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ABSTRACT. We give all the meromorphic functions defined near the origin 0 € C
satisfying a functional equation investigated by Bruschi and Calogero [1], [2].

0. Introduction.

It is an important problem to find a Lax pair L and M whose equations of motion
are equivalent to the Lax equation [10], [11], [12]. In order to prove their complete
integrability it is convenient to use a Lax representation.

The systems of Calogero-Sutherland type, which describe one-dimensional n-
particle dynamics, are defined by the following Hamiltonian

1 n
H=23 0, +Uq,- an),
=1
where the potential U has the form
n
U(Ql, LR ,Qn) = 92 Zv(q] - qk) .
i<k

Lax pairs for the system above were originated by Calogero [3] and Moser [7], and
are given by the matrices

Ljx = p;ibjr +v—19(1 — 0;)2(q; — qx) ,

My = gl6in > 2(q; — @) — (1 — 8j)y(gs — ax)] -
I#j

Substituting these matrices in the Lax equation v/—1L = [M, L] and requiring
that this equation is equivalent to the Hamiltonian equations, we get a certain
functional equation for the functions z(£) and z(£). This functional equation has
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been solved in a series of papers including [4], [9]. The solutions are expressed in
terms of elliptic functions, trigonometric functions or rational functions. '

Later, Ruijsenaars and Schneider [15] have introduced a class of integrable dy-
namical systems characterized by the equations of motion

n )
(0.1) G=> GaviGg—a), ¢=gt), i=12...,n
k=1
k3
Bruschi and Calogero [1] discovered a representation of the equations of motion of
the system (0.1) in the Lax form

L= [L, M],
where L and M are the n X n matrices,

Lk = 8jxd; + (1 — 6;%)(d5 dx)*(aj — ax)

n
My =i > GmB(gj — gm) + (1 — 68)(dj 46)/*v(g; — ax) -
m=1
m#j

Here the function a(z) is a solution of the following functional equation of addition
type B _
0.2)  al@)d/(y) - (2)aly) = (alz +y) — a(z)a(y)) (1(z) - n(y)) ,
which we call the Bruschi-Calogero equation. The function v(z) is given by
v(z) = o log(a(z)a(-z) - 1).

Bruschi and Calogero [1], [2] have investigated general analytic solutions of this
functional equation (0.2). They have obtained some solutions « expressed by elliptic
functions in the most general case, and they had some trigonometric and rational
solutions by degenerating the periods of the elliptic functions.

The main purpose of the present paper is to solve the functional equation (0.2)

in the most rigorous way. More precisely, we shall give all meromorphic solutions
of the functional equation (0.2) defined near the origin 0 € C.

Theorem 0.1. Let a be a holomorphic function defined on a small punctured disk
{z € C;0 < |z| < r} for some r > 0. If there exists a holomorphic function
n defined on the punctured disk {x € C;0 < |z| < r} such that o and n satisfy
the functional equation (0.2), then « is equal to one of the following meromorphic
functions defined on the whole plane C.

(0) a(z) = Ce’®, (C,peC)
T U(M; 71, TZ)U()‘x +v; 71, T2)
(I o(z) = e o(v; 11, m2)o(Az + p; 1, 72)’
(pyp,v € C, A\y1y,172 € C\ {0}, Im 75 /71 > 0)
a(e®®/* ~1) +b
c(e?*/* —1)+b "’
(A p,a,b,c€C, A£0, bla—c)#0)

o _ pa0T+b
(I11) alz) =e ey

(ID) a(z) = ef?

(p,a,b,c € C, bla— c)v;é 0)
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Here o(x;11,7T2) is the elliptic sigma function.

It should be remarked that a meromorphic function defined near the origin 0 € C
is holomorphic on a small punctured disk {z € C;0 < |z| < r} for some r > 0.
Hence our result covers all the meromorphic solutions defined near the origin 0 € C.

The methods we use in this paper are quite different from those of Bruschi and
Calogero [1], [2]. We should note that some trigonometric solutions listed above
are not included in Bruschi and Calogero [1], [2].

The outline to get all meromorphic solutions is as follows. First, we shall show
that the solution 7 is the logarithmic derivative of some meromorphic function ¢,
and that the set of zeroes of ¢ is a discrete subgroup of C. As is known, such a
subgroup is isomorphic to Z2, Z or {0}. If this subgroup is isomorphic to Z2, we
find out that n and « are expressed by elliptic functions by a standard argument.
In other two cases, the key tool to obtaining the explicit form of the solution « is
the great Picard theorem (see, for example, [5]). As a result, we shall show that o
is expressed by trigonometric functions or rational functions.

After the first draft of this paper was completed, we were informed that Ochiai,
Oshima and Sekiguchi [8], [13] have studied all the completely integrable systems
with the invariance under the action of the Weyl groups. In their papers, they
solved the functional differential equations of the potential function.. We should
note that these functional differential equations are of addtion type also.

Acknowledgement. The authors would like to express their gratitude to Professor
Toshio Oshima for several valuable comments, including his suggestion about the
defining domains of solutions. The first author would like to thank Professor Yukio
Matsumoto for helpful discussions.

1. Equivalence of two functional equations.

In this section we prove that any holomorphic solutions of the equation (0.2)
defined on a small punctured disk {z € C;0 < |z| < r} for some r > 0 extend
themselves to meromorphic functions defined near the origin 0 € C. Moreover we
show that the equation (0.2) and the equation

(1.1) - alzty) - alr)aly) = e@)e)y(z +y).

for meromorphic functions «, ¢ and 1 are equivalent to each other. Before we begin
proving them, we have to distinguish a certain kind of solutions from other ones.

Lemma 1.1. Let a = a(z) be a holomorphic function defined on a small punctured
disk {z € C;0 < |z| < r} for some r > 0. Suppose o satisfies one of the equations

1 a(z)d/ (y) - o (z)e(y) =0,
(2) « is holomorphic at 0 € C, and a(0)a(z + y) — a(z)a(y) = O
3) a(z +y) - a(z)aly) =0,

where z, y and x + y run over the defining domain. Then there ezist C and p € C
such that a(z) = CeP®.

Proof. When a = 0, the lemma is trivial. So we may assume « 7& 0. The equation
(3) implies (2). In fact, choose a point z in {0 < |z| < r}. Then lim,,¢a(y) =
limy_,o a(z + y)/a(z) = 1. So we have a(0) = 1 # co. Thus we obtain (2).
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~ The equation (2) implies (1). If we substitute z =¢ and y = s — ¢ into (2), then
we have a(0)a(s) — a(t)a(s — t) = 0. Differentiate it by the variable ¢. Then we
have a(t)a/(s —t) — o/ (t)a(s — t) = 0, which is equivalent to (1).

From the equation (1) we have o/(y)/a(y) = o/(z)/a(z) for any = and y in the
defining domain. In other words, o'/« is a constant function. Hence there exist C
and p € C such that a(z) = Ce*®. O ’

The exponential function a(z) = CeP® for any C and p € C satisfies both of
the equations (0.2) and (1.1). Throughout this paper we call such a exponential
solution obvious.

Next we prove that the solutions have no essential singularities at 0 € C.

Lemma 1.2. Let o = az) and n = n(z) be holomorphic functions defined on a
small punctured disk {z € C;0 < |z| < r} for some r > 0. Suppose o and n satisfy
the functional equation (0.2). Then the functions a and n extend themselves to
meromorphic functions defined near the origin 0 € C.

Proof. In the case where the solutions are obvious, the lemma is trivial. So we
may assume that they are not obvious. Hence we have n(z) — n(y) # 0, and
a(z +y) — a(z)a(y) # 0, as functions in (z, y).

Fix an arbitrary point ¢ in the punctured disk. Then (0.2) implies

a(to)a’(s - to) - a’(to)a(s - to)
| n(to) — n(s — to)
for any s, 0 < |s| < 7 — |to|. The right-hand side extends itself to a meromorphic

function near s = 0. Hence «(s) is meromorphic at s = 0.
Fix a point yo in the punctured disk. From (0.2) again, we have

a(s) = a(ty)a(s —tg) +

= a(z)a’(yo) — o (z)a(yo)
) =100+ oot 1) — ala)atuo)

for any z, 0 < |z| < 7 — |yo|. The right-hand side is meromorphic at z = 0, and so
is the function n(z). O

Thus, in what follows, we may assume that the solutions are meromorphic func-
tions defined near the origin 0 € C.

Now we can prove the equivalence of the two equations (0.2) and (1.1).

Proposition 1.3. The two functional equations (0.2) and (1.1) for meromorphic
functions defined on the whole plane C (or defined near the origin 0 € C) are
equivalent to each other. Moreover the solutions ¢ and n are related to each other

as follows:
n(z) = ¢'(z)/¢(z).

Proof. We may assume a solution o is not obvious. Hence we have a(r + y) —
a(z)a(y) # 0 and a(z)a’(y) — o/ (z)a(y) # 0 from Lemma 1.1.
Introduce a coordinate system (s,t) on the plane C? by

(1.2) {S:w+y
t:=uzx.
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Then the equation (0.2) is equivalent to

(1.9 2 10g (als) ~ at)as — 1)) = n(t) = n(s ~1),
and the equation (1.1) to

(1.4) a(s) — a(t)a(s — t) = (t)p(s — )3 (s).

The equation (1.3) is derived from the equation (1.4) by differentiating it by the
variable ¢.

In order to prove that the equation (1.4) is derived from (1.3), we need the
following.

Lemma 1.4. If meromorphic functions oo and 1 satisfy the equation (1.4) and o
is not obvious, then we have ord, n = —1 and Res,n € Z for any pole p € C of the
Junction 7.

Proof of Lemma 1.4. Let A € C be a pole of the function . Choose a generic
so € C. Then the singular part of n(t) — n(so — t) at t = X coincides with that of

n(t). On the other hand, the equation (1.4) implies that the function n(t) —n(so—1t)
is equal to the logarithmic derivative of the function a(so) — a(t)a(so —t). Thus
the order of n(t) at the point X is —1, and its residue is equal to the order of
a(so) — a(t)a(sg —t) at the point ¢t = /\ This means the residue is an integer, as
was to be shown. U

Now suppose meromorphic functions o and 7 defined on the whole plane C satisfy
the equation (1.3). Lemma 1.4 means that the differential equation

n(z) = ¢'(x)/o(x)

has a local meromorphic solution ¢ near any point of the whole plane C. Since the
plane C is simply connected, such local meromorphic solutions extend themselves
to the global solution ¢ defined on the whole C. Then the equation (1.3) implies

9 a(s) —a(t)a(s —t)\ _
s (g ) =

so that there exists a meromorphic function 1¢(s) defined on the whole plane C
such that a(s) — a(t)a(s —t) = @(t)e(s — t)¥(s) for any s and ¢t € C. Substituting
(1.2) into this equation, we obtain the equation (1.4). As for local solutions, the
situation is simpler. This completes the proof of Proposition 1.3. [
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2. Behavior of solutions near the origin.

In what follows, we confine ourselves to non-obvious meromorphic solutions «, 7,
¢ and 9 of the functional equations (0.2) and (1.1). We remark n(z) —n(y) # 0 and

@ # 0, since « is not obvious. We consider local solutions, i.e., solutions defined
near the origin, and global solutlons i.e., solutions defined on the whole plane C,
simultaneously.

Lemma 2.1.
(1) Let p € C be a point in the defining domain of solutions «, 1, ¢ and . Then p
is a pole of the function @, if and only if p is a pole of the function a.
(2) If p € C is a pole of ¢, then the orders of & and ¢ at p are equal to each other,
i.e., ord, ¢ = ordp a. Especially we have (/) (p) # 0, c0.
(3) A point peC z's a zero of the function ¢, if and only if the equation a(s) =
a(p)a(s — p) holds for all s in the defining domain of c.

Proof. Choose a generic sg € C such that a(so —p), a(so0), ¢(so—p) and ¥(so) # 0,
oo. Then we have

(2.1) ordy (a(so) — a(t)a(se — t)) = ordy(p(t)e(se — t)) = ord, ¢,

since (a(so) —a(t)a(so—t))e(t) " to(so—t)~1 = ¥ (so) # 0, 00, and p(so—p) # 0, co.

Now suppose ¢(p) = co. Then a(sg) — a(p)a(se — p) = co. We have a(p) = co
since a(sop — p), a(so) # 0,00. Moreover ordy(¢) = ord, (a(so) — a(t)a(so —t))
= ordp (a(t)a(so —t)) = ordpa. Conversely suppose a(p) = co. Then a(sy) —
a(p)a(so — p) = oo, so that p(p) = oo by (2.1).

Finally suppose ¢(p) = 0. Then (2.1) implies a(so) —a(p)ca(so—p) = 0 for generic
so. Hence a(s) = a(p)a(s — p) for all s in the defining domain of @. Conversely
we assume a(s) = a(p)a(s — p) for all s in the defining domain. Then (2.1) implies
¢(p) = 0.

This completes the proof of Lemma 2.1. O
Our main purpose in this section is to prove the following.

Lemma 2.2. Let o, 71, ¢ and y be non-obvious meromorphic solutions of (0.2) and
(1.1) defined near the origin 0 € C. Then we have ¢(0) = 0, a(0) =1, ¢'(0) # 0
and

_ a’(s) _ a’(O) a(s)
(2:2) w@_(qﬂ aw)www@'

Proof. We begin by proving that ¢ and « is holomorphic near the origin 0 € C.

Assume ¢(0) = co. Then a(0) = oo and (a/)(0) # 0, 00 from Lemma 2.1. The
equation (1.1) implies '

o(t) " a(s)p(s — 1)1 — (/) (1) (/o) (s — £) = ps).

We obtain 9(s) = —(a/p)(0)(a/p)(s) as t — 0. Hence we have

—(a/@)(0)(a/)(s) —— (1) zg; o) to(s — )" (1_ a(t);l((:)— t)).
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and ¢(t)"1p(—t)™! = 0 as s — 0. This means ¢ = 0, and contradicts the assump-
tion a is not obvious. Therefore we find out ¢(0) # co. From Lemma 2.1 we have
a(0) # oco.

Thus ¢ and o are holomorphic near the origin. Especially we may substitute
z = 0 into the derivatives o/(z) and ¢'(x). Differentiate the equation (1.4) by the
variable ¢, and substitute ¢ = 0 into it. Then we obtain

(2.3) a(0)a!(s) — o/ (0)a(s) = %(s)(¢' (0)¢(s) — (0)¢'(5))-

Next, in order to prove ¢(0) = 0, assume ¢(0) # 0. Substituting ¢ = 0 into the
equation (1.1), we obtain

(1 - a(0))als)
YO = e

This, together with the equation (2.3), implies

05~/ = -0 (Z5 - 55)

Hence we have

@)@ _ SO _ @@, o &)
0055 +1-a@) 5 = ¢ 0 +1-a@) 5 = a2 +1-a0) £ L
and so
O r(a) — e =1 afon (€@ EG _ o () _ (@)
(1~ a(O)(n(@) = () =1 - ) (£ - £ — a0 (28 - £L2))
owty) [\
~a(0) (251D 1) (1(0) - 1),

Here recall n(z) — n(y) # 0, since « is not obvious. Therefore we have a(0)a(z +
y) = o(z)a(y). This means « is obvious from Lemma 1.1, and contradicts our
assumption.

Therefore we obtain ¢(0) = 0. From Lemma 2.1 (3) we have a(s) —a(0)a(s) = 0.
Hence a(0) = 1. Now the formula (2.3) turns out to be

o (s) — o/ (0)a(s) = 9 (s)¢' (0)(s)-

Since o is not obvious, we have ¢'(0) # 0. Hence we have 9(s) = (¢/(s)/a(s) —
a'(0)/a(0))a(s)/¢'(0)p(s), as was to be shown. O
The formula (2.2) means
(2.4) a(s) —a(t)a(s —t) _ o(s) — o/ (0)a(s)
p(t)e(s — ) ¢ (0)p(s)

which plays an important role throughout this paper.
As a consequence of the relation (2.2), we obtain
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Proposition 2.3. Any meromorphic solutions of the equations (0.2) and (1.1)
defined near the origin extend themselves to those defined on the whole plane C.

Proof. As for obvious solutions, the proposition is trivial. So we may assume «, 7,

¢ and 9 are non-obvious meromorphic solutions of the equations (0.2) and (1.1)

defined on the small disk {z € C;|z| < r} for some r > 0.
From (0.2) we have '

(z)o(y) — o (z)(y)
n(z) — n(y)
which implies o extends itself to {z € C; |z| < 2r}. From the equation (1.1)

oz +y) = a(z)aly) + —

b

a(z +y) — a(z)aly)
e(z)p(y)

Y(z+y) =

and the equation (2.2)

_(d(s) <o(0) a(s)
#ls) = (a(s) a(O)) OOk

¥ and ¢ extend themselves to {z € C;|z| < 2r}. Recall 7 is equal to ¢’/p. Such
extensions satisfy the functional equations by means of the permanence of functional
relations.

Consequently these solutions extend themselves to {z € C;|z| < 2"r} for all
n > 1, and so to the whole plane C. This completes the proof. [

3. Discrete subgroups.

In view of Proposition 2.3 we may confine ourselves to non-obvious meromorphic
solutions defined on the whole plane C.

We denote the zeroes of ¢, the poles of ¢ and the zeroes of o by A, A_ and
A%, respectively. Clearly these subsets Ay, A_ and A® are all discrete subsets in
the plane C. In this section we study these discrete subsets.

By Lemma 2.1 (3) we have

(3.1) Ay ={ueCa(t+u) = a(u)a(t), VteC}.

Since ¢(0) = 0, we have A} # (. One can deduce easily the following lemma from
the identification (3.1).

Lemma 3.1. The discrete subset A, is a subgroup of the additive group C. More-
over the restriction of a to A gives a homomorphism of Ay into the multiplicative
group C\ {0}. Especially a(u) # 0 for anyu € A,.

As is known, any discrete subgroup A of the additive group C is given by one
of the following.

(1) There exist 7 and 7 € C\ {0} such that Im75/7 > 0 and Ay = Zry +Zmy.
In what follows, we call such a case non-degenerate.

(2) There exists A\g € C\ {0} such that A, = Z)y. We will consider this case
in §6.

(3) Ay = 0. We will consider this case in §5.
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(See, for example, Pontryagin [14] ch.3, §19, example 33.) In short, we obtain
AL =272 Z or {0}.

In the succeeding sections, in the case where this subgroup is isomorphic to Z?, we
prove that n and o are expressed by elliptic functions by a standard argument. In
other two cases, we shall show that « is expressed by trigonometric functions or
rational functions.
Next we study the discrete subsets A_ and A%.

Lemma 3.2. Ifp € A_, namely, p is a pole of ¢ and o, then

e(p—t)p(t) = —¢'(0) Res, p # 0,
and ordy ¢ = ordy o = —1.

Proof. Choose a generic ¢y € C such that ¢(tg), p(p—to), a(to) and a(p—to) # 0, co.
From the equation (2.4) we have

YO, atate ) S (29 ().

¢ (to)e(s — to) a(s) (s) \ a(s)

The left-hand side turns out to be ¢'(0)/(¢(to)@(p — to)) # 0,00 as s — p. Hence

1 a'(s) '
1 o5 (g ~/0) # 0o

so that ord, ¢ = ord, (¢/(s)/a(s) — a’(0)). Since ord,p < 0, s = p is a pole of
o' (s)/a(s) — a'(0). Hence we have ord, (a'(s)/a(s) — ¢/(0)) = ord, (¢/(s)/a(s)) =
—1. Thus we obtain ord, o = ord, ¢ = —1.

Now ¢(s) = (s —p)~'f(s) and &/(s)a(s)~ — o/(0) = (s — p)~1B(s) for some
holomorphic functions f and § defined near p. Then B(p) = —1, f(p) = Res, ¢,

and so ) ,( ) _ ﬂ( ) )
s%m(m‘“‘”’)"i‘i&m Res, ¢

This means ¢'(0)/(¢(to)¢(p — to)) = —1/ Res, ¢ for any generic ¢y. Therefore we
have

e(t)pp—t) = —¢'(0) Resp ¢

for any ¢ € C. Since o is not obvious, we have ¢ # 0 and so —¢'(0) Res, ¢ # 0.
This completes the proof. O

Corollary 3.3. A_ is invariant under the translation by Ay and §(A_/A4) < 1.

Proof. Let p € A_ and u € A} be given. Recall a(u) # 0,00. Then we have
a(p + u) = a(p)a(u) = oo, so that p+ u € A_. This means A_ is a A -invariant
subset.

Now, for any p; and ps € A_, lim;_,p, o(p1 — t)p(t) = —¢'(0) Res, ¢ # 0, 0.
Hence lim;_,,, ¢(p1 —t) =0, and so p; — p2 € A;. This means §(A_/AL) <1, as
was to be shown. O
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Lemma 3.4. Letq€ C be a vzero of a, i.e., ¢ € A*. Then we have
(1) a'(¢) #0 e, ordga=1.
a(t)a(g—t o
@ wgtgwgg - t; T 90’(0)(:;)(11) 70 |
Moreover A* is invariant under the translation by A+ and #§(A%/A4) < 1.
Proof. Since Ay N A% =), we have ¢(q) # 0. From the equation (2.4) we have
—a()alg—1) __a'(g
pt)pla—t) ¢ (0)p(q)’

Since a/¢ # 0, we obtain (2) and &/(g) # 0, so that ordg @ = 1.

Now let ¢ € A® and u € A, be given. Then we have a(g + u) = a(g)a(u) =0,
so that p + u € A_. This means A* is a A-invariant subset.

Finally, for any ¢; and ¢3 € A_,

—o(g)a(a— ) _ _ o'(q1)
o(g2)p(a1 — g2) ©'(0)p(q1)
Since a(q2)/¢(g2) = 0, we have (a/p)(g1 — ¢2) = c0. From Lemma 2.1 (2) follows

q1 —q2 € A_. Thus we obtain p(g; — ¢2) = 0, i.e,, ¢1 — g2 € A;. This means
#(A*/A4) < 1. This completes the proof of Lemma 3.4. O

# 0, 00.

4. Non-degenerate case.

In this section we consider the case A, = Z2 i.e. the doubly-periodic case. The
function 7 admits a periodicity with respect to the discrete subgroup A..

Lemma 4.1.
(1) The set of all poles of the function n is equal to Ay U A_. All poles of n are
simple, and Respn =ord, ¢ forp € AL UA_.

(2) n(z+p)=1n(z), peAs,zeC.
(3) Respn=1, peA;.
(4) Respnp=-1, peA_.

Proof. The assertions (1), (3) and (4) are clear due to 7 = ¢'/p. In fact, from the
definition, Ay = {¢ =0} and A_ = {p = o0}.

Let p € Ay = {z € C;p(z) = 0}. In order to prove (2), recall the function « is
regular at z = p because {a = oo} = {¢ = o0} (Lemma 2.1 (1)). From Lemma 3.1,
a(p) # 0. By virtue of (3.1)

7(6) = nlp ~ 1) = - og(al) — alt)alp ~ 1)
- _aa_tlog(a(p) — a(t)e(p)a(-t))
= %(10g a(p) + log(1l — a(t)a(—t)))

_ %log(l — a(t)a(-t))
= n(t) — n(-t)
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Hence n(—t) =n(p—t) forallt € Cie. n(z+p) =n(z) forallz€ C. O

From A, & Z2, there exist 71, 72 and A € C\ {0} such that Im7»/m > 0 and
Ay = Z(11/X) + Z(1a/N).

Lemma 4.2, There exists p € C such that A_ = (—p/X) + A4.

Proof. Suppose A_ = (. The set of the poles of 5 is A from Lemma 4.1 (1). Thus,
in a fundamental period-parallelogram for the elliptic function 7, the number of
poles of the function 7 is one and the pole is simple. There is no such an elliptic
function [16 p.432], [6 p.157]. Then A_ # §.

Hence there exists 4 € C such that —u/A € A_. Because A_ is invariant under
the translation by A, (—p/A) + Ay C A_. _

We take p € A_. By f(A_/A4) <1,p—(—p/)) € A4. Then p € (—p/A) + At
ie. A C (—u/A) + Ay. Therefore A_ = (—p/A)+ A4, O

We can summarize the conclusion of the function 7(z) just obtained as follows:

(1) The function n(z) is doubly-periodic with periods 71/A, 72/ A.
(2) The set of poles of n is Ay U ((—u/A) + A4), and all poles are simple.

1’ pE A+7
(3) Resyn = {
) R T=0 11, pe (—u/h) + A
By [16 p.449], [6 p.177], the function 7(2) is expressed by the function ¢(z):

Theorem 4.3.

n(z) = A+ M (Az; 11, 72) — AC(Az + p5 11, 72)

where A € C and

1 1 1 z
Clzim,m) =~ + > (=t o+
Ww=m1iT1+mMmaT2
(m1,m2)€Z’\{(0,0)}

Proof. By [16 p.449], [6 p.177], we get

™ T2

B oT1 T2
22—+ )

n(z) = A+ ((z; DY

for some constant A. From [6 p.184]

1
C(Az; A1, AT) = X((z; T1,T2) -

Hence
n(z) = A+ A(Az; 11, 72) — M(Az + p; 11, T2) .

We have thus proved the theorem. [
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Proposition 4.4.
. o(Az)
(p(Z) - exp(Az + B)a()\z + IJ') 9

where A is in Theorem 4.3, and B € C, and

z z 1.z,
o(z;7T,T2) =2 H {(1- *(;) eXP(z; + 5(;) )}
W=m1T1+M2T2
(m1,m2)€Z*\{(0,0)}

Proof. By ((z) = (d/dz)logo(z),
n(z) = A+ diz logo(Az) — iz logo(Az + )
_d , 0(A2)
= Elog(eA a()\z+u))
From 7(2) = (d/dz)log ¢(2),

o(Az)

a()\z-i-,u))—*_B'

log ¢(2) = log(e*

Thus
Az+B 0‘()\2) )
o0z + )

We have completed the proof of Proposition 4.4. O

p(z) =e

Next we shall determine the function c.

Lemma 4.5.
(1) The set of poles of the function o' /o is A* U A_. All poles of &' /a are simple,
and Res, o/ /a =ordp o forp e A*UA_.
(2) (o'/a)(z+p) = (a’/a)(Z), pEA;,2€C.
(3) Respo//aa=1, peA“.
(4) Respo//a=-1, peA_.
Proof.
(1) We note that A_ is the set of the poles of & by Lemma 2.1 (1). By means of

this, we obtain the result easily.
(2) By Lemma 3.1, we get

a(t+u) = a(u)a(t) (VteC,Vue Ay).
Then o/(t + u) = a(u)d/(t). From two equations above,
o(t+u) o)
ot~ al) (Vt e C,Vu € AL).

(3) By Lemma 3.4 (1), if p € A®, then ord, @ = 1. Hence Res,(¢//a) = 1 for p € Ae,
(4) From Lemma 2.1 (2) and Lemma 3.2, we have ord, o = ord,, v = —lforpe A_.
Thus Resp(a//a) =—-1forpe A_. O
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Lemma 4.6. There exists v € C such that A* = (—v/)\) + A..

Proof. Suppose A* = (). The set of the poles of o//a is A_ from Lemma 4.5 (1).
We note that A_ = (—p/A) + A4. Thus, in a fundamental period-parallelogram
for the elliptic function o'/, the number of poles of the function o'/« is one and
the pole is simple. There is no such an elliptic function [16 p.432], [6 p.157]. Then
A® £ 0.

Hence there exists v € C such that —v/\ € A®. Because A® is invariant under
the translation by A4 and §(A%/Ay) <1, we have A* = (—v/A)+A,. O

We can summarize the conclusion of the function (a'/a)(2) just obtained as
follows: -~

(1) The function (¢//a)(z) is doubly-periodic with periods 71 /A, 72/
(2) The set of poles of o/ /a is ((—v/A) + Ay) U ((—p/A) + A4), and all poles are
simple.

(3) Resp o /a = {

Theorem 4.7.

1, p€(~V//\)+A+,
=1, pe(—p/A)+Ay.

o(p; 71, 72)0 (A2 + v; 71, Ta)
o(v; 71, T2)o (A2 + p; 71, )

a(z) = exp(pz)

- for some p € C.
Proof. By [16 p.449], [6 p.177],

a’(z); vV TL T2 b T2
=p+ Mz +v;11,712) — (A2 + p; 71, T2)
d pz 0 Az + V)

= 7z 8¢ oAz+p) "
Thus ( )
_ T AztY
a(z) = Ce —_——a()\z )

From a(0) =1, C = o(u)/o(v). Therefore we obtain

o(p)o(Az +v)

) = et )

This completes the proof of Theorem 4.7. O

Lemma 4.8.

¥(2) = exp((p— A)z — 2B)a(u)0£’; (—,—,)Iv;)((i\(z)\-zi-;)u = '
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Proof. By a(z) = e”*(a(u)o(Az +v))/(c(v)a(Az + p)),

(oI Y) @+ n)o(w)e(\(s 1) +v)
a(s) ~ altats ~ 1) = e (0 ~ ST Moo 06— 1)
— eP? U(“) ) '
= W0+ WoDt+ MG D )
x {o(V)o (Mt + p)o(A(s —t) + p)o(As +v)
—o(As+ po(p)o(At + v)o(M(s — t) + v)}.

We use the three term equation of o below.

o(z +y)o(r —y)o(z + w)o(z — w)
+o(z + 2)o(z — z)o(w + y)o(w — y)
+o(z + w)o(z — w)o(y + 2)a(y — 2)
=0.

By o(—2) = —a(z),

o(wo(As + p+v)o(pn —v)o(At - s))o (M)

a(s) —a(t)a(s —t) = e o2(v)a(As + oMt + plo(A(s —t) +p)

On the other hand,

a(At)a(A(s —t))

plt)pls —t) = 6A8+2Bo()\t +uoAs—t)+u)’

From 9¥(s) = (a(s) — a(t)a(s — t))/(e(t)o(s — t)), we get the desired result. [
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5. Degenerate case, I.
Now we consider the most degenerate case Ay = {0}. The main result of this
section is

Theorem 5.1. If A, =0, then

ar +b

— ¢PT
oz) =e cx+b

for some p, a, b and c € C with b(a — ¢) # 0.
Conversely we deduce the following from some straightforward computation

Proposition 5.2. The function a(z) = e”®(az + b)(cz + b)~! given in Theorem
5.1 satisfies the equation (0.2):

a(2)e (y) — o (2)a(y) = (a(z + ) — a(@)a())(n(z) — n()).

Here n(z) is given by

for an arbitrary constant A € C.
Because of n(z) = (¢'(z)/¢(z)), we have

—_ Az+B T
plz) = e - 5

for an arbitrary constant B € C. Furthermore %(z) is given by

e) = cto-e-sp = Blest 4 Hat )

Now we will prove Theorem 5.1.

Proof of Theorem 5.1. Choose a generic point s € C such that a(s) # oo and
1(s) # 0,00. Consider the meromorphic function of ¢

hs(t) = a(t)a(s —t)
defined on the whole plane C. From the equation (1.1)

a(s) = hs(t) _
p@e(s —1)

we have hy(t) = a(s), if and only if ¢(t) = 0 or ¢(s —t) = 0. The latter condition
is equivalent to ¢t = 0 or s because of A, = {0}. Moreover the function h,(t) =
a(t)a(s —t) has at most two zeroes and at most two poles on C from Corollary 3.3
and Lemma 3.4 (2). Therefore the meromorphic function h, defined on the whole
plane C has three exceptional values 0, co and «(s) for such a generic s. In view of

¥(s) # 0,00,
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the great Picard theorem (see, for example, [5]), the function h, extends itself to a
meromorphic function defined on the whole Riemann sphere C U {o0}.

Recall A% < 1 and §A_ < 1. In other words, we have A® = ) or {¥} and
A_ =0 or {po} for some vy and pg € C. So we have four possibilities:

(A, 8A_) = (0,0),(1,0),(0,1) and (1,1).
Introduce a linear fraction S(z) by

T — 1
and ,
T — Ko T — [o

S(z):=1, z— vy,

respectively. Then we have a(z)/S (z) = e9®) for some entire function g. In fact,
Lemma 3.4 and Lemma 3.2 imply ord,, « = 1 and ord,, o = —1, respectively.
For a generic s, e9(M+9(s=t) — h (£)/S(t)S(s — t) is also a meromorphic function
of ¢t on the whole C U {00}, and furthermore it has no poles and no zeroes on C.
Therefore we have e9()+9(s=t) = ¢(s) for some constant ¢(s) depending only on s.
Differentiating it by the variable ¢, we obtain ¢’(t) — ¢’(s —t) = 0 for any ¢t € C and
a generic s. ’

Consequently the derivative g’ is constant, so that a(z) = Ce”*S(z) for some C
and p € C. Since « is not obvious, we have S # 1. Recall o(0) = 1 from Lemma
2.2. It follows that a(z) = e”®(azx + b)(czx + b)~! for some a, b and ¢ € C with
(a — ¢)b # 0. This completes the proof of Theorem 5.1. [

6. Degenerate case, II.
Finally we consider the singly-periodic case A & Z.

Theorem 6.1. If A, = Z, then

a(e®®/* —1)+b

= "®
@) = e Em R T 1

for some p, A, a, b and c € C with A # 0 and b(a — c) # 0.

Proof. Fix a generator Ag € A.. There exists some g’ € C such that e? *a()o) = 1,
since a(Ag) # 0,00. Remark that e? *a(x) is also a solution of the equation (0.2).
So we may replace a(z) with e?a(z). Then a(X) =1 for all ' € A, so that

(6.1) a(z+ ) = a(z)

for any z € C and any X' € A,.
Choose a generic point s € C such that a(s) # oo and 1(s) # 0,00. Consider
the meromorphic function of ¢

hs(t) := a(t)a(s —t)
defined on the whole plane C. From the equation (1.1)

a(s) — hs(t)

ool —1) ~ Y #Doo
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we have hy(t) = a(s), if and only if ¢(t) = 0 or (s —t) = 0. The latter condition is
equivalent tot € A, ort € s+ A. From (6.1) there exists a meromorphic function
ks = ks(§) defined on C* := C\ {0} such that

he(z) = ks (ez”‘/__lz/)“’) .

From what we have already shown, ks(¢) = a(s), if and only if £ = 1 of e27V~1s/%0,
Corollary 3.3 and Lemma 3.4 (2) imply that k, has at most two zeroes and at most
two poles on C*. Therefore the meromorphic function k,; defined on C* has three
exceptional values 0, oo and «(s) for such a generic s. In view of the great Picard
theorem (see, for example, [5]), the function h, extends itself to a meromorphic
function defined on the whole Riemann sphere C U {oo}.

Recall fA%/A; <1and §A_/A4 < 1. In other words, we have A® = () or vg+A
and A_ =0 or po + A for some vy and o € C. So we have four possibilities:

(ﬁA—/A+a ﬂAa/A-i-) = (0’ 0)’ (0, 1)1 (1’ 0) and (]-a 1)'
Set ¢! := e?™V=1%/%0 and ¢ := e2"V=Tko/do, We introduce a linear fraction S(£)
by
1 -
S(é.) = 1a £_ C’, f_——(—:ﬂ’ and f__—Eﬁ,

respectively. Then there exists some holomorphic function g defined on the whole
plane C such that

a(x) — eg(:z:)S (e2fr\/:_1z/)\o)

from Lemma 3.4 and Lemma, 3.2.

Set &, = e2"V-18/d0 for 5 € C. Then, for a generic point s, the function
ks(€)/S(€)S(€1€) is a meromorphic function defined on the whole C U {co}, and
has no poles and no zeroes on C*. Therefore k,(£)/S(€)S(671¢,) = b(s)é™ for some
function b(s) and some integer n € Z. From the definition of k;,

eI(B)+g(s—t) a(t)a(s —t)/S (621r\/:Tt/)\o) S (621r\/:—1(s—t)/)\o) = b(s) e2mV=Int/ A0

Differentiating it by the variable £, we obtain
| g ) —g'(s—t) — 2m/=In/Ao = 0
for any s and ¢t € C. Hence n =0 and
o(z) = eI g (62”‘/:&/ >‘°) = Cef*S (62“‘/‘_1“/ '\0)
for some C and p € C. Since « is not obvious, we have S # 1. Recall o(0) = 1
from Lemma 2.2. Define ) := )\g/mv/—1. Then we obtain

a(e?®/* —1)+b
(€= —1) b

for some a, b and ¢ € C with (a — ¢)b # 0. This completes the proof of Theorem
6.1. O

By some straightforward computation, we obtain

a(z) = e”
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Lemma 6.2.
a(e?®/* —1)+b

= eP?
a(r) =e c(e2/X —1) +b

satisfies the equation (0.2)

a(z)e! (¥) - o/ (2)e(y) = (e +1) ~ ()a®)) (n(2) — n(v)) ,

where
_4 2)\—162:1:/)\ 2)\—166221/)\
’I](:II) =A+ e2x/\ _ 1 c(eZm/A — 1) +b

far an arbitrary constant A € C.

Lemma 6.3.
621:/)\ -1

c(e?®/> —1)+b’
where the constant A is in the lemma above and B is an arbitrary constant.
Proof. Tt is trivial because of n(z) = (d/dz)logp(z). O

Lemma 6.4.

¥(x)

Az+B

o(z)=e

oo (a— {—ac(®/* — 1) + B2 — ba + )}

—° c(e?®/> —1) + b '

Pvioof. L_E‘rom ¥(s) = (a(s) — a(t)a(s — 1))/(p(t)p(s — t)), we get the desired re-
sult.

Suppose a # 0,b and ¢ # 0,b. Then the solutions stated above are expressed in
terms of the hyperbolic sine function. In fact, there exist 4 and v € C such that

b=a(l -e ),
| b=c(l —e?).

Then we get
a(e®*®* —1) +b
c(e?®/* —1) +b
oz a(e?®/* — 1) +a(l — e %)
T c(e28/A —1) 4 ¢(1 — e—2#)
oo sinh psinh(A~1z + v)
sinh v sinh(A~1z + p)
These solutions are obtained in [1]. '
On the other hand, let a = 0 and ¢ # b, or let a = b and ¢ # 0. There exists
p € C such that b = ¢(1 — e~2#). We note that a(0) = 1, and, as a result,
() — (o-A"V)z sinh u
a(z) =e sinh(\—1z + p)
Next let c =0 and a # b, or let b = ¢ and a # 0. There exist v € C such that
b=a(l — e~%). We note that a(0) = 1, and, as a result,
_ enrhesinh3 s 1)
:  sinhv
The above two cases are not listed in [1], so that we obtain new Lax forms of the
system in [1]. : = '

a(z) = ef”

a(z)
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