proof of theorem.
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