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Abstract. In the present paper we study the geometric properties of the multivalued solutions to
the eikonal equation and we give the appropriate classification theorems. Our motivation stems from
geometrical optics for approximating high frequency waves in stratified media. We consider the case of a
fixed Hamiltonian imposed by the medium, and we present the geometric framework that describes the
geometric solutions, using the notion of Legendrian immersions with an initial point source or an initial
smooth front.” Then, we study the singularities of the solutions in the case of a smooth or piecewise
Hamiltonian in a boundaryless stratified medium. Finally, we study the singularities of the solutions in
a domain with a boundary that describes the propagating field in a waveguide.
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1. Introduction.

In the analysis of wave propagation in inhomogeneous media the method of classical geometrical
optics is often employed. Not only it is used to get a qualitative picture of how the waves propagate,
but also to evaluate the fields quantitatively. However, geometrical optics fails either on caustics
and focal points where it predicts infinite wave amplitudes (see Section 2), or in shadow regions
(i.e. regions devoid of rays) where it yields zero fields. On the other hand, formation of caustics
is a typical situation in underwater acoustics and seismology, as a result of multipath propagation
from localized sources. Indeed, even in the simplest oceanic models and geophysical structures
(see, e.g. Tolstoy and Clay [TC], Chapt. 5, and Cérveny, et.al. [CMP], Chapt. 3, respectively)
a number of caustics occur, depending upon the position of the source and the stratification of
the wave velocities. From the mathematical point of view, formation of caustics and the related
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multivaluedness of the phase function, is the main obstacle in constructing global high-frequency
solutions of the Helmholtz equation.

The qualitative study of the multivalued phase function is performed using the geometric tech-
niques of singularity theory. The classification theory for general caustics and bifurcations of wave
fronts has been originated by Hérmander [HO2], and Arnol’d and Zakalyukin (see e.g. [AVH]).
However, their theory is generic and it describes a setting for a wide class of functions, but not the
caustics and wavefronts corresponding to a fixed Hamiltonian function. The geometric framework
for the study of caustics for a fixed Hamiltonian is given by Jénich [JA] and Wasserman [WA].
For the bifurcation of wavefronts, see Izumiya [IZ], Bogaevski [BO]. If the Hamiltonian function
is non-smooth, the situation is rather complicated. The first attempt to study this case has been
made by Kazarian [KA] and Myasnichenko [MY], but their framework is also too general for appli-
cations to a specific Hamiltonian. In the case of domains with boundary, rather different kinds of
caustics may appear, namely the boundary caustics, which have been classified in lower dimensions
by Scherbak [SC] (see also [T'S1], [TS2]). These results will be described in Section 3.

The problem of obtaining numerically the multivalued phase function has traditionally handled
by resolving numerically the characteristic field related to the eikonal equation (ray tracing meth-
ods), see, e.g. [CMP]. A considerable amount of work has been done recently on constructing
the multivalued phase function by properly partitioning the propagation domain and using eikonal
solvers (see, e.g., [BEN], [FEO], [SYM], [ABG]). A different approach is based on kinetic formu-
lation in the phase space, in terms of a density function which satisfies Liouville’s equation. The
technique used to capture the multivalued solutions is based on a closure assumption for a system
of equations for the moments of the density ([RU], [BKP]).

On the other hand, given the geometry of the multivalued phase function, a number of local and
uniform methods to describe wave fields near caustics have been proposed. The first type of methods
are essentially based on boundary layer techniques as they were developed by Babich, Keller, et.al.
(see, e.g., [BK], [BB], [GA]). The second type are those which exploit the fact that even if the family
of rays has caustics, there are no such singularities for the family of the bicharacteristics in the
phase space. This basic fact allows the construction of formal asymptotic solutions (FAS) which
are valid also near and on the caustics. For this purpose two main asymptotic techniques have
been developed. The first one is the Ludwig-Kravtsov method (or the method of relevant functions).
This method starts with a modified FAS involving Airy-type integrals, the phase of which take
account of the type of caustics (see e.g. [LU], [KR]). The second one is the method of canonical
operator developed by Maslov (closely related to this are the techniques of Orlov’s integrals [AND]
and oscillatory spectral integrals [ARN1], [ARN2]). Maslov’s method exploits the fundamental fact
that the Hamiltonian flow associated with the bicharacteristics generates a Lagrangian manifold in
the phase space, on which we can “lift” the phase function in a unique way (see, e.g., [MF],[MSS],
[MAL], [MA2], [V1]).

In the present paper we study the geometric properties of the solution arising to problems of
practical interest in an attempt to shed light to the geometry of the phase function that will attribute
to the correct application of uniform methods that approximate the wave fields near caustics. We
consider the case for a fixed Hamiltonian imposed by the stratified medium which may have a
boundary. In Section 2 we briefly explain the role of the geometry of the multivalued solutions in
geometrical optics. In Section 3 we present the geometric framework that describes the geometric
solutions of the eikonal equation as it is given by the method of characteristics. We use the notion
of Legendrian immersions in the case of an initial point source or an initial smooth front. In Section
3.1 we study the case of a smooth refraction index without boundary, and in Section 3.2 we present
the classification of singularities for the latter case. In Section 3.3 we study the geometry of the
phase function for a non-smooth refraction index without boundary that describes a boundaryless
stratified medium with a weak interface. Finally, we study the geometry of the phase function in
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a domain with a boundary that describes the wave field in a waveguide.

2. Multivalued solutions in geometrical optics.

In this section we present briefly the role of the multivalued solutions of the eikonal equation
for the computation of high frequency scalar wave fields of frequency w, in a medium with wave
velocity ¢(x), x = (z,z) € D, D C R2 being the unbounded domain of propagation. The wave
field is governed by the Helmholtz equation

(2.1) Au+ E*n?(x)u(x, k) = f(x), x€D,

where 7(x) = cp/c(x) is the refraction index, co being the reference wave velocity, k = w/cp is
the wavenumber and f is a compactly supported source generating the waves. We assume for the
moment that n € C*°(RZ) and > 0.

For fixed k > 0, there is, in general, an infinite set of solutions of (2.1), and we need a radiation
condition to guarantee uniqueness (cf. [CK] for scattering by compact inhomogeneities, and [WED)]
for scattering by stratified media). This condition is essentially equivalent to the physical fact that
there is no energy flow from infinity, which in geometrical optics is translated to the requirement
that the bicharacteristics must go off to infinity.

The asymptotic approximation of u(x,k) as k — oo, (i.e. for very large frequencies w), con-
structed by applying the WKB procedure, is given by the asymptotic series

N
(2.2) un (x,k) = e*50) N "(ik) =€ 4,(x)
£=0

for x in a compact subset of D \ suppf, where N — oo, and the phase S and the amplitudes A,
are real-valued functions in C*°(R2) (real geometrical optics).

Note that the asymptotic decomposition of scattering solutions when simultaneously |x| and k
go to infinity is a rather complicated problem, since, in general, the caustics of the Lagrangian
manifold go off to infinity. This problem has been rigorously studied by Vainberg [V2], for the
scattering of a plane wave, in the case where D is a full neighborhood of infinity and n =1 for
|x| > 70, 7o being a fixed positive constant, and by Kucherenko [KU] for the case of a point source
(i.e., f(x) = 8(x)), under certain conditions of decay for n(x) at infinity.

The phase must satisfy the eikonal equation

(2.3) (V8(x))* = n?(x)

for the phase function, and the amplitudes must satisfy the transport equations
(2.4) 2VS - VA + AS(x)Ap(x) =0, »

(2.5) 2VS - VA + AS(x)Ae(x) = —AAp_1(x), £=1,2,... .

The solution of the eikonal equation is constructed by the method of characteristics (see, e.g.,
[HO1], Chapt. VIII). The characteristics solve the Hamiltonian system in the phase space Ryp

(26&) Z_}; = VpH(x7 p) =P;
(2.6b) 2D Vi (x,p) = () V(x|

associated with the Hamiltonian function
1
(2.7) H(x,p) =5 (Ip|* - n*(x)), x€D, peR®.
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The characteristics must satisfy the initial conditions

(2.8) x(0)=x°(6), p(0)=p°0), 6¢€l,
(2.9) S(x) = S8°(8), Ai(x) = AY(9) for x=x%9),

on the initial manifold Up = {x = x%(9), 6 € I c R}. Here p°(6) and S°(8), A)(d) are given
smooth functions and

p%0) I = (n(x°(9)))* .

The projection {x = x(7,0),7 € R,0 € I} of the characteristics onto R2 are the usual rays of
geometrical optics. Assuming that p°(6) is nowhere tangent to the initial manifold, the solution
of the (non-characteristic) Cauchy problem (2.3),(2.9) for the eikonal equation, is given by

dx(s, 9)
ds

(2.10) S(x(r,0)) = 5°(6) + / " p(s,0) ds |

where the integral is calculated along the characteristics. The transformation

(7,0) = (2(7,0),2(7,9)) ,

l 9

is non-zero. Although J # 0 for 7 = 0, it does not necessarily remain non-zero for all 7. Whenever
J =0, (7,0) may be non-smooth or multivalued functions of (z,z), and the rays may intersect,
touch, etc., and in general have singularities, although the characteristics never intersect in the
phase space. Then, the phase function S = S(z, 2) may be a multivalued or a non-smooth function.

The solution of the transport equation (2.4) for the principal amplitude Ag on the rays, is given
by

is one-to-one, provided that the Jacobian

N DY

oz
(2.11) J = ‘ 3
or

QJI@Q)IQJ
D

(2.12) Ao(x(r,0)) = —220)_

where ap(f) = AJ(6) is the amplitude at the point x = x° on the initial manifold, and J(,6)
is the value of the Jacobian, so that x = (z(r,6), 2(r,0)) for the considered time. Note that the
amplitude (2.12) is calculated integrating the transport equation (2.4) in divergence form in a ray
tube. '

The locus of the points x = x(7,6) at which J(r,0) = 0, that is, the envelope of the family
of the rays, is known as caustics. The amplitude Ay blows up at these points, and therefore the
WKB procedure fails to predict the correct amplitudes there. Fortunately, the caustics are only
apparent singularities appearing when we apply the WKB procedure, and as we already mentioned
in the Introduction, it is possible to construct uniform asymptotic expansions which remain finite
on the caustics. The construction of such expansions, either in the form of Maslov’s canonical
operator (see [MF], [V1]) or in the form of Kravtsov-Ludwig integral ([LU], [KR],[GS]), relies on
the geometrical properties of the Lagrangian submanifold generated by the Hamiltonian system
(2.8a), (2.8Db).



The Kravtsov-Ludwig technique relies on the idea of obtaining global high-frequency solutions
of the Helmholtz equation (2.1) by generalizing the asymptotic series (2.2) as an integral of the
form

(2.13) u(x) = (ﬁ) ; / e*SC) A(x,£)dE, E€ECR,

2 =

(see Kravtsov [KR], Ludwig [LU] and the excellent exposition by Duistermaat [DUI]).

Here S and A satisfy the eikonal equation (2.3) and the transport equation (2.4), respectively,
identically with respect to £&. Such an integral can be regarded as a continuous superposition of
oscillatory functions of the form (2.2). The physical motivation underlying the Kravtsov-Ludwig
technique is the fact that in every small region in which the refraction index of the medium can be
considered as constant and the wave front as plane, the field can be represented as a superposition
of plane waves Ae‘S, where A and VS vary slowly in transition from one region to next.

The integral (2.13) is computed for large k applying the stationary phase lemma (see, e.g.,
[BH], p. 219) and this requires the local form of the phase function S = S(x,¢) to be known.
Local representation theorems for the phase function according to the type of caustic appearing are
derived by the methods of singularity theory (see, e.g., [AVH], [GSC]). In the case of usual (single
phase) geometrical optics we can take S(x,£) = ¢(x) — £2. In the simplest case of a smooth caustic
(fold) the appropriate phase (see [GSC], [GS], p. 431, Proposition 6.1, and [KR]) has the form

3

(214 S, = 669+ em() - &

while in the case of a cusp caustic it can be shown ([GS], p. 441, Proposition 7.1, [KR]) that the
phase function must have the representation

¢, &
(2.15) 8(x,€) = ¢(x) + p1(x)§ — pa(x )2 +7

If there are more than one simple stationary points ;(x), that is, 9;S(x,§;(x)) = 0 and
8?8 (x,&;(x)) # 0, we obtain the asymptotic expansion

(2.16) u(x) ~ ZA%(x)e'iksj(X) :
where
(217) ' Sj(x) = S(X, E](x)) 3
and
j (T 2 A(x,{(x))
(2.18) Al(x) =ex <z =+ sgn (9:5(x,€;(x)) ) z .
00 = e i+ 20m )) Tosme

The amplitudes (2.18) solve the zero-order transport equation (2.4), and (2.13) reduces asymptoti-
cally to (2.2) with [ = 0. Note that S; coincides with the various branches of S obtained by (2.10),
so the branches of S given by (2.10) have to be known in order to compute the waveﬁeld by (2.16).
The summation in (2.16) extends over all the stationary points.
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However, the expansion (2.16) fails if the multitplicity of the stationary points is greater than one,
i.e. 97S8(x,£;(x)) = 0 (obviously this can happens at certain points x for the phases (2.14), (2.15)),
and the appearance of multiple stationary points is associated with the formation of caustics. In
these cases, we can use (2.14) and (2.15) directly in the integral representation (2.13) together with
stationary phase lemmas, to obtain the wavefield in a neighborhood of the caustic by matching
properly with the geometrical optics field (see e.g. [KKM], [HA], [HS]).

It becomes therefore evident that the asymptotic evaluation of the high frequency wavefield in
the region of caustics requires the study of the geometry of the multivalued solution.

3. Geometric solutions to the eikonal equation

In this section we study the multivalued solutions of the eikonal equation

®) () +(Bwa) -ro=0 @oer,

as they are obtained by the method of characteristics (i.e., by means of eq. (2.10)), in the geometric
framework of Legendrian immersions, and we obtain classification results for singularities of the
considered initial value problems.

We assume that the refraction index 7 depends only on the variable z (stratified medium), and
it is a continuous and piecewise smooth function, i.e., there exist finitely many numbers

O=cp>c...>¢p

such that 7; : (¢;—1,¢) = RE, (i=1,... ,n) is a smooth function with 7;_1(c;—1) = 7;(c;) where
M = Nlie;_1,c;]- We will also consider the case where the solution is restricted on the half space
with boundary at 2 = 0 where the rays reflect on the boundary. We first study the problem when
the solution is considered in the whole space and 7(z) is smooth. We then study the case where
n(2) is piecewise smooth and 7/(z) is discontinuous across the points c;. New phenomena arise in
this case as the characteristics change velocity across the interface z = ¢;, and they might separate
and create shadow zones. We finally discuss the problem where the solution is considered in a half
space, the boundary of which causes reflection of caustics and it leads to the formation of shadow
zones inside the medium. ’

3.1. The geometric framework

We consider the Hamiltonian function H : R* — R given by H(z,z,p,q) = 1(p? + ¢> — n2(2))
where (z, z) € R?. Even if there is no boundary, the situation is still complicated when the refraction
index n(z) is nonsmooth. So, we deal first with the case of smooth 7(z).

We start by describing the geometric framework for the multivalued (geometric) solutions of
the eikonal equation by the method of characteristics. For this, we consider the phase space R*
with coordinates (z, 2,p,q) equipped with the canonical two form w = dp A dx + dq A dz, and the
canonical projection  : R* — R? given by n(x, 2,p,q) = (z,2). The one form « = pdz + qdz, which
is characterized by the relation da = w, is called the Liouville form.

We define an eikonal hypersurface as the hypersurface H = H ~1(0) in R%. This hypersurface
has the following basic properties

(1) H is a smooth 3-dimensional submanifold in R?* |

(2) H is transversal to the fibre 7~!(z, 2) for any (z,2) € R? |,

(3) The intersection X N7~ (z,2) = {(,2,p,q) |p* + ¢*> = 7%(2)} is a circle in the fibre 7=1(z, 2)
with radius 7(2) ,



(4) The restriction of the Liouville form o to H gives a contact structure on H, i.e., a|HAd(a|H) # 0.

The above properties are easily verified, since the eikonal hypersurface is the image of the
embedding '
fiR?2x S SR,

given by f(z,z,¢€?) = (,z,n(2)cos§,n(z)sin ). Here, we give only the proof of (4). Employing
the local representation
f(z,2,0) = (z,z,1(z) cos 8, n(z) sin §), 0<b<m,
and taking into account that f*a = 7(z) cos 8dz + n(z) sin 8dz, we have
df*o = 1n'(z) cos 8dz A dz + n(z) sin Odz A df + n(z) cos 8dO A dz .
Then, it follows that
frandf*a=n*(2)de AddAdz#0,

which means that «|H gives a contact structure on H.
The classical method of the characteristics has been formulated in contact geometry (see [LY]).
In this case the characteristic vector field Xy on the phase space R? is given by

9.8 )
(3.1) Xu=pg +q$’+n (2)77(2)53 :

and it corresponds to the following system of ordinary differential equations

(3.2) t=p, i=gq, v’p=o, §=n'(2)n) -

The flow which generates the characteristic vector field is called the Hamiltonian flow (or bichar-
acteristic flow).
The characteristic vector field Xy has the following well-known properties

(1) aoXyg=n%(2)onH ,
(2) Xpg is tangent to the eikonal hypersurface H .

The property (1) follows from a direct calculation. The property (2) follows from the fact that
the gradient

0

, 0
(3.3) grad H = —n (z)n(z)gg +p—6; + q%

of the vectorfield of H satisfies < Xpg,grad H >= 0. This property méans that all Hamiltonian
flows starting from points in H are completely contained in .

The notion of multivalued solutions of (E). We consider the coordinates (z,z,y,p,q) of
R°® and the canonical 1-form © = dy — pdz — qdz. This form satisfies © A dO? # 0, i.e., it gives the
canonical structure on R®.

- We introduce also the extended eikonal hypesurface

(3.4) H={(z,2,9,9,0) | 9> + ¢ — 1*(z) = O}.

which clearly satisfies H=HxR.



For a classical solution y = S(z, ) of (E), we have the embeddings

(3.5a) DS:R? - R* DS(z,z) = (m z, ‘ZS g“: )
(3.5b) 1S :R? - R®% j18(z,z2) = <.’1: 2,8, gs ‘3‘:) .
Since y = S(z, 2) is a smooth function, we have
(3.6) ('S)*0 = dS(z, z) - g—sd - Z—Sd ~0
and
(3.%) (DS)*w = (D8)*(de) = d(DS*a) = d (‘ZS dz + —g—i—d ) = ddS = 0.

If we consider the projection IT : RS — R* given by I(z,2,9,p,9) = (2,2,p,q), we also have
ITo 518 = DS. Moreover, it is clear that j1S(R2) c H and DS(R?) C H.

Let L be a 2-dimensional manifold and 4; : L — R* and i5 : L — R5 be immersions. We say
that i) is a Lagrangian immersion if ijw = 0 and iy is a Legendrian immersion if i5© = 0. We call
i2 a Legendrian lift of iy if Il o 49 = 4;. For any Legendrian immersion i3 : L — R, we can easily
show that ITo iy : L — R* is a Lagrangian immersion. If L is simply connected, it is well known
that any Lagrangian immersion has a Legendrian lift (cf. Lychagin [LY]). Then, we introduce the
notion of the multivalued solution as follows. A

Definition 3.1. A multivalued solution (or geometric solution) of (E) is a Legendrian immersion
iz : L — RS such that i3(L) C H.

The corresponding Lagrangian immersion i; = II o iy satisfies 4;(L) C H, and so we call it a
Lagrangian solution of (E). We call the set W (iy) = T o io(L) the wave front set of iy, where
7 : RS — R3 is the canonical projection given by 7(z, z,¥,p,q) = (z,2,y). Like in the case of the
classical solution, W (i) is the graph of the multivalued solution is.

For a classical solution y = S(z, z), we have moDS(z, z) = (z, z) and Toj1S(z, 2) = (z, 2, S(z, 2)),
so that the mappings DS, j!S are nonsingular. For a Lagrangian immersion i, : L — R%, the
critical value set of 7 o 4; is called the caustic of i1, and it is denoted by Cj;,. If the coordinate
representation of 4; is given by i (u1, us) = (z(u1, u2), 2(u1,u2), p(u1, u2), g(u1, uz)), then we have

(3.8) Ci, = {(x(ul,m), #(us,u3)) € R?| det % - 0} .

Since i3 : L — R? is a Legendrian lift of 4;, the caustics of #; is equal to the critical value set of
m oIl o4y by definition. On the other hand, the locus of the singularities of the wave front set of iy
is

. oz, z,
(39) SW (i) = { (o, ua) (0, ue) 0, ue) | ranb G2 < 1},
6(’11,1,’1112)
where iz(u1,uz) = (z(u1,us), 2(u1,u2), y(u1, uz), p(u1, uz), q(u1,uz)). We can easily show that
i5© = 0, if and only if

Oy

Oz 5,
B, = Plunu) g+ alm,u) 5=, 2

8z oz Oz
-1 —_— = —_ —_
(3.10) u;’ Bug p(ul’u2)3u2 +‘1(U1,u2)3u2



Therefore, we have

oz zy) _ . Os2)

(3.11) rank———a(m, ) _—_3(U1, )’

which means that

Ci, = {(z(u1,u2), 2(u1, u2)) | (x(u1,u2), 2(u1, uz), S(u1, uz)) € S(W(iz))}.

Multivalued solutions of initial value problems for (E). In order to introduce this notion
of solution, we need some further definitions which are necessary for the study of the geometric
solution that now goes through an initial manifold. Let £ : I — H be a regular curve of the form
£(6) = (z(9), 2(6), p(6), q(0)) with p(8)z'(0) + ¢(6)2'(#) = 0, where I is an open interval. Here, £ is

regular if £/(0) # 0 for any 6 € I. It follows that

(3.12) ¥ = p(0)dz(0) + q(8)d=(0) = (p(8)z'(0) + q(6)7'(8))df = 0.

This condition is equivalent to the fact that £ is a Legendrian curve in the contact manifold H.
The Hamiltonian vector field along £ is X g o £(8) = (p(8), q(8),0,n(2(8))n' (2(0))) and the tangent
vector of £ is £/(8) = (2'(0),2'(9),p'(0),¢'(6)). If there exist y € I and a real number X such that
?'(00) = AXpu 0 £(0p), then 0 = £*a(fy) = a(¢'(6y)) = Moo Xg o £(6y) = In(2(8))? # 0, This is
a contradiction. Therefore, the vectors Xy o £(8), £/(6) always have different direction, and the
noncharacteristic condition is automatically satisfied for any Legendrian curve £ : I — H.

Definition 3.2. We say that a geometric Cauchy problem (GCP) is given for (E) if a Legendrian
curve £ : I — 'H is given, and we look for a geometric solution L of (E) such that £(I) C i;(L) .

In order to solve the GCP, we consider the initial value problem for the characteristic equations

© {fc=p, =g, p=0, ¢=n(2)n'(2),
z(0,0) = z(0), =2(0,0) ==2(0), p(0,0)=p(d), q(0,0)=q(d).

The solution of (C) has the form

(3.13) {z(r,0) = p(O)T + z(8), =2(7,0), p(r,0)=p0), q(1,0)=2(1,0)},
where
(3.14) £(7,0) = n(2(1,0))n' (2(7,6)), 2(0,0) = 2(f), and 2(0,0) = ¢(6).

For the smooth map I' : R, x I — R* defined by

(3.15) | T(r,6) = (p(6)7 + 2(8), 2(r, ), p(8), £(r, 8)) ,

we have
(3.16) Mw= (p'(@)p(G) + %(T, 0)z(r,0) — z(r, 9)%(7‘, 0)) do A dr.

The Hamiltonian flows are completely contained in the eikonal hypersurface, and the image of
I is included in H. Differentiating the relation p(6)? + (7, 8)? — n2(2(r,8)) = 0 with respect to 6,
and substituting in (3.16) we obtain I'*w = 0. Since Hamiltonian flows do not cross on R* and the
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initial submanifold satisfies the noncharacteristic condition, I' is regular surface, and the rank of
the Jacobi matrix

(3.17) ((p(e) 5(r,0) 0 2(7’,0))

PO +2'(0) &(r,0) pg) 2o

is always equal to 2. Therefore, I is a Lagrangian immersion and I'magel’ C H. We also have

(3.18) I™(a) = (p(O)(®'(6)7 + p(6)(6) + z’-g%(ﬂ 0))d6 + n(z(r,0))' (2(, 6))dr

Since da = w, we have d["*a = I™da = ™w = 0. By the Poincaré Lemma, there exists (at least
locally) a function S(r,8) such that dS = I'a. Moreover, since R x I is simply connected, we
can construct the function S(r,8) globally. In this case we have

(3.19) a5 (prlew) =),
and
- a / / a
(3.20) i (g5l ) = POE O +pOO) + 225(7,0) -

We now define a smooth map I : R+ x I — R3,
(3.21) I(1,8) = (p(8)T + 2(8), 2(r, ), S(7;6), 5(r,6)) ,

which since dS = I*q, I‘ is the Legendrian lift of I'. Eventually, we will construct the Lagrangian
solution I" and the Legendrian solution T for the initial data £ : I — H for the eikonal equation
(E).

The curve 7o £ : I — R? is called the initial front of GCP and the curve 7 oTs(r,0)=s0 : I — R?,
denoted by 230, is called the so-front of the Legendrian solution. In this case, the wave front set

W(F) is called a big front. We also call the curve m o I'|g—g, : R* — R2? a ray for any fixed g € I
and we denote it by R, (7).

3.2 Classification of singularities for smooth Hamiltonians

In order to better understand the geometric characteristics of the multivalued solutions, we will
first study some examples corresponding to distinctive initil data usually arising in applications.
(a) The point source case: For any fixed z € R, we consider that the rays are starting from (0, 20)
(see [AK], [B] for the high-frequency and ray-theoretic treatment of a point source). We consider

the following initial curve

(3.22) £(0) = (0, 20,m(20) cos 8, n(z0) sin ), € (—=, =),

in H. It is easy to show that £ is regular and isotropic. The Lagrangian solution is given by
(3.23) I'(1,6) = (tn(20) cos 8, z(1,8),m(20) cos 8, (1, 8)) ,

vgrhere.z(O, 0) = 2o, z'((j,O) = n(2p)sin @ and 2(7,0) = n(z(r, )0 (2(r, 6)).
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b) The smooth initial front case: Let v : I — R? be a smooth regular curve given b (0
Yy
(z(0),2(0)). We assume that the rays are starting from the image of v and their d1rect10n is
perpendicular to y(8). We consider the following initial curve

B20)  4,0)= (z(e 0), s 0), x,(’;‘;(i)i,w)zx'(e>)

in ‘H. In this case the Lagrangian solution is

| O TC1C) R ¢ () N
(3.25) r(f,m—( e O+ EO ), s ), <,e>),

where

326) 20.0)=20) 20,0 = — TP/ (0) snd 1r6) = n(a(r, O (o(r,8)

In case (a) the Jacobian of (7,0) — (z, 2) is given by
(3.27) J(7,8) = n(z0) {cosO (1,8) + 72(7,0) sin 0} .

Since 42(0,6) = 0, we have J(0,6) = 0. Moreover, we have Q%%JZ = n(z) cosf > 0, so that

%1—02 > 0 for sufficiently small 7 > 0. It follows that 6z 35(7,8) > 0 for sufficiently small 7 > 0.
Slnce #(0,0)sin® = n(z)sin?8 > 0 for any 8 € (-3, 5) \ {0}, 72(7,0)sinb > 0 for sufficiently
small 7 > 0. Therefore, J(r,6) > 0 for sufficiently small 7 > 0 and any § € (—Z %,%). This means
that the source point (0, z9) is an isolated caustic. Moreover, the e-front 7o', for sufficiently small
€ > 0 is a regular curve in R%. If we apply the characteristic method at the e-front, i.e. wo I is
the smooth initial front, the solution we obtain agrees with the one starting from the source point.
The same conclusions apply to case b) since J(0,0) = —n(2(0))/2'(8)2 + 2/(6)2 < 0.

Let us now compute the Lagrangian solution and the caustics for some simple refraction indices.

Example 1 (point source in a linear layer, [KR]). We consider the case of a point source located
at the point (z = 0,z = z;) in a medium with linear refraction index

(3.28) , (z)=1-2/d, z<d.

We set ng = /1 — 2. The Lagrangian solution is

1
(3.29) I(r,6) = <7707' cos b, —72 4 no7sind 42, 7Mocosf, —— +mosin 9)

" 4d 2d
The Jacobian of (z(7,6), 2(r,8)) is given by

(3.30) J(1,0) = not <1 7707';212>

"The caustic consists of the isolated point (0, zp), and the parabola

.'L‘2
(3.31) | z = dn? (1 - En?,") + o,

11



which is a fold singularity.

Example 2 (evolution of a parabolic initial front, [V1]). We look for the solution of

| : 88
2 __ — =
(3.32) (V)P =1, S,=0, | =1,

~

where « : {22 = 2az , a > 0} is the initial front, and v is the normal to v directed towards the
positive z-axis. If we consider the parametric representation of v in the form

‘ 2
(3.33) {z=09, a:=-20—&, —00 < 8 < 400},
the Lagrangian solution is
a 62 0 a 6
—_— Tt —, —————T+0, y - .
a?+62 2 Va2 + 62 Va? + 62 va? + 62
The Jacobian of the mapping (7,60) — (z, 2) is

(3.35) J(r,6) = 21;‘/“2 16— 2

a? + 02 T

(3.34) I(r,6) = (

and the caustic is a cusp singularity given by

3ql/3

2/3
5 .

(3.36) T=a+
Example 3 (point source in parabolic waveguide, [BR]). We consider the ray field of a source at
2o = 0 in a medium with
(3.37) n(z) =1 —a%2?,
in the strip bounded by the lines z = +1/a. The rays are given in parametric form by

| 1
(3.38) z(r,0) =Tcosl, z(r,0)= - sin fsin(at) .
The Jacobian of the rays (3.38) vanishes at the points (7, 6) satisfying
(3.39) tan(ar) = —aTtan?6 .
For § € (—m/2,m/2), it can be easily seen in a graphical way that (3.39) has an infinite sequence
of roots 7. = 7.(f), one in each interval (+(2m — 1)7/2,+mn), m = 1,2, ..., corresponding to the
branches of the tangent function. So, the parametric equations for the caustic are
(3.40) az.(0) = aT;(H) cosf, az.(6)=sinfsin(ar.(9)),

and this caustic has an infinity of branches.
Differentiating (3.39) and (3.40) with respect to 6, we have

(3.41a) dz./d6 = dr./d0 — 7. sin @ , adz./df = cosfsin(ar.) + asinf cos(ar,)dr./db ,

12



where

: 2a7.(0) tan (1 + tan? 6)
A41 d =— c .
(3-41) 7o/df 1+ atan? 4 + a272(6)tand

The cusp points of the caustic must satisfy
(3.42a) dz./df = dz./d0 =0 .

For any 6 # 0, (3.41b) and (3.42a) imply that 72 < 0. For § = 0, it follows 7, = mw/a, m = 1,2,...,
and the corresponding second and third derivatives are

(3.42b) d*z./d6? = —3mnja £0, d’z/d?> =0,
(3.42¢) d3z./d6® = —6mm £0,m=1,2,... .
Therefore the points (z, = mn/a, 2, = 0), m = 1,2,..., are the cusp points of the caustic.

Note that for m = 0, the corresponding point of the caustic coincides with the source. Finally,
it is easily seen that for § = +(m — 1/2)m, all the branches of the caustic converge to the points
(z =0, z==%1/2a), and the whole caustic is confined between the lines 2 = +1/2a (see Fig. 1).
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Figure 1. Rays of a point source in a parabolic layer

The above simple examples suggest that the common type of appearing singularities are either
folds or cusps. As it follows from the Theorems 3.1, 3.2 and 3.3 below, these singularities are
generic, in the sense that, for a given Hamiltonian, they appear for “almost all” initial data. So the -
scope of this section is to present various results on classification of the caustics Cr and bifurcations
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of 7-fronts 7 o ' () as the parameter 7. increases, for generic initial data £ : I — H corresponding
to the point source case or the smooth initial front case.

For this we introduce the notion of graphlike Legendrian unfoldings and review some fundamental
properties. Since we only consider local classifications, we describe those as germs. Let A : (I X
J;(70,60)) — R® be a Legendrian immersion germ, Where I,J are open intervals. We say that
A(7,0) = (z(r,9), z(1,6), y(7,0),p(7,0), q(7,0)) is a Legendrian unfolding if 5% 9y (70,00) # 0. We have
shown that as %z (to, 60) = n(70,60) # 0. This means that the Legendrian solutlon T':RyxI— RS of
the GCP w1th initial data £ : I — 'H, is a Legendrian unfolding around any point (79,6p) € Ry x I.

We say that two Legendrian unfoldings A; : (I x J,(7:,6;)) — R5 (i = 0,1) are P-Legendrian
equivalent, if there exists a diffeomorphism germ

: (343) d: (RS,A()(T(),G())) — (R5,A1(Tl,01))
of the form
(344) @(m, Z2,Y,D, q) =7 (¢1 (1‘, 2 y): ¢2($, 2, y)7 ¢3(y)’ ¢4($, 2,Y, D, Q)’ ¢5 (113, 2P, Q))

such that ® o Ag = A;, where ® satisfies ®*© = \O for some germ \(z,v, z,p, q) (ie. ®isa
contact diffeomorphism germ). If Ag and A; are P-Legendrian equivalent, then ¢po% oAy = 7o Aq,
where ¢(x7yaz) = (¢1(x,y,z),¢2(m, Y, z),¢3(x,y,z)). Since '2‘3(70,90) 75 0, we may assume that
y(7,0) = T by a local change of the parameter (7,8). It follows that this equivalence relation
preserve bifurcation of wave fronts.

Moreover, we define the Lagrangian equivalence which preserves caustics. We say that two
Legendrian unfoldings Ao, A; are Lagrangian equivalent if there exists a diffeomorphism germ

(3.45) ®:(RY,7o Ao(70,60)) — (R4, ™o Ay(71,61))
of the form v . ;
(346) ‘I)(a;, 2, D q) = (¢1 (ZZI, 'z)7 ¢2(.’12, z)v ¢3 (CC, 2y Py q‘)a ¢4(£L‘, 2y Q))

such that @ omo Ay = A; where ® satisfies $*© = © (i.e. P is a symplectic dlffeomorphlsm; germ).

By the general theory of Lagrangian singularities and graphlike Legendrian unfoldings (cf. [AVH],
[IZ1]), we have the following classification of graphhke unfoldings by the above two equivalence
relations.

Theorem 3.1. (1) The "generic” Legendrian unfolding A is P-Legendrian equivalent to the one
of germs at the origin in the following list
%4, : (1,0,7,1,0) :
%4, : (1 +26%,-36%,7,1,6) '
AT : (7,48 + 207 + (30* + 627) + 7,1 F 62, £6)
(2) The "generic” Legendrian unfolding A is Lagrangian equivalent to one of germs at the origin
in the following list
Ay (1,6,1,1,0)
Ay : (T, 02,0',0)
Az : (1,+6% + 01, 16%,0)

The pictures of bifurcations of fronts of °A;,% 43,1 AF, of big fronts for °4;,° A5,' AT and of caustics
A; (i =2,3) are given in Chapter 5 of [AN]. However, the meaning of the “genericity” in Theorem
3.1 is too strong. It corresponds to the perturbation under all initial data and all Hamiltonian
functions. For the scope of this paper we have to fix the Hamiltonian function. In this case the
theorem of Bogaevskii [BO] still applies. Let L(I,H) be the space of proper Legendrian immersions
equipped with Whitney C"-topology. Bogaevskii's theorem can be interpreted as follows.
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Theorem 3.2. There exists an open dense subset O C L(I, ) such that for any £ € O the germ
of the Lagrangian solution F(T 0) at any point (79, 00) is P-Legendrian equivalent to one of the
germs °A;,°A,) AT, Moreover, T'(r, ) is Lagrangian equivalent to one of the germs A,, r=1,2,3.

This theorem asserts that multivalued solutions of (E) with generic initial data follow the ex-
haustive list of bifurcations of wavefronts and caustics. Moreover, we can apply the results given
in [IZ] to obtain the following theorem.

Theorem 3.3. Let A : (R?,0) — R® be Legendrian equivalent to one of the germs °A; ° A, 1 AF.
Then, there exists a Legendrian immersion £ : (I,60) — H such that the germ of the multivalued
solution T' of GCP for (E) at (7o, 6o) is P-Legendrian equivalent to A.

- 3.3 Singularities for nonsmooth Hamiltonians and domains with boundary

Before studying the proper geometric framework, we will present two examples where 7/(2) is
discontinuous. These examples give us an idea of how an interface affects the geometry of the rays,
and the formation of caustics depending on the position of the point source.

Example 4 (mixed linear-homogeneous profile, [KO2], Sec. 3.3).
The refraction index is given by

' 1—2z , 0 L
(3.47) 2 (z) = { az <z< 3

1 , 2<0

a) Point source at the interface (zy = 0).
Proceeding as in Example 1 we find that the caustic is given by

(3.48) p= 2

%(1 —a%z?), 2>0.

If we only consider the part of the field for £ > 0 (since the rest is symmetric with respect to
the z—axis) the caustic for z > 0 is formed by the rays emitted with 6 > 7. Rays emitted with
0 < 6 < 7 do not touch the caustic in z > 0. All rays hit the z-axis at z(7,6) = % sin 20 where

T0(0) = % sinfd, and they are are refracted downwards in 2z < 0 as straight lines with parametric

equations
) 1, .
(3.49) z(T) = Tcosf + = sin 20, z(t)=—7sinf.
Using (2.11) and (3.49), we find that the caustic for z < 0 is given in parametric form
1 ) 1
(3.50a) z(0) = 5(1 + cos26)sin26, z(0) = —a(l — cos 26) cos 26
or, in cartesian coordinates by

(3.50b) 16a%z? = (27 — 18p% — p*) £ 80%, p= 1+ daz, <2<0.

N

The caustic for z < 0 exhibits a cusp at the point A(%g, —4£) with slope g—:l A= —/3.

b) Point source in the homogeneous half space (29 <0).
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The rays coming out from the source are straight lines for 2 < 0. The rays: which refracted
upwards in the layer 0 < z < % are given in parametric form by :

(3.51) | z(7) =Tcosf —zgcotf, 2(7) = —-;—T2 + Tsiné ,

and they form a caustic given by

(3.52a) z(8) = 7e(6) cos® — zgcot§, 2(8) = —gfg(a) +7,(0)sinf, 0<0<m/2,
where
(3.52b) Te = [azo + sin® 8 + ((azo + sin® ) — daz sin* 9)1/2] /2asin®@ .

The rays in the linear layer hit again the interface 2 = 0, and they are refracted downwards into
the homogeneous space. The rays refracted into z < 0 are given in parametric form by

(3.53a) z(1) = TcosO + zo(8), z(7)=—7sinb,

where

(3.53b) 20(8) = (Zsind— 20— ) cosh, 0<0< /2
' 0N = \a “5ing ) % = ’

and they form a caustic which is obtained from (3.53a) for

! (2 cos 20 + .ajoe ) sinf >0 .

(3.54) T=To=—
a sin® 6y

From (3.54) it follows that for 7, > 0, the caustic consists of two branches (defined as a function of
z) if azg > —%, while there is no caustic for z < 0 if azg < %.

c) Point source inside the linear layer(0 < zy < 1/2a).

As in the first case the rays form a caustic, which is part of the parabola z = 51;(1 — a?z?) inside

the layer 0 < z < ﬁ The rays hit the interface z = 0 at time 74(0) given by

sin 6 + /sin® 8 + 2azo
. .

(3.55) 70(0) =

The downwards refracted rays are given in parametric form by

(3.56) z(r) =Tcosf +zo(0), 2z(r) =—74/sin?0 + 2az ,

where 20(0) = 79(0) cos 6. The caustic in z < 0 is given by (3.56) for
(3.57)

T=17(8) = L

20/(sin? 9 . _ _ .7‘2 .. 2 .
(i + 2a20) (cos 6(sin® 6 + 2az) + sin 0(2(1 — azy) — 3sin? 6)4/sin 0+2az0)

Example 5 (Point source in a parabolic layer [KO2]).
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The refraction index is given by

1 , 2zl =1
(1-a?)+a%22 | |7|<1

’

(3.58) (z) = {

with 0 < a < 1. We assume that the source is located at (0,z) with —1 < 25 < 0. The rays are
given by the parametric equations

in @
(3.59) z(1) =Tcosh, z(T)= zycosh(ar)+ % sinh(a7) .
There exists a critical angle 8 = ., = arcsin(—azo) such that the corresponding ray tends asymp-

totically to the z-axis. Note also that the rays with 8 > 6., have an inflection point on the axis

z = 0. The caustic points are obtained from the parametric equations of the rays for arrival times
which satisfy

(3.60) cos? fsinh(at) + a%zy7sin @ sinh(at) + atsinfcosh(at) =0 .

Eliminating 7 between (3.59) and (3.60), and putting u = 7+/a, we find that the caustic can also
be written in parametric form as follows

(az)? = m{—@ue'(tanhu — u) + 6%u® tanh? u)+

(3.61) +6u3(4 + 62u?)V/2(tanh u)3/2 (tanh u — g(u))!/2},
az = azo + L (v? — (B2)?)/?sinhu, u > wuo,
where ug is the root of the equation g(u) = tanh u with g(u) = ZJr—(-fT‘;P—Eg, 0 = azg. By differen-

tiating the equations (3.61), we can show that (z(uo), 2(uo)) corresponds to a cusp singularity.
Motivated by the above examples, in order to study the GCP when 7n'(z) has discontinuities,
we distinguish two cases according to whether there are or not rays tangent to the interface. We
assume that there exists a point 2 = ¢ and smooth functions 7;(z), (i = 1,2) such that #;(z) is
smooth on (—co, c+ €) and 7,(2) is smooth on (c — €, 00) for sufficiently small € > 0. Moreover, we
assume that 71 (c) = n2(c) and 7} (c) # nh(c). We consider the following three subsets of R2

R2<c+e ={(z,2) |2 < c+ e}, IR2>c—-es = {(z,2) |2 > c—¢€} and Rg ={z= c} ,
and the corresponding subspaces of the phase space R®

Ric-{-e = {(xvz)p7 q) Iz <c+ 5},
Ric—e = {(.’I),Z,p, q) 'z >c— 6}7
R: = {(z,2,p,9)|z=c} .

We denote H;(z, z,p,q) = 3(p% + g2 — n?(2)), and we also consider the following sets

Hee= Hl—l(o) N{(z,2,p,q) |z < ¢},
H<c+e = Hl_l(o) n Ric+e?
H>c—€ = Hé_l(o) N Ric—e’

H. = H{H0)NRE = H71(0) NRE.
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In each region R% . or R, _, we have the same framework as in the case of smooth refraction
index case considered in Section 3.2. Let us also assume that the initial data of the GCP are located
in H<c. :

Thus, we consider a Legendrian curve £ : I — H., as initial data for the GCP. Like in the

previous section, a ray starting from £ is given by the characteristic equations (cf. eq. (C) in Sec.
3.1)

(C1)- { 1 =p1 Z1=q p1=0¢ =m(z)n(2),
£1(0,0) = z(0), #1(0,8) = 2(8), p1(0,0) =p(6), . (0,8) = q(6) .

The solution in Hccy is

(3623..) 1 (’T, 9) = p(9)'r + ZL‘(O) ’ Z1(7', 9), Yo (Ta 0) = p(O) y Q1 (Ty 6) = 21 (Ta 0)

where
(3.62b) Z1(7,0) = m(21(7, )11 (21(7,8)), 21(0,6) = 2(8)andz,(0,8) = q(8) .

If the ray Ry(7) reaches the line R? at the time 7y, we have

(3.63) z1(70,8) = p(0)70 + 2(6), 21(70,0) =¢, p1(70,0) =p(9), q1(70,0) = #1(70,9) .

Since we have the relation p2(0) + (21)%(7o,6) = (m1)?(c) = (n2)*(c), we can start the ray from R2
as the solution of the characteristic equations: ‘
(C2) { Ty=p2, Z2=qa, P2=0, dgo=na(22)n3(22),

z2(0,8) = p()m0 + z(6), 22(0,0) = ¢, p2(0,0) =p(6), ¢2(0,6) = 1(70,6) .

The solution in Hs._, is

(3643) .’L'2(0', 9) = p(e)(TO + 0') + 213(9), 732(0" 9)7 k p2(0a 0) = p(e)’ qZ(Ua 0) = ?2(0-7 0) ’

where
(3.64b) %(0,0) = na(22(0,8))m5(22(0,8)), 22(0,8) =c, #2(0,8) = 2(r,6) .

Since 22(0,6) = £1(70,8), the rays have a continuous change of slope across R2.

By the arguments in Section 3.1, we construct the Lagrangian solution I'; : Ry x I — Hcgye
for the initial data £ : I — Hc.. According to Theorem 3.2, the appearing caustics have only fold
or cusp singularities for generic initial data £.

We now distinguish the following two cases.

Case A. All rays starting from £ are not tangent to the line R,

Our assumption means that 2,(7,0) # 0 for 21(7,0) = c. It follows from the implicit function
theorem that there exists (at least locally) a smooth function 7 = 7(8, ¢) such that 2, (7(6,0),0) = c.
We now consider the local parameterized curve in H~._. given by

(3.65) £c(0) = (p(0)7(0, ¢) + x(6), ¢, p(8), 21(7(6, c),6)) .

We can easily show that

(3.66) 20 = m (e S8 = dlm (0)°7(0,) = dma(*7(6,))
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By a direct calculation we have

(3.67) ,
6.0+ 0) Bt s ?(T(((iec)e))w BB
Lo _p’ 7(0,¢) + =’ 5e(7(0,¢), g2 (7(0, c Z(1(0,c
€(0) = 52(7(6,0,0  0.7(0), 7(r(6,0),0)

If £(6) = 0, then the rank of the Jacobi matrix of the Lagrangian solution I'; in Hc.y. is at
most 1. This contradicts the fact that I'y is an immersion. Therefore, we have: £,(6) # 0, for any
6 € I. We also have Xy, 0 £.(0) = (p(0), 21(7(6,¢),8),0,m2(c)). By means of the assumption that
21(1(0,¢c),0) # 0 we have that Xy, o0 £.(0) and £,(6) are linearly independent.

We can construct the Lagrangian solution I'y in H~ . with initial submanifold £, C H~._.. Note
that £, is not a Legendrian submanifold in H._.. However, since £;0 = 0 and the Hamiltonian
flow preserves the canonical two form ©, we can apply the method of characteristics with the initial
condition £..

Moreover, we also construct I's for opposite d1rected flows. It follows that we have the local
parameterization of the Lagrangian solution

(368) . Fz(O‘, 9) = (p(e)(7(97 C) + 0) + 113(9), 22(0, 0),17(0), 2.2(0’ 0)) ?

where

(3.69) | « |
21(7(8,¢),0) = c = 2(0,0), %2(0,0) = n2(22(0, 0))ma(22(0,0)) and  £2(0,8) = 21(7(,¢),0) .

Therefore we have two Lagrangian submanifolds I';, Tz in the neighborhood of R? in R%. Since

822
00

821

(3.70) 57(0,0) = 21(r(6,0),6) = 0

the Jacobian matrix of ' at a point in R? is

@) - %(0,8) 0  %(0,6)
(3.71) ( ’(0)7‘(5 c) +2'(9) ’ 0 p'(6) Q_z?z(() 0))

By the calculation of the Jacobian matrix for I'; in Section 3.1, this matrix is the same as the
Jacobian matrix of I'; at the same point in R2. Then, we have the following theorem. ‘

Theorem 3.4. (1) For a generic initial Legendrian curve £ : I — H,, the caustics of Iy have
only cusp or fold singularities. Moreover, cusps do not appear on R2.

(2) If a point 7o T'y(79,60) = 7 0 T'3(0,6p) € R? is a fold point Of?T o'y, then it is also a fold
point of wo I's.

Proof. The first part of the assertion (1) follows from Theorem 2.2. If cusps appear on R? we
can apply Bogaevskii’s theorem [BO] to move away cusps from R2 by a small perturbation of the
initial Legendrian curve £ (or £;). For the assertion (2), we have shown that the considered point
is a singular point of 7 o I'; if and only if it is a singular point of 7 o I's. Since 7o I'; and wo L',
have common Jacobian matrix

| p(6o) £(0,0)
(3.72) (pf(eo)f(eo,zwx'(o) 0 )
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we have
(3.73) Image a(m 0 T'1)(r,,6,) = Image a(m o T'2)(0,6,) -

By the assumption, the dimension of Image a(m o I'1)(r0,60) is one. It follows that m o I's has a fold
point at (0,6p). O

The above theorem asserts that if the fold locus approach to R, transversally, then the fold locus
continues to R2 , = {(z,2)| 2 > c}. The natural conjecture is that I'; has only cusps and folds for
a generic initial Legendrian curve £ : I — H.. Kazarian [KA] asserts that if a caustic of I'; has
only cusps or folds then the caustics of I'; has only cusps or folds under a small perturbation of 'y
in the space of all Lagrangian submanifolds. However, the above conjecture is still open.

Case B. There exists a ray Rg,(7) starting from £ such that Rg,(7) is tangent to the line R2.

Many complicated phenomena occur in this case. We consider the Lagrangian solution Iy :
Ry X I — Hceye for generic initial data £: I — H.. So caustics of I'; have only folds or cusps.
We assume that there exists (10,00) € Ry x I such that R} (r) is tangent to the line R2 at the
point qo = (p(6o)70 + z(fo), ). This means that 21(7o,80) = ¢ and 21(7,8p) = 0. We can assert
again that cusps are not located on the line R? for generic initial data. Without loss of generality
we may assume that all rays Rj(7) for § > 6y are not tangent to the line R, that is, the point 6,
divides the interval I into two parts I<g, and Ig,. '

Since, if we restrict the initial data £ to 6 = £|I5¢, we are in Case A, we may also assume that
caustics do not appear at the point qo. If a caustic appears at the point qqo, we may move it away
from qo by a small perturbation of £ (or £,). Moreover, we consider the case where 7} (2) < 0 for
any z < c+¢. In this case, all rays R§(r) for 8 < 8y do not reach the line R2. We also assume that
m(c) # 0 and n3(c) # 0.

We now further consider two cases as follows.

Case B1: n,(2;) < 0.

In this case we have Z; = n3(22)n5(22) < 0. Then the rays starting from R? for 8> 6 return to
R2 for (z,c) with = > p(8o)7o + z(6y). We have no shadow zones (i.e., areas which are not covered
by characteristics) around the point qo. For this case, the situation is the same as that of Case A
described by Theorem 3.4.

Case B2: 7,(2;) > 0. -

Then the ray reaching the point qo bifurcates so that one branch, denoted by R} , (T) continues
into R% , and another branch denoted by R}, enters the region R% .. We have a shadow zone around
the point qo (see Figure 1). We call the rays Réo, Rgo boundary rays.

If we consider the restriction of the Lagrangian solution I'y to Ry x I's4,, then only folds approach
(70,60) € Ry x {60}. Indeed, if the cusp point appears at the point (75,6) € Ry x {60}, we can
move it away from Ry x {6} by the exactly same arguments as those in the proof of Theorem 3.4.
If we consider the restriction of I'; to Ry X I<g,, then we have a domain with a boundary. New
type of caustics might appear at a point of Réo, for 7 > 79, which are called caustics with boundary
(or edge caustics) (see Figure 2). '

Like in the ordinary theory of Lagrangian singularities (cf., Arnold et al [AVH]), a Lagrangian
manifold with boundary is given locally by a generating family F(z,y, A1, Az2). Then, we have

(3.73a) Ly = {(A1, A2, k1, k2) € T*R? | 3(w,y), Fy = F, =0, ky = Fy, ko = Fy,, £z >0},

(3.73b) OL = {(M1, A2, k1,k2) € L |& =0} .

We consider the equivalence relation among Legendrian manifold with boundary. The natural
equivalence relation is the Lagrangian equivalence preserving the boundary. There is a correspond-

ing equivalence relation among generating families and we have the following classification theorem
(c.f., Arnold [AVH] (17.4)).
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Figure 2. Refracted rays and shadow boundary

Theorem 3.5. The generic singularities of caustics with boundary at boundary points in R?
are as follows:
By = C, with generating family 2% + 4% + Az
Bj; with generating family 3 £ y? 4+ A\12? + Aoz
Cs with generating family zy + y® + A\ 19y% + Ay
~ The boundary corresponds to the set {z = 0}.

. For example, in the case By = Cy we have Ly = {(F2z,2,2,0) | £ >0, 2 € R} and 0Ly =

{(0,X2,0,0) | A2 € R}. Therefore, the boundary on R? is the set m(0L.) which is the \y—axis.
Such boundary points are those of the boundary ray that separates the 1llum1nated zone from the
shadow zone of Figure 1. For the Bs case, Ly = {(\,—32z% —2\iz,2%,z) | £2>0,\ € R}.
Therefore, 0Ly = {(/\1,0 0,0) | A1 € R} and the set m(OL4) is the A\;—axis. The caustic of
L is the set { —3z,3z%) |z € R} So, Bz describes the situation of a caustic with boundary,
that is the Lagrangian submanifold around the point (z,2;) of Figure 2. For the C3 case L4 =
{(A,=2,0,0) | £2>0,M € R} and 0Ly = {(A1,0,0,0) | A\; € R} and the set 7(0L.) is the
A1 —axis.

Case B2 has some analogy with the case where z = c is considered an impedance boundary.
Then, different kinds of caustics with boundary can appear. We look for a geometric solution of
the eikonal equation in a restricted domain where the rays meeting the boundary reflect according
to Snell’s law (see, e.g. [TC], [CMP)). The presence of boundaries gives rise to geometric entities
such as boundary rays, caustics with boundary and shadow zones.

Let us study more the Example 1, where we are now assuming that zo > 0 and that we have a
boundary at z=¢, c<d.

Then, the ray shot with initial angle § = §; = arcsin (\/1 — ) hits the boundary 2z = ¢ at

zo = 24/20(c — 20), and it is tangent to the caustic at the point (see Flgure 2) _

(3.75) 9o Fle_ v cefop_ 1
' T = 1—2/c o =S c l-—z/c) "’

Consequently all the rays shot with 8 > 6y are reflected from the boundary z = ¢, while all the
others turn downwards before hitting the boundary and form a caustic which is the part of the
parabola (3.31), with z < 2. The two sets of rays are separated by the ray shot at 6, which meets
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Figure 3. Boundary ray and shadow zone

the caustic at its end point (s, 23). This ray together with the caustic form the boundary of the
shadow zone in which no ray can penetrate, and for this we call this special ray the boundary ray
‘and the appearing caustic the boundary caustic.

The geometry of the rays in this case is different from that of case (B2). Following Scherback
[SC] (see also [TS1], [TS2]), to define the boundary caustics we need the notion of a Lagrangian
pair (L4, Lo). In this case we can also construct (at least locally) the generating family F' for any
Lagrangian pair (L4, Lg) as follows:

(3.76a) Ly = {(/\1,/.\2,&1,@) € T*R? | (z,y), Fy = Fy =0, k1 = F)\, kg = F\,, £ > 0} ,

(376b) Ly = {(Ala)‘Z,K}l,’{Q) € T*R? l 3y7 Fy(O,ya /\17)‘2) =0,k = F)\n kg = F)\z} 3

and 7(L+ N Lg) consists of the boundary points that might include boundary caustics, where 7 is
the projection onto the (A1, A2) space. We have the following theorem (see [SC], cf. [TS1], [TS2]).

Theorem 3.6. The stable singularities of boundary caustics at boundary points in R? are as
follows:
By = C, with generating family +z2 + % + Mz
Bs with generating family x3 &+ 4% + \22 + Moz
Cs with generating family zy + y3 + M\y® + Aoy
The boundary corresponds to the set {z = 0}.

For the case By = Cy we have
Ly = {(¥22,)2,2,0) | £2>0,X2 € R}, Lo={(\,22,0,0) | \;,\2 €R} .

Therefore Ly N Lo = {(0, A2,0,0) | A\2 € R} and the set m(L N L) is the Ay;—axis. Such boundary
points are those of the boundary ray that separates the illuminated zone from the shadow zone of
Figure 2. :
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For the B3 case we have
Ly = {(M,-32% = 2\z,2%,2) | £2>0,% €R} , Lo ={(\,A2,0,0)|A;, A2 € R} .

Therefore, Ly N Ly = {(A1,0,0,0) | A € R} and the set (L4 N Lg) is the A\; —axis. The caustic of
L is the set {(—3:1:, 3z?) |z € R}. So, Bj describes the case of a boundary ray meeting a boundary
caustic which, around the point (x, 2), depicts the geometry of Figure 2 (z = c is considered a
hard boundary).

Finally, for the C3 case we have

Ly = {()‘19'—x70a0) l +z20,A\ € R} , Lo= {()‘1,_33/2 - 2yA1)y2)y)) | YER, A\ € R} .

Therefore Ly N Ly = {(A1,0,0,0) |\; € R} and the set 7(Li N Lg) is the A\; —axis. The caustic of
Lo is the set {(—3y,3y?) | y € R}.
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