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1. Introduction

The motion for the displacement v = u(t,z) of an isotropic, homogeneous, hyper-

elastic material is governed by a quasilinear hyperbolic system,

(1.1) | O2u — AAu — (3 — 2) grad div u = F(Vu, V2u),

in three space dimensions. The material constants‘cl and cy satisfy
0 <y <.

The nonlinear term F'(Vu, V2u) is linear in V2u and will be described explicitly in later
sections. |

It is known from the work of John [10] that the equations have almost global
solutions for small initial data. Moreover, John [9] has proved that, in the spherically
symmetric case, a genuine nonlinearity condition leads to the formation of singularities
even for small initial data, also see [7]. Recently, Sideris [15] has proved that, for certain
classes of materials satisfying a null condition, there exist global smooth solutions with
small initial data. His null condition does not coincide the complement of genuine
nonlinearity condition given by John [9] in the non-spherically symmetric case.

Klainerman {13] has introduced the null condition for quasilinear wave equations
and has proved global existence of solutions by making use of the Lorenz invariance.
John and Shatah have given in [11] an observation on the null condition, that is, the
requirement that no plane wave solution of a quasilinear wave equation is genuinely
nonlinear will lead to the null condition. For the systems of quasilinear wave equations
with different propagation speeds, we have derived from John-Shatah observation a
null condition of new type, see [1]. Moreover, Hoshiga-Kubo [4] and Yokoyama [16]
have proved global existence of solutions to such systems without the benefit of Lorenz
invariance. ‘ |

The first aim of the present article is to derive from John-Shatah observation the
null condition reflected special features of the system (1.1) which is precisely the com-

plement of genuine nonlinearity condition given by John [9]. The second aim is to prove,
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after the characterization of the nonlinear term F(Vu, V2u) by the null condition, global
existence of nonlinear elastic waves without making use of the Lorenz invariance and also
the scaling operator which is used in [15]. The proof is based on energy and weighted
L% — [? estimates. In order to establish these estiamtes, we need a new expression
of fundamental solution for the linear operator in (1.1) and new commutation relations
between the operators div, rot and the angular derivatives with torsion in [10].

The main theorem on global existence is stated in Section 4, after the characteriza-
tion of nonlinear term by the null condition in Section 3. The null condition is derived
from John-Shatah observation for general nonlinear terms containing time derivative
in Section 9. The new commutation relations are given in Section 5. The weighted
L™ — L estimates for the linear operator in (1.1) is stated in Section 6 and is proved
in Section 10. The main theorem will be proved in Section 8, after establishing energy

and 1°° — 2 estimates in Section 7.

2. The equation of motion for displacement

Let ¢(t,z) be a smooth deformation of the material evolving with time. The

unknown of the problem is a displacement from the reference configuration,
u(t, ) = p(t,x) — .

The displacement gradient is then the matrix ¢ = Vu with components G;; = d,u?,
where the spatial g'radient will be denoted by V or grad. For the materials under
consideration, the potential energy density is characterized by a stored energy function

o = o(ki1, K2, k3), where K1, kg, kg are principal invariants of the strain matrix
(2.1) C=G+'G+GG,

where *(; denotes the traspose of G. Thus the motion for the displacement is governed

by a nonlinear system,

¢

do

G

(2.2) 2y — div 0,



that is,
3

0 Oo
2, — R
0; E ():Igd = (:=1,2,3),

for instance see (2], [3].

We make use of the following formula for principal invariants:

K1 = tr(C'
(2.3) kg = —;—{(trC)2 — trC?}
g = é{(trC)?’ _ 3(trC)(trC?) + 2trC3).

Since we will consider only small displacement, it is enough to truncate (2.2) at third

order in u. Then relevant terms in the Taylor expansion of o at x; = 0 are

1
2 3
~011K] + O12K1K2 + 80'111/91 + -

(2.4) 0 = 0y + 1K1 + Oakg + O3k + 5

Making use of the relation
0o dh’k
()G Z 8/% G’
we find from (2.1), (2.3) and (2.4) that

do

BYe = 20'1([ + (;) + 4(0’11 + 0'2)(131' G)[ — 20'2(G -+ tG)

+ 4(0111 + 3012 + 03) (tr G)?T
+ 2(011 — 012 + 03 — 03){2(tr G)G + tr (G'G)I}
— 2(0q2 + 03){2(tr G)'G + (tr G*)1}
— 2(0y — 03)(G? + G*'G +'GQ) + 205 G* G
+ terms of third order and higher.
For details see [15].

We impose the condition o; = 0, which implies the reference configuration is a

stress-free state. The Lamé constants ), i are defined by

A =4(011 + 02), p= —202
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and p, A + p are assumed to be positive. Set
(2.6) cr = (A +2u)Y2, ¢p = /2.

Then it follows from (2.2), (2.5), (2.6) that the linear part of (2.2) becomes the linear
hyperbolic operator

(2.7) Lu = 02u — c3Au — (¢ — ¢2) grad div u.

The material constants ¢; and ¢y (c; > ¢3) correspond to the propagation speeds of
longitudinal and transverse waves, respectively. Thus the truncated version of (2.2) is

formulated by
(2.8) Lu = div H = F(Vu, V?u),

where H stands for the quadratic term in (2.5) and the last equality is the definition of
F.
We will show that the nonlinear term F' has the energy symmetry. To this end, we

rewrite ¢-th component of the nonlinear term F’,

(2.9) F¥{(Vu, V?u) = Z (Vu )OeOmu?
7,€,m=1

so that

(2.10) Cim™(Vu) = O (V).

Here

. 3
(2.11) CoM(Vu)= Y Cimrmdaub.
k,n=1

Then Sideris [15] has proved the energy symmetry condition.

Proposition 2.1.

(2.12) CE™(Vu) = Ci™ (V).



8. The characterization of nonlinear term by the null condition

We first introduce new unknowns
v(t, z) = (Gyu(t, z), Vu(t, z))-

Then we find from (2.8) that the vector v € R12 satisfies a quasilinear system of first

order

3
(3.1) ' ag(v)0ev + Z a;(v)0;v =0,
i=1
which is strongly hyperbolic near v = 0. The precise forms of square matrices ag (v), a;(v)
of order 12 are given in Section 9. We next consider the plave wave solution w of (3.1)

in the form,
(3.2) v(t,z) =w(t,s) s=(-x,

where ¢ - ¢ stands for the inner product of {,2 € R3. Then w satisfies the following

system in one space dimension

3
(3.3) ap(w)Opw + Z ¢iai(w)0,w =0
=1
In Section 9, we will define the genuien nonlinearity for (3.3) and derive the null
condition from the John-Shatah observation for general nonlinear term involving time
derivative. Since the nonlinear term F in (2.8) does not contain time derivative, Propo-

sition 9.1 is equivalent to

Proposition 3.1 The quasilinear system (3.3) is not genuinely nonlinear for any
¢ # 0 if and only if

3
(N); Y CInX XXy XeXmXn =0 for X € R3

ijklmn=1



and
3
3 CEM(IXIE - X2 XeXm X

tkfmn=1

T 3

1

o B Z (Yf;znxixjkangano
15, kfmn=1

for £, X € R? satisfying ¢ - X =0,

where constants Cf;g" are defined in (2.11) .

We call the condition, (N); and (N);, on the nonlinear term F the null condition
for nonlinear elastic waves. We will list typical nonlinear terms in F' satisfying the
condition (N); or (N)a.

Lemma 3.1
(1) Qom(0nt?, u*) = 00,u Opu® — 8,,0,u7 Opu® in F* satisfy the null condition.
More precisely, Qm(0pu?,u*) satisfy

(3.4) Z f;Z"XngXn =0 for any 1, j, k.

{mn

(ii) The components of 8,u*d; rot u and 80, u? rot u in F* satisfy the condition
(N)1, where rot u = V A u.

(iii) Opukdy div u, 8,0,u? div u in F* and F = O,uF grad (d,uf) satisfy the
condition (N)s.

Proof.  The assertions (i) and (ii) are easily verified by the deﬁmtlon of C} "m" The

polynomial corresponding to 8,0, u’ div v in F* is
XiX;XeXm(£-X) for i#7j

or

(X2 = XD X Xm(E - X) for i=j.



The polynomials corresponding to d,u*d; div u in F* and 9,u* grad (9,,u?) are

XiuXeXa{(1X1? - X7) = ) _ X2}
h#1

and
X & XmXn{( X = X3) = 3 _ X7}
hti
respectively. Therefore the assertion (iii) is proved.

We rewrite the nonlinear term F'(Vu, V2u) to be satisfied the null condition. We

first show that the nonlinear term involving o5 and o3 is the sum of null forms of type

(i) in Lemma 3.1.

Lemma 3.2.  Let Q1(u, Vu) be the nonlinear term involving oy and o3.

i-th component Q? (u, Vu) of Q1 (u, Vu) can be expressed by

3
2(02 — 03) Y {2Q5(950°,u") + Qur(9k?, w) + Qi (Bju*,uF)}

(3.5) 3,k=1

3
+ 203 Z {2Q;; ((‘)kuk,uj) + jS((‘)kuj, 'u,k)}

dk=1

Proof. It follows from (2.5) and (2.8) that

@1 (u, Vu) |
(3.6) = 2(0g — 03) div{tr(G*G)I —*GG + 2(trG)G — G — G*G}

+ 203 div{2(trG)2T — 2(trG)* G + (*G)? — (trG?)I}.
Making use of identities
(3.7) div(tr(GG)I)* = ;| Vu)?,

div(t GG = %aﬂvmz + O - Au,

(3.8) div((trG)G)? = div uAu® + V div u - Vu?,
div(G?)* = Au - Vu' + )  0;0,u’d;u*
dik

div(Gt*G)" = V div u - Vu' + Z 0;0ku"Ou?
jk :

Then the
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we have
(3.9) div(tr(GEQ) I — tGG)* Z Qi (90", uF
div(2(trG)G — G% — G*G)
(3.10) = 2(div ulAu — ) 9;0,u 0;uF) + (V div u - Vu' — Au - Vu?)

ik

= 2 {Qs(95u', 1) + Qe (O, u)}
Jk '

Moreover, making use of identities

(3.11) div((trG)2I)* = 9;(div u)?,
(3.12) div(trG)tQ)* = div u 9; div u + V div u - f;u,
div((*G)?)* = Vdiv u - O;u + Z 8;0:uF R0
ik
(3.13) d1v( trG2) 1 28 ukopud)),
we have
(3.14) 2 div((trG)27) — (trG) Q) = 22 Qi (Opuf u?),
(3.15) div((tG)? — (trG?)1)? Z Qjil 0ku u*

Therefore, the relation (3.5) follows from (3.6), (3.9), (3.10), (3.14) and (3.15).
We find from (2.5), (3.7), (3.8), (3.11), (3.12), (3.13) and Lemma 3.2 that

Fi(Vu, VZU) = 4(0’111 -+ 30'12)8,,,(dlv u)z
+ 2(011 — 012){2(div u Au’ + Vdiv u - Vu') + 8;|Vul?}

- 2012{(9i (le ’U,)z + 2V div - (‘)iu + z ab' (f)jukakuj)}
jok

(3.16)
+ Q4 (u,Vu) (i=1,2,3)

Remark 8.1.  Sideris [15] has imposed the condition 017 —012 = 0 and 8(0111+3012)—

12015 = 0, having the coefficients of 4(c117 + 3012) and —20;2 the same nonlinearity



condition. Thus Sideris’ null condition is
g11 — 0192 — 0 and 20’111 -+ 30’12 = 0.

We next show that F'(Vu, V2u) can be written by using the terms div u and rot u,

except for the null forms of type (i) in Lemma 3.1.

Proposition 3.2.
F(Vu, V?u) = 2(20111 + 3011 )grad(div u)?

(3.17) + 2(011 — 012)(grad|rot uf? — 2 rot(div u rot u))
+ Q(u, Vu) |

where () = Q1 + ()2 and

(3.18) Qi (u, u) = 4(011 — 2012) Y _(Qar(u*, 0507 ) — Qjx(u?, 0u?)).
ik

Proof. The fundamental identities for vector fields

Ay = grad div u — rot rot u,

|Vu|? = |rot u|® + Z(‘)jukakuj,
ik |
Vdiv - Vul = —(V divu A rot u)® + V div u - diu

yield
2(div uAu® + Vdiv u - Vu') + 8| Vul?
(3.19) = §;|rot u|? — 2 rot(div u rot u)® + 9;(div u)?
+2V divu - 0;u + 0; Z (‘)juk(‘)kuj.
jk

It then follows from (3.16) and (3.19) that
F¥{(Vu, V2u) = 2(20111 + 011 + 4012)9;(div u)?
+ 2(011 — 012){(Bs|rot u|?> — 2 rot(div u rot u)*}

+ 2(0’11 - 2012)(2Vdiv U - 8iu -+ 81 Z 8ju’°6kuj)
ik

(3.20)

+ Ql (u, V’U,).
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Making use of indentities

Vdivu-0u=divu 9; divu — Z Qik((‘)juj, uk),

ik
0; Z O;ukOu? = 9;(div u)? + QZ Q;x(05u”,ud),
gk ' Jjk

we conclude combining (3.18) and (3.20) that Proposition 3.2 is valid.

Now we made ready to state the first aim of this paper.

Theorem 3.1.  The nonlinear term F(Vu,V2u) satisfies the null condition if and

only if
(321) 20'111 + 30'11 =0.

Proof.  We find from Lemma 3.1 that the nonlinear terms in (3.17) except for grad
(div w)? satisfy the null condition. Note that the condition (N); implies C%# = 0 for
i = 1,2,3. Since the coefficient of 9;u’0?u’ in F; corresponds injectively to the one of

X8, it follows from the condition (N); that 2011 + 3071 = 0.

Remark 3.2.  John (9] has proved that if 2017 +301; 7# 0 then spherically symmetric
solutions of (2.8) with small data blow up.

Remark 3.3. The nonlinear term grad(div «)? satisfies the energy symmetry condi-

tion (2.12) in Proposition 2.1.

4, lobal existence theorem

Assume that the nonlinear term F'(Vu, V2u) satisfies the null condition. Then, from
(2.8), Proposition 3.2 and Theorem 3.1, we can formulate the initial value problem for

nonlinear elastic waves:
O2u — 2Au — (2 — 2) grad div u

(4.1) = 2(011 — 012)(grad|rot u|? — 2 rot(div u rot u)) + Q(u, Vu),
u(0,z) = ef(x), Owu(0,z) = cg(z),
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where f,g € C°(R?) and ¢ is small positive parameter.

The second aim of this paper is to prove the following

Theorem 4.1.  There exists a positive constant £y such that the initial value problem

(4.1) has a unique global in time C'*®°-solution u for any £(0 < € < gg).

5. Notations and commutation relations

The space-time gradient will be denoted by
0= (607 a17 82, 83) = (80’ V),

where
.9 0
D=0=75 %=g,

The angular momentum operators are the vector fields

(i=1,2,3)

Q= (91,92,93) =z AV.

Then the spatial derivatives can be decomposed into radial and angular components

(5.1) V= 1‘—((9,» - iz NS, where r =|z|, 0, = z . V.
r T r
We also use the vector fields
Q=QI+U

where

0 0 O 0 0 -1 0 1 0

Ut=10 0 1]|,U2=[0 0 0 |, U%=|-10 0
0 -1 0 1 0 04 0 0 0/

The seven vector fields will be written as

= (FOJ'” 7F6) = (879))
I' = (Fo,- -+ ,T) = (01,).
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The commutator of any two Vs is either 0 or V. By I'*,|a| = &, will be meant an
ordered product of k vector fields 'y, ---T'g, .
The linear hyperbolic operator L in (2.7) commutes with any . Moreover, wave

operators 82 —c?A (i = 1,2) also commute with any I'. The new commutation relations
- (5.2) Q grad f = grad Qf, divQu=Q divu

for any scaler f and vector field u play a crucial role for handling the nonlinear term
grad |rot u|?.
Applying div and rot to the equation (4.1), we get
02div u — ¢ A div u

(5.3)
= 2(01; — 012)Alrot ul? + div Q(u, Vu),

O%rot u — c3A 1ot u
(5.4) : :
= — 4041 — 012)(rot)?(div u rot u) + rot Q((u, Vu),

In order to weighted L>®° — L? estimates for the solutions u, div u and rot u of (4.1),

(5.3) and (5.4), respectively, we adopt the following weight functions

wi(t,r)y = A4+ryA+|at—r]) ((=12),

9.5
(5:5) w(t,r) = m{nzwi(t,r), r=|z|.
=1,

We also use the following norms for a vector field u

Vulee= Y sup sup{)_ [w(s,|2|)[*d;u(s, )|

3
la|<k 0< 3Lt z€R: =1

IVus)lle = D D IIT0u(s, )lz2@s),

(5.6) la|<k i=1
3
1ou(s)le =Y D IT%au(s, )|l 2@e),
la|<k =0
|ullk,e = sup ||u(s)][x-

0<s<t
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Here |v| stands for the norm of v € R? (d > 1).

6. Weighted L®° — L™ estimates

In order to establish weighted L — L™ estimates for the solution u of (4.1), we

make use of precise expressions of solution to the homogeneous linear problem

Lv = 02v — c3Av — (¢ — ¢3) grad div v =0,
(6.1)
v(0,2) = 0, dw(0,z) = g(x).

Proposition 6.1.  The solution v of (6.1) is expressed in two manner:

2 i N
vi(t,x) = yp /le 9" (z + catw)dS,,

2 3
¢ . :
(6.2) T Z 17t ‘/[ - wj Z wrg® (@ + cjtw)dS.,

k=1
t ci
— —/ _1d7' Z (bsk — Bwiwg )¢ k(.l + Tw)dS,

and

t [ :

v(t,z) =— / 9(z + c1tw)dS,,

4:7T ]w| i

(6.3)

t

1 ly| 3y A (rot g)(x + y)dy.
T Jegt<|y|<ert

The expression (6.2) is standard (for instance see [10]). The new expression (6.3)
will be used to get a good decay of the nonlinear term grad|rot u|2. Here we will prove

first (6.3) and then (6.2) for the completeness.

Proof of Proposition 6.1. 'We observe that each component v* of the solution v satisfies

the scaler equation of fourth order

(02 — AN)(02 -~ AAW' =0
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which can be solved successively first for (02 — c2A)v® and then for v¢. The solution w*
of the wave equation

2w — c2Aw' =0
with initial values
w'(0,2) = 0, dw*(0, ) = (cf — ¢3)(9; div g — Ag*)(2)

is expliéitly expressed by

2 _ 2
cf —c5

w(t,z) = / t(8; div g — Ag®)(z + egtw)dS,,.

fw]=1

Thus we find that the solution v of (6.1) is expressed by

t 2—c2 [t
v(t,z) = - / g(x + c1tw)dS, + (1477)22 /0 (t — s)dsx
(6.4) =1
X / / sh(z + c1(t — s)¢ + casw)dS,dSe,
[¢l=1|w|=1
where

h = grad div g — Ag.

We make use of the fundamental identity for iterated spherical means

1
/ / (@ + ¢ + pw)dS,dS,

(4m)?
l¢i=1 fwl=1

(6.5) r+p

1 .
87rrp/)‘d)\ / o(x + Aw)dS,

P |w}=1

(for instance, see [5]). Then, it follows from (6.4) and (6.5) that

i
o(t,2) = o / g(@ + c1tw)dS,,
lw|=1
(6'6) c1(t—s)+cas

02 _ 02 t
+ 2 / ds / Ad) / h(z + dw)dS,,.

87('61(,'2 0

le1(t—s)—cas| jw]=1
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Denote the second integral in the right hand side of (6.6) by J(,z). Then, inverting
the order of the (s, ) integral yields

2 e X ,
J(t,x) —47\'0102_/ AdA / (grad div g — Ag)(z + Aw)dS,

lwi=1
7
+ o (—A2 + c1t))dA / (grad div g — Ag)(z + Iw)dS,,
' cat ' jw|=1
G- C /CZt( rad div Ag)(z +y)d
~ dmeicy 5 g g g y)ay
1 cit
~Tre B (grad div g — Ag)(z + y)fly
N 12 / (grad div g — Ag)(z + y)dy.
dm |
czt<ly|<cit

Making use of the divergence theorem, we have

1 1 ,
J(t,x) :47r02 / &y Arot g(x + y)dSy
lyl=cat
1 1 .
(6.7) e o YATot g(@ +y)dSy
lyl=c1t
t rad div g — Ag){(z + y
pLo ]k = oo+l
cet<|y|<cit
Since , '
0; div g — Ag* . [ 0;9g —grad ¢* 1 N E oo i
i g g :le< i9 g J)+ Szyk(digk_dkg)y
[yl lyl yl® 4
it follows from (6.7) and the divergence theorem that
t -
(6.8) Jew =5 [ Wy aret gle+u)dy
cat<ly|<est

which implies (6.3).
On the other hand, it holds that
9172 " yk(0ig" — Okg’)

k

= {0:(1y1®yrd®) — Oyl *yrg®) — g (Gulyl™® — 3lyl ™y ye)}
k
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Integration by parts yields

Zé? / D {0:lyPyk ) — Ok(ly~3yk 9%)}dy

cat<y<cit K

(6.10)

¢ . ¢ .

:E / wizu}k gk(a:—f—cltw)dsw ~ I / ¢z + crtw)dS,,
wi=1 ~ F . jwl=1
[

t .
I w; ;wk gz + cotw)dS,, + e / 9" (z + catw)dS,,.

lwl=1 jw|=1
Therefore, the assertion (6.2) follows from (6.6)-(6.10).
Let u be the solution of the problem
Lu(t,x) = F(t,z),
(6.11)
(0, ) = Opu(0,z) = 0.

Then, by the standard expression (6.2) and the Duhamel’s principle, we get

t
ui(t, z) = 11;/(; (t — s)ds / F'(s,2 + ca(t — 8)w)dS,,

lw|=1
(6.12)

1< , t 3

+ 4—‘ Z(——l)ﬂ—l/ (‘t _ s)ds / w; Zwk Fk(s,a; + Cj(t _ s)w)dSw
" j=1 0 w|=1 k=1
1 " c1(t—s) 3

— E/ (t — S)dS / T_ldT / Z(ézk — 3wzwk)}nk($ + TCU)dSw.

° ca(t—s) lw]=1 k=1

Let I be the infegral operator defined by (6.12). Then we have
(6.13) I(F)(t,z) = u(t,z), I(VF)(t,z) = Vu(l, ).
To describe weighted L°° — L°° estimates, we introduce some notations
205, 0) = (1+ ]z~ M)(1+ 5+ A", e =0,
(6.14) M) (@) =3 sup sup Iyl (s, ly) T (s, ),

o<k 0Ss<StyeR?

(j=0,1,2).
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Here ¢ is a scaler or vector valued function.

The following proposition will be proved in Section 10.

Proposition 6.2. It holds for some positive constant C' depending on ¢y,cy and [

that

(i) [I(F)(t,z)| < C(L+t+|z]) " (log(2 + £))2MY) o (F),
(ii) (I@F)(t,2)| < Cuw(t,z)" (log(2 + 1))2MY) | (F),
(ifi) [1(0F)(t,2)| < Cw(t,z) MY (),

(.] :071727 l’l' > 1)’
where the weighted function w(t,r) is defined in (5.5).

Let u; be the solution of the problem

O2v; — 2 Av; = h(t, z)
v;(0, ) = Gpv;(0, ) = 0.

Then, it is known that

t
(6.15) vi(t,z) = ﬁ/ (t — s)ds / h(s, 2+ c;(t — s)w)dS,,.
0

|w|=1

Let I;,7 = 1,2, be the integral operator defined by (6.15). Then we have
(6.16) L(h)(t, @) = vi(t,z), L(VRh)(¢t,z) = Vus(t, 2).

Moreover, the new expression (6.3) ‘and the Duhamel’s principle give an important

formula

(6.17) I(grad @) (t,z) = [1(grad ©)(t,z)

To obtain the weighted L™ estimates for the solutions div u, rot u of (5.3), (5.4)

and the nonlinear term grad|rot u|2, we will use the results of Proposition 3.1 in [16].
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Proposition 6.3. It holds for some positive constant C' depending on c¢y,co and i

that

(i) |L(00)(t, z)| < Cws(t, |z]) " log(2 + )MY) | (),
(i) |1(09) (¢, 2)] < Cwy(t, ) MY, ()

for =0,1,2 and p>1
and

(i) L@0)(t,2)| < CA+ |a)) 711 + et — [2l) MY, 1 (9)

HyV,

for v>0, p>1 and j#i.

7. Weighted L>® — [? estimates

In this Section, we will establish the L>° — L2 estimates for the solution u of (4.1).

Proposition 7.1.  Let u be the solution to the initial value problem (4.1). Then
there exists a positive constant C'y depending on N, initial values f, g and propagation

speeds c1, ¢y such that
(7.1) o - [Vulng < Cn(e+ [ Vullyyr),
provided € < 1 and [Vu]yn4s)/2),t < 1.

Proof. Let ug be the solution of the homogeneous equation

Lup = 02ug — c3Aug — (¢ — c2)grad div ug = 0,

(7.2) _
uo(0,x) = “f(:l,), Oiup(0, 2) = eg(z).

Since I commutes with I, we find successively from Theorem 1 of [10] that

(7.3) IT%ug(t, z)| < Cyew(t,|z|)~r for |a] < N.
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Applying div and rot to (7.2), we have

07 div ug — AA div ug =0

(7.4)

div ug(0,2) = e div f(z), 0 div uo(0, z) = € div g(x).
and

0?7 rot ug — c2A ot ug = 0
(7.5)

rot ug(0, ) =< rot f(z), 0 rot ug(0,x) = € rot g(z).
Since wave operators 07 — c2A, ¢ = 1,2, commutes with T, it follows from Theorem 1
(i) of [12] that
7@ div ug(t, 2)] < Cyewy (¢, |z])~t
(7.6) ~ for |a| < N.
IT® ot ug(t, )| < Cnews(t, |z])~*
Set

(7.7) U = U — Up

and apply I'® to (7.7). Then, [u, satisfy the equation in the form

LTy = Y Cupl®F
(7.8) bi<lal
%4 (0, 2) = 8,T%u; (0, 2) = 0.

Here the nonlinear term of (4.1) is denoted again by F' = F(Vu, V?u). We define a
weighted function z(s, A) by

2
(7.9) 2(s, )71 =Y 2 (s, )7
‘ j=0
Note that I(0;F') = O;u, because F'(0,2) = 0. Then it follows from (6.13), (7.8), (7.9)

and Proposition 6.2 (i)(ii) that

IT%u; (t,2)] < Cn(1 4+t + |z)) " (log(2 + t))2 My (F),

(7.10) i
0T s (t, 2)| < Cvw(t, []) (log(2 + )2 M4 (F),
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for |a| < N where

Mk(F) = Z Sup sup lylZ(S, 'yl)yra F(VU,VZU)(S,y)|
laISkOSSSt yER3

Making use of Sobolev inequality (see [14])
yl If@) < C | Y 19 lle@sy + Y, 110:0°f 2z
laj<2 laj<1
and the fact that z(s,y|) < C’w(s, ly]), we have
lyl2(s, WIVIPu?(s,9)] [V (s, )| < Co[Vulprsay el Vullkya
for |b| + |¢| < k,0 < s < £, which implies
(7.11) M (F) < Ck[vu][(k—l-l)/z],t IV kts.z-

Thus, we find successively from (7.3), (7.7), (7.10) and (7.11) that, for |a| < N,

IT%u(t, )| < Cw (1 + ¢ + [2])~(log(2 + £))% x
(7.12) |
X (e + [Vulivs1y/21,e1  Vull v ga,e)s

|0 %u(t, x)|
(7.13) ~ , -1 2/
< Onw(t, [2])” (log(2 +1))%(e + [Vulyva2) /21,6 VUl Na,e)-

Since I'* div F' a.nd I'* rot F' can be written by a linear cdmbilnation of termé
VIF® for |b| < |a| and i=1,2,3,
we find from (5.3), (5.4), (7.4), (7.5) and (7.7) that
afradix} u ~ EATdivuy = Y CapVIPF,

[b<lal
(7.14) Fy = 2(011 — 012)grad |rot u|? + Q(u, Vu)

I“div u; (0, 2) = 0,T'*div u;1(0,2) =0
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and
O2T%rot u — AT rot u = Z Coup VI Fy
b|<lal
(7.15) Fy = —4(011 — o12)rot(div u rot u) + Q(u, Vu)

IMrot u(0, z) = 9;T"*rot u(0,z) = 0.

Hence, it follows from (6.16), (7.14), (7.15) and Proposition 6.3 (i) that

ITediv uy (¢, z)| < Cyw(t, |2)) "t log(2 + t) M1 (Fy)

(
(7.16)
IT%rot uy (¢, z)| < Cywa(t, |z]) "t log(2 + t) My 41(F3).

Therefore, by the same argument to obtain (7.13), we find from (7.6), (7.7) and (7.16)
that

7% div u(t, x)|
(7.17) . ‘
< Cnwi(t,z)” log(2 +t) (E + [VU][(N+2)/2],tHVUl|N+4,t) ,

IT® rot u(t, z)]
(7.18) } 1
< Cnwa(t, )" og(2 +1) (e + [Vuyvaz) 21 Vel v yar)
In order to remove log terms from the inequalities above, it is necessary to further

analyze the nonlinear terms. The following pointwise estimate follows from (5.1).
(7.19) |Qem (Opu?, uP)| < Cr=1(1QVYY| | VU] + [V2u| [QuF)).

Let A; be a conic neighbourhood of i-th characteristic ¢;t = |z| such that A; N Ay = 0.

For instance, set

A= {(t.0); glal < ext < 52+ D)),
Ay = {(t, 2); %(2 + ;—j)lzl < et < 2|zl }.

Then we find from (7.12), (7.13), (7.19) and Lemma 2.1 of [13] that, for ({,z) € A; UAs,
IT*Q(u, V)
(7200  S<Cn(t+1+lal)™{min(1+ et — f2])} " (log(2 + 1) x

X (5 + [Vl (v 4a) /2],t“qu?V+5,t)
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provided ¢ < 1 and [Vu]jn4s)/2),+ < 1. Note that {,m%n2 (1+]e;t —|z||)}~ ! is equivalent
=1,

to
1 1

_+_
L+ et — el 14 |cot — |||
Then, for (¢,z) € (A; U Ay)¢, the estimate (7.13) yields

DUQu, Vi) <Oy ) [VIbu| [VI%|
[bl+le| <N +1

(7.21) < On(L+ |2) 721+t + |2])~2(log(2 + 1))* %

X (& + [Vl ynsay /o 1Vl ps.e) -
Moreover, the estimates (7.17) and (7.18) yield
IT'® rot(div u rot u)|
(7.22) < Cywi (L |2]) " Twa(t, [2]) " (log(2 + £))%
X (5 + [V’U][(N+3)/2],t”V“|[§v+5,t)
Note that
wy (8, x)we(t, )

S (*{ (I+t+ 2P+ et — |2|)  for (t,2) € A;
=l (A + |2])2(@ + L+ |a])? for (t,z) € (A; UAp)e.

Therefore, it follows from (7.20), (7.21) and (7.22) that
T*Q(u, Vu)| + |I'* rot(div v rot u)
SON{(L+ £+ ) T 2) 7+ 220 |2) )+

+ (L4 2) 72U [2) 7Y (e + [Vadiovisy ol Vel rs,e)

for |a] < N and for some p > 1.

(7.23)

Since (7.23) gives the estimates of Fj in (7.15), we find from (7.6), (7.7), (7.15) and
Proposition 6.3 (ii) that
IT® rot |

(7.24) -, , ,
<Cnwa(t,|z]) (5 + V] (vpay /21,6 VUl X 16.t) 5
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which implies
IT¢ grad|rot u/?|
v —-1_(0 —1.(2
<ON{L+1al) 720 5 o (4 L) + (L + L+ [2) 2222, 2l)}

(7.25) )
X (E + [V [(N+4)/2],t|[VUHN+6,t)

for |a] < N.
Since (7.23) and (7.25) give the estimates of F} in (7.14), we also find from (7.6), (7.7),
(7.14) and Proposition 6.3 (ii) (iii) that, for |a|] < N,
(' div u|
(7.26) . i .
<Cnw1(l, |2]) (E + [V“][(N+5)/2],tlIVUHN+7,t)

Applying T to (7.7), we find from (4.1), (5.2) and (7.2) that

LT%u; = T°Q(u, Vu)
(7.27) + 2(011 — o12){grad T'®|rot u|? — 20%ot(div u rot u)}
%3 (0, 2) = 8,1%u1(0,2) = 0

Making use of (6.13) and (6.17),

V%, (t, ) = I, (Vgrad T%rot u|?)(t, 2)
(7.28) ) )

+ I(—2VIrot(div u rot u) + VI'*Q(u, Vu))(t, x),
where we normalize 2(o17 — 012) = 1 for simplicity. Since (7.23) and (7.25) give the
estimates of the nonlinear terms in (7.27), we find from (7.3), (7.28), Proposition 6.2
(iii) and Proposition 6.3 (ii)(iii) that, for |a| < N,

|VT%u(t, z)|
(7.29)

<Cyw(l,|z])~?! (s + VU] v+5)/2),t] v’“’”?\f+7,t) ’

which implies the estimate (7.1).

8. Energy estimates and proof of Theorem 3.1
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John [6], [10] has proved that the initial value problem (4.1) has a unique local in
time solution u(t, z) of class C™ and u(t, ) is of compact support in z. More precisely,
if

flz)=g(x)=0 for |z|> R,
then
u(t,z) =0 for |z| > R+ c¢qt.
We first prove the following

Lemma 8.1 Let u be the solution of (4.1). Then there exist positive constants A and

C'y such that
(8.1) Oull%, < Cne(1 + )V IVelivin szl
provided |Vu(s,z)| <X for 0 < s <t, 2 ¢ R3.

Proof.  The nonlinear term F'(Vu, V2u) in (4.1) can be written in the form

(8.2) FY(Vu, VZu) = Z D™ (V)00 1!

7.f,m=1

where each I)fjm (Vu) is a first order homogeneous polynomial of Vu. Proposition 2.1 and
Remark 3.3 yield that each matrix D*™(Vu) = ( D{™(Vu)) is symmertic. Corresponding

to a given solution u(t, ) of (4.1) we introduce the linear differential operator matrix

(8.3) L=L=) D"™(Vu)dOm.

£,m

Making use of the symmetric condition on the C*™(Vu), we obtain an identity valid for

vectors v(t, x) (see [10]):

3
(8.4) Y 0aQa(dv) = 2 {(Bov) Lo +q,

a=0
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where Q and q are quadratic forms in the first derivatives of the components v? of the

vector v:
(8.5) Qo =|00v|? + 2|Vv|? + (2 — c2)(div v)?
3 .
+ 3 HO) O™ (Vu)my,
£,m=1
(8.6) Q; = — 22 H(9ov)(0;v) — 2(c2 — 3)div v Dg v;
3
—2) " (8ov)CH*F (Vu)dgv,
k=1
3
(8.7) g= —2 ) Y0v)(0:C™(Vu))Om.
l,m:l‘

Here ‘v again denotes the transpose of v.
We find easily from (8.5) that there exist positive number v,  depending on ¢y, ¢2
and A such that

(8.8) v|ov|2 < Qo < plovf? for |Vu| <A and all v.

By integrating the identity (8.4) over R? we find from (8.8) that

- 1/t ,
(8.9) lov(1)||2 < /—lHB’U(O)H% + ~/ ds/ (2 *(Oov) Lo + q)d.
v v Jo B3
We apply (8.9) to v = I'%y, |a| < N and sum over a. Since
3
CLT%) = ) [, C(Vu)ddmluy,
£m=1

it follows from (8.7) that

|L(Tu)| < COn|Vulyvr1)/2|0uln

1g(T® )| < C|Vul; |07 uf?.

Therefore, we find from (8.9) and them that
)3 < Cn(1|8u(0)] R+

(8.10) t 1
+ [Vl o / (1+ 5)~Y|0u(s)

[vds),
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which implies (8.1) using Gronwall inequality.
We next prove the following proposition which guarantee together with Proposition

7.1 the global existence of solutions with small data.

Proposition 8.1.  Let u be the solution of (4.1). Then there exists positive constans

An <1 and C% such that
(8.11) [|0u]| e < Chre,
provided [Vu|[(n+6)/21,t < AN-

Proof  Applying I'%, |a] < N, to (4.1), we have LT'%y = TeF(Vu, V2u). Integrating

the inner product of 9;,I'*v and this equation, we observe that
~ ~ t ~ ~
(8.12) E(OI%u)(t) = E(0Tu)(0) +/ ds/ TeF - 0, du,
0 B3
where

e 1
(8.13) E(0u)(s) = 5 / (10gu)? + 3| Vul® + (2 — c2)|div ul?)(s, 2)d.
R3
~ The commutation relation (5.2) and integration by parts yield
(8.14) / [grad|rot u|? - 9,[%u do = —/ I'*|rot u|?8,I%div u dx.
R3 =3
Then we find from (8.14) and the definition of F' that the integral in (8.12) is equal to
t 5 N
/ ds | {I'*(2(011 — o12)rot(div u rot u) + Q(u, Vu)) - 8;I"u
0

B3
— 4(011 — 012)T?|rot u|?0,I"*div u}dz.

(8.15)

Making use of (7.13), (7.17), (7.18) and (7.23), one can verify that the integrands in
(8.15) are estimated by '

2
N (L4 8) T 22O (1 s — o) TR
j=0

x (e? + [Vul(v4ay/a),s] V“[|13v+5,s)

(8.16)




27
for k > 0, provided [Vuljn43)/2,t < 1. Therefore, we find from Lemma 8.1, (8.12),
(8.13) and (8.16) that
¢
[1ou(®)||A < Cne?(1 +/ (14 5) 1 =FONIVUliN o) /21,0 ),
0
which implies Proposition 8.1, by taking Ay as

AN S min(l, )\, /{/2 ,./YN). :

Finally, making use of Proposition 7.1 and Proposition 8.1, we will prove Theorem

4.1. Take €' > max(C'3,C%;) large enough, so that [Vu]i39 < Ce. Then there exists

= T'(e) > 0 such that the solution u of (4.1) in a slab [0, 7] x R? satisfies [Vu];3 1 <

2Ce. Set g9 = Ag0/2C*. Suppose that 7%, maximal of T above, is finite for & (0<e<
€0). Then [Vu]ia 1 tends to 2Cc as ¢ — T*. However, Proposition 8.1 yields

HdU,Hzot < ('élog, <Ce for t< rf'*,
because [Vu]13,7 < Ay by the choice of ¢g. Thus Proposition 7.1 yields
(V)17 < Ce+ C%e* < Ce(1 + Cegp < 3Ce/2,

which leads to contradiction.

9. The null condition

We consider in general the nonlinear term F'(du,d?u) containing time derivatives
instead of F'(Vu, V2u) in (2.8), where 8 = (0o, V), 9o = 0. Thus the quasilinear system
considered in this section is expressed in the form

3
o 2.2

i"f(

a7 (u)0a9pw =0 (i =1,2,3),

S
= uM‘”

a = a’e *(Ou).
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We assume that

a0 (0) =1, aj(0) = —cf, o] (0) =~ (i #))

(9-2) aj(0) = —( - B)/2 (i #4) for i,j=1,2,3

and af‘jﬂ (0) =0 otherwise,
so that equation (9.1) reduces to the linear elastic wave equation
Lu=02u— AAu — (2 — 2)grad divu =0

for infinitesimal «.

Set
(9.3) v ="l vEe?), vi=(0ut) - 1,2,3.

Then the vector v € R1? satisfies a system of first order

3

(9.4) , Z a®(v)0qv = 0.

a=0

The 12 x 12 matrices a*(v) are partitioned into 9 blocks

o pe. s
(95) a (/U) - (bij7 ? l .} - 17 27 3)7
where
00 10 11 12 13
x \ 0 2%;‘ a; o a5 g
W, = b =1 U
v 0 ij Y 0 0
20 ,21 22 23 30 31 .32 33
2aij a;;  a;; A 2‘%’;’ a;;  ais Qg
K —bij 0 R 0 0

We next consider the plane wave solution v(t, z) of (9.4)

(9.6) v(t,z) =w(t,s) s=(-x
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where ¢ - 2 stands for the inner product of ¢,z € R3. Then w(i, s) satisfies a system in

one space dimension
Oyw + a(w)d;w =0,
9.7 5. .
6.7 a(w) = a®(w)? Z G at(w).
i=1

We shall investigate, near w = 0, the eigenvalues A = A\(w) of the matrix a(w) and

corresponding right eigenvector £ = £(w). Set

3
_ 4,00 § k0
k=1

) 3
kE _ E : ket
=1

Then it follows from (9.5), (9.7) and (9.8) that

9.8)

3
(9.9) : a®(W)A =) G at(w) = (b;(N))
=1
where
a; ay 4y af
Géi My 00
9.10 bis(N) = | X 7 7
(9.10) L I A A VIR

(b O 0 A8y
By adding to the first, fifth, nineth column of the matrix (9.9) (1 + ¢)-th, (5 + ¢)-th,
(a + i)-th, column multiplied by —A~1¢; (¢ = 1,2, 3), respectively, we find from (9.8),
(9.9) and (9.10) that |

R |

(9.11) det(a®(w)A — ) ¢ af(w)) = Adet(pi; (\))
=1

where

3
pi(N) = aigh = 3 afiG
(9.12) . 3 3
=X -2y alG+ Y kG
k=1

k,i=1
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From the assumption (9.2) on ag; #(0) and (9.12), we get, at w = 0,
Pi(A) = X = SI¢° — (] - 3) ¢,

9.13)
pii(N) = (G —3)G¢ (@ # 9),

which implies

(9.14) det(a®(0)A — Zcz = &SP - GICP)?.

Therefore; we find from (9.11) and (9.14) that there exist eigenvalues A\F(w), )\g:,l(w)

and )\gt’z(w), aside from the trivial multiple eigenvalue A = 0, such that
(9.15) X (0) = %e1¢l, AF1(0) = A5, (0) = £z

We look for the eigenvectors £ = £(0) corresponding to the eigenvalues 0, +¢;|(].
Making use of the assumption (9.2) on aaﬁ (0), we have from (9.8) and (9.10) that the

matrices b;;(A) at w = 0 are in the forms:

A di(¢)
bis(A) = 2 3 ())\ 8
3 0 0 A
with
d1(¢) = (3G, By 3Ca)
da(C) = (3G, ¢1a, €3C3)

d3(<) = ((:2C17 (:§C27 C%C?»)

and the first row d12((), d13(¢) and da3(¢) of

(916) b]_z()\) - {)21(/\), blg()\) = b31 ()\) and [)23()\) = b32()\),

respectively, is only non-zero and
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According to (9.3) we arrange the components of £ as follows,
E=(4 & 8%, &= (& &, &, &)

Then, from (9.10) and (9.16), one can verify after a bit of calculation that the eigenvec-

tors fit and fgz corresponding to +¢1|¢| and +cy|(| are

(9.17) & = (FalllG, Gés FaldlG, G6; Feildlts, GG)
and
(9.18) & = (Fealllen, & FealClea, G5 FealClls, 3G)

for £-¢ =0,

respectively. The eigenvectors corresponding to A = 0 are
- (0,£;0;0), (0;0,;0), (0;0;0,¢)

(9.19)
for £-(=0.

Therefore, we observe from (9.17)-(9.19) that there exist twelve linearly independent
eigenvectors at w = 0. Thus the system (9.7) is strongly hyperbolic near w = 0.
We also look for the gradients V,A\F and V,, (05, + Azi’z) at w = 0. From (9.13)

and (9.15) we have

Pi(AT(0) = (3 — B)(I<1? - &),

Pii(AT(0)) = —(2 — B¢ (i # j)
which leads to

cof(ps; (AT (0)) = (¢} — B)ICI2¢:¢y).-

Then, differentiating det(p;;(A\f(w))) = 0 in w?, and evaluating after at w = 0, we

obtain

(9.20) Z D(i; (A7 (w)) lw=o G5 =0,

,j=1
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where D denotes one of 8/0w},. From (9.12) and (9.20), we have

+ 261 |CR(DAF)(0) = — Y GG{AICR (Da®)(0)
9.21) H
F 2¢1|¢] Z(Da’“0 )r + Z(Da )(0)CxCe}-
k

From (9.21), (9.13) and (9.15),

sz()‘ £(0) = —(cf ~ )G
cof(pi;(A5;(0)) = (0),
Opii(A5,,(0)) = %eal(]
Orpii (V4 (0)) =0 (i # )
for K =1,2. Assume that D()\rff’l('w) + )\zi,z(w)) exists at w = 0. Then, differentiating

the identity
0y det(p;;(A)) I)‘Z)‘2i,1(w) + 0x det(ps;(N)) |A=A;‘f2(w) =0

and evaluating at w = 0, one can verify after a bit of calculation that

> Dpag,) + pis(32)lw=o(IC ~ )+
(9.22) e
+Y_ Dpi(03) + Pii(A5))lw=o i = 0.
i#]
From (9.12) and (9.22), we have
=+ 2622 D(A5; (W) + A5 5 (w)) w0

=—Z(l<lz—cf>{c2|c!2wa )(O)q:c2|<|2(Da ?)(0)¢k

(9.23) ZDa’“ (0)¢kée} — Y Gi¢ifeal¢2(Dad?)(0)
i#]
¢c2|ClZ(Da ?)(0)¢ +Z Daff)(0)¢kCe}-
k

Therefore, we conclude that the derivative D()\gf1 (w) + Azi’z (w)) exists at w =0 and is
determined by (9.23).



33

Now we made ready to state the genuien nonlinearity.

Definition 9.1.  We say that the system (9.7) for fixed { # 0 is not genuienly

nonlinear if and only if
(9.24) & Vodflw=o =0 and & - V(O] + Afy) lw=0 =0,

where {11 and fgz are defined in (9.17) and (9.18), respectively.
We will prove the following

Proposition 9.1.  The quasilinear system (9.7) is not genuienly nonlinear for any
¢ # 0 if and only if

3 aa;‘f’ 8u)
z Z d A |3u—0 X X; XkX XﬂX =
(N)l 7.7,k 104,,3,’)’ 1]
for (X07X1,X2,X3) satisfying X2 — ¢/ X[ =0
and '
3 af
0a;” (Ou
>y i lowmo (XP — X)X XX,
8(8
k= 1a,B,fy— .
()2 5. 8a2P(0u)

Z > a” !au_oXX£kX XX, =0

7.7»": 1 ,8,v=0
i#j

for &, (Xo, X1, X2, X3) satisfying X2 — c3|X|? =0 and £ - X =0.

We call the condition, (N); and (N)2, the null condition for the quasilinear system
(9.1).

Proof of Proposition 9.1.  Set
Xo=Falll, Xi=¢ (1=1,2,3).
Then, from (9.17) and (9.21), we rewrite £ and (DAF)(0) in the form
& = (X1(Xo, Xu); Xz(Xm i); Xs(Xo, i)

+ 2¢; [CP(DAL(0)) = Z XX, Z (Dagf)(0)XoXg.
4,j5=1 a,B=0
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Therefore, from the first condition of (9.24), we obtain the condition (N);. Similarly,
we set
XOZ:FCZ‘Clv Xi=¢ (Z:1a273)

Then, from (9.18) and (9.23), we rewrite £ and D(/\g:,1 (w) + Azi,z(w))lwzo in the form

& = (X0, Xa); &(Xo, X,); &s(Xo, Xs))

for &X; +&Xs +&X3=0,
£ 2|2 DG (w) + )‘iz(w))lw =0
=— Z(|X|2 X2?) Z (Dag?)(0)XaXp - Y X; X, Z (Dagf)(0) X o Xp.

’ﬁ 0 7’#] 7ﬁ—“0
Therefore, from the second condition of (9.24), we obtain the condition (N)a.

10. Proof of Proposition 6.2.

In order to Proposition 6.2, we shall discuss the integral in the form

/ weg(x + Tw)dS,,.

Jwl=1

T

(10.1) Ja(9(y); x,7) = =

Then, the integral /(F)(t,) defined in Section 6 can be expressed by a linear combi-

nation of the followings:

t
(10.2) / Jo(F'(s,7); x, c;(t — s))ds,
0
t ci(t—s)
(10.3) / (t—s)ds/ T‘zJa(F(s,y); x, T)dT,
0 c2(t—s)

(¢=1,2 and |a| =0,2).
Let A be an orthogonal matrix with 2z = A(0,0,7), [z| = 7. By change of variables
w = A(¢ and using the standard spherical coordinates 6, ¢ on the sphere of radius 7 and
center (0,0,7),
T ™ 2

; = — in 0df AQ)®

o Talow)s @ 7) = o [ aimoas [ (agpex
X (go A)(rsinfcosy, Tsindsing, r + T cosp)dp.
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Moreover, following Appendix of [8], introducing an angle 1) between two vectors z and

T+ 7w so that
(10.5) oz (x4 Tw) =rAcosyy, A= |z + 1w,

we then find that

(10.6) 7sinf = Asin®, r + 7cosfd = A cosp,
(10.7) A =r? 4124 27 cosh,
(10.8) 72 =22 + 9% — 2r X cosp.
Set
©=0(\p,7)

(10.9)

= A(sint cos @, sintsiny, cos))
and
(10.10) E=EW\e,7) =710 —x).

Introducing a new independent variable A instead of @ in the integral (10.4), one can
verify from (10.4)-(10.7) that

r+7 2w
(10.11) Jo(gly); @, 7) = 51; / A / Z2g(AO)dep.
[r—7] 0

We begin to show Proposition 6.2 (i). Proposition 6.2 (i) for (10.2) has been proved
in Proposition 3.1 of [16], because w is a unit vector. Making use of (6.14), (10.3) and
(10.11), we observve that Proposition 6.2 (i) follows from

(10.12) Iy <C(L+t+7) " (log(2 + 1))

where

1 t c1(t—-s) 47 .
Iy = R/ (t — s)ds/ T_zd’/"/ zﬂ 8, A)dA
0 ¢ |

2 (t—3) r—7]|
(j=0,1,2).
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Here and hereafter, we denote by C' a various positive constant depending on ¢y, ¢y and

L.
We will prove (10.12) by separating five cases.

Casel. r<1.

Since r + 7 — |r — 7| < 2r < 2, we have

9 t c1(t s) .

I) < —/ (t — s)ds/ T2+ |ejs —r — 7)) ML +cys+r+ 1) ldr
27 Jo ca(t—s)
9 t c1(t—s)

< %(1 —|—czt—|—7’)_1/ (t—s)ds/ 731+ |ejs—r —7|) " tdr

0

ca(t—s)

Integration by parts in 7 yields

Iy <CQA+t+r)tlog(2+1).

Case 2. r >1,r > 2c4t.

In this case, [r — 7| = r — 7. We then have

aas+A2es+r—72c8+r—ci(t—s8)>r—cit >r/2,
lcjs = A > A—cjs>r—T—cjs>r—ci(t —s) —cjs >r/2.

Hence,
2t

If € ————<CA+t+r)t
0= can(l+7r)2 = (L+i+m)
Case 3. r>1,c1it<r<2cqtorr>1,ct<r<cit, ci(t—s)<r.
Extending the domain of (7, A)-integration to [ca(t — ), c1{t —s)] X [r—ca(t—s), 7+

Cl(t - 3)]7

1 t r+ci(t—s)
Io < / dS/ (L+lejs = ADTH(L +ers + 2) 7 d
4dmwepr (e1t— r)+/c1 r—ci(t—s) ,

1 . r+ci(t—s) .
2 (1+7 (1+cls) ds (1+]cjs — A7 dA

—c1(t—3)
C(l +t47)” 1(log(2 +1))2.
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Here d, = max(0, d).

Cased. r>lcat<r<ct,ci(t—s)>rorr>1r<cgt,colt—s)<r

.

Extending the domain of (7, A)-integration to [ca(t —s),c1(t — 8)] X [0,7 +c1(t —s)],

1 (cit—7)/c1 r+c1(t—s) L L
Iog———/ ds/ 14 ]c;s = A)" (L4 c1s+ X)) dA
271'82(1 + ’I“) (cat—7r)y/c2 0 ( ? )

If cot/2 < 1 < c1t, we get in a similar way as Case 3
In <CA+t+7)"Hlog(2+1))2.
If r < ct/2, then
| 1+cls—|—)\21+cl(c2t—r)cglZC(l—I—t—H").
Hence we obtain

L <CO+t+7)"(1 +r)_1/

(cat—r)/ca

(c1t—r)/c1

r+ci{t—s)
ds/ (1+ |ejs — A)~tdA
0

<CA+t+7)"tog(2+t).

Case 5. r>1,r<cot,r <cy(l — ).
If cot/2 < r < cot, then, extending the domain of (7, A)-integration to [ca(t —
s),c1(t — s)] X [ca(t —s) — 7,7+ c1(t — s)], we get in a similar way as Case 3
(cot—7)/ca  rHci(t—s)
ds / (1+ |ejs — AD)™HL + exs + X))~
0 ca(t=s)—r

< C(+t+7)"log(2+t))2.

o< — 1
0= 2mea(1+ 1)

If r < cpt/2, then, extending the domain of (7, A)- integration to [ca(t—s), c1(t—8)] ¥
[cat —8) —r,ca(t—s)+rjand A—r <7< A+7r, 7+ca(t—8) < A<r+c(t—3),
(cat—7r)/c2 ca(t—s)+r

1 )
fo< o ds / 29)(s, )" dX
co(t—s)—r
(10.13)
(cat—r)/ca c1(t—s)+r Atr

r

L / (t — s)ds / zf}(s,x)—ldA/(HT)*ZdT.
cz(t—s)+r A—r
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Here we have used that 7 > ¢3(t — ) >r > 1. Since 1 + a8+ A > 1+ ¢yt + 7 and

A+tr
/ (1+7)"2dr < 2r(1+ ca(t — s)) 72,
JA—p

we observe that the second integral of (10.13) is estimated by

\ ci(t—s)+r
Cl+1t+ r)"1/ (t—s+41)"tds / (14 |cjs — )" rdA
° calt—s)+r
< C@+t+7r)"tog(2+t))?

In order to estimate the first integral of (10.13), we introduce the new variables
(10.14) a=cs+ A f=—cs+ X1 (i=1,2),

where ¢ stands for one of ¢;(j = 0,1,2). We can verify that, for any function ¢(s, ),

; r4-ci(t—s) cit+r o
(10.15) / ds / (8, \)dX = (¢; + )1 / da / o(s, \)dg,
0 lr—ei(t—s)i Jest—r| 0
where
(10.16) ap = {(¢; — e)a+ (¢; + ) (et — 1)}/ 2¢;.
Note that
(10.17) —cafe; <ag<a for et —r| <a<ct+r

Since zfl)(s,)\) is equivalent to (1 4 |c;5 — A[)(1 + cas + A), we find from (10.15) and
(10.17) that the first integral of (10.13) is estiamted by

cat+r
led

Cr=t | (I+a)Nda [ (1+|8)7dp
czlr /oz()

< C(l+cat —7)"tlog(2+ 1)
<C+t+7r)"tlog(2+1).
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Therefore, we have proved the assertion (10.12).

Next we will prove Proposition 6.2 (ii) (iii) for
¢
(10.18) / (OF)(59); w4t~ 9)

r+ci(t—s) 27 ' _
ds / AdA / (ED2(IF) (s, \OP)dop.
47T) |

r—ci(t—s)|

Here we have used the formula (10.11) and

(X, ¢, 8) = O\, g, cilt — 5)),
EO (N, @, 8) = E(\, @, ¢ (t — 8)).
To this end we make use of the following formula
(VF)($,A0) = O0\{F(2,0)} + 0{0,0 - (© A (Q2F)(s,AO))}
(10.19) —Ale A (QF) (s, 00),
(0:F) (8,0 = 9,(F (5, 0} — 9,0 . (0 A QF) (s, \0W).
In fact, by (5.1)
(VF)(5,A0) = ©(0,F)(s,\80) — A™10 A (QF)(s, \O).
Since 0,0 - © = 0, we have
(9,F)(s, )
= O\{F(s,A0)} — X0\O - (VF)(s, \O)
= O\{F(5,X0)} — 23,0 - {8(0,F)(5,1\0) — A"1O A (QF)(s,A0)}
= O\{F(5,20)} + 0,0 - (O A (QF)(s, 10)).
In a similar manner, we obtain the second equality of (10.19).
Let D be the domain of (s, \)-integration in (10.18). We split the domain D
into Dgi) and Déi) , Where ’
DY = {(5,) € DD; NP <A <2P 16 or AP —5 <A<,
DS = DON\DY, 6 = min(1,r),
)\gi) = |r —c(t — 8)], )\g) =7r4c(t—s). -
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Note that Dgi) = @ if r < 1. Making use of (10.18) and (10.19) with 7 = ¢;(t — s), we

obtain

t
imr [ Jo(VF)(s,); ,exlt — 5))ds
0
2T
= / Ad)ds / ED(VF) (s, \0D)dyp
D{® 0

27
+ / _nado / 20 (EM)ap (s, MO dyp
aDsY 0
(10.20)

2m .
R / o Pds | H0ODED)F(s,20M)dp
Dy’ 0

27
+ [ s [ E9) 000309 - (0 (s, 36))
Dy 0 ;

— 27100 A (QF) (5, X0™)]dop,

t
47rr/ Jo(OcF)(s,y; 2, ci(t — s))ds
0

(3)

27
= /  Ad)Mds / (E@)2(9,F)(s, \OD)dy
D 0
2 ) ]
(10.21) + / nydo / ME)ep(s, x0W)dyp
oD 0
27 . )
— / _dXds / As(AE®)2) F(s, X0 dyp
D 0
27
+ / o, MdAds / (E@)29,00 . (6 A QF)(s, x0D)dp.
Dy’ 0

Here, (nx,ns) is the unit outer normal to 8D§i) and do is the line element on (‘3D§i).
For |a| =0, it has proved in Proposition 3.1 of [16] that Proposition 6.2 (ii), (iii) is
valid with log (2 +t) instead of (log(2 +¢))2. Therefore, since £ is a unit vector, it is

enough to prove that

1 2m . .
o [ s / A0 + 05)((ED)*)F (s, \0®))|dyp
(10.22) T Jpg? 0

< Cwy(t, z)"H(@, ()2 MY o (F),
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where
log(2 + 1) p=1
®u(t) =
1 w> 1.
for |a| = 2 and j = 0,1, 2. By the definitions (10.10) and (10.18) of = and 0N
IA(9x + 85)(ED)*)|
(10.23) A

Sal—9) (34 Mr0W)| + A|8,01)

Hence, if A < ¢;(f — s), then this term has treated in the case where |a| = 0. Therefore,
we assume hereafter that A > ¢;(t — s).

To estimate (10.23) we make use of the following inequality

10x8| < 27h(A\,7)" Y% for |r— 7] <AL |r+7]

(10.24)
10,0| = 27h(\, 7)"Y/2,

where
hAT) = (A% = (r = 1)?)((r +7)% = N%).

In fact, differentiating (10.8) and (10.9) in A, we have
Op = (recosty — ) /rhsing, |0,O] = |0\¢|.
Since 7 cost) — A = (r2 — A2 — 72)/2X and sintp = h(\, 7)}/2/2r )\, we have
10,0 = [A2 + 72 — 72|/ Ah(\, T)Y/2.
Thus, (10.24) follows from the fact that
N +72 7| <2x1 for [r—T|<A<r+T.

In a similar manner, we obtain easily the second equality of (10.24). Set T = c;(t — s)

in (10.24). Then we have

A

=Y SO A0 - Wy

(10.25)
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we can assume that r,t —s, A — A&i), /\gi) — A 2> 1 in the domain Déi). Thus, making use
of (6.14), (10.22), (10.25), we observe that the estimate (10.22) follows from

fo o0+ 6= 975 0300
2

(10.26) + ol t A= 2D) (1429 — X)71220) (s, \)"Ld)ds
SO+ et =)™ (2u(?))
where ﬁgi) =D N {(8,A); A > ci(t - 5)}.
We first treat the first integral of (10.26). If r > 2c;t, we have
S8+ eis—= A =>7/2 (j=0,1,2),

which imply z,&’;L(s, A) > C(1+7)?*. Since, /\g) - )\gi) < 2r, the first integral of (10.26)
is estimated by
Cl+r)y 2 <C+t+r)"L.

In the case where r < 2¢1t. We make use of new variables («, 5) defined in (10.14).
It follows from (10.14) and (10.16) that

t—s={(ci+c)t—a+pBHc;+c)t

(10.27) >{(ci+e)t —a+ag}(e;+c)t
= ((cit +r — a@)(2ci(c; +¢)) L

Hence, using A > ¢;(t — s), we have |

(A+t=8)1+cs+ N> 1+ (t—3)A+cis+A)(L+cft—s))* 7t

>(1+a)(l+ct+r—a)

Making use of the formula (10.15), we have

/ (14t — 8) " (L + |ej8 — A= (1 + c;8 + N)~*dAds

(10.28) D3”
cit+r o
<CA+ et — 7'|)"1 / A+4+ct+r— a)"“da/(l + |B)~#dS
oo

leit—r|
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which is estimated by the right hand side of (10.26). We next treat the second integral
of (10.26) which will be denoted by Io. If » > 2¢1t, 29)(s,A) > C(1 +r )2“ Then we

have
A (’l )

Iy <C(+7)~ 2“/ ds/ {O =20 — x)3-1/20)
=Cmt(l+7)" 2 <CA+t+7r)"?
If r <2cyt and 0 < ¢;8 < ¢;t — 7, then we have
Q=X — N = (@ — et +1) (et + 7 — ).
Making use of the formula (10.15),

c;t+r
<€ [ @+a) o et tr)(et +r—a))idax

it—r
< [+ 1675 < a1+ et~ ) 0,0,
If r <2¢t and (it — r):_ < ¢;8 < ¢;t, we have
A=A =X et - s)—r
= 2¢;(8 — ao)(c; +¢)7!

Making use of the formula (10.15),
cit+r N
(10.29) b < C / (1+(1)_“(1+cit+7’—oz)_l/zda/ (148 —ao)~Y2(1+|8))~dB
leit—r] *
We will prove

/ - o) H2(1+|8))"Hdp

< C{(1+ Jaol) /27 + x(@0) @, (1) (1 + |aw]) 722},

where Y is the characteristic function of the interval (—oo,0). In fact, if ag > 0, then

(10.30)

integration by parts yields

/a(l + B —ao) V314 B)Hds

0

< 2(1+a)/2H 4 2u/ (1+ B)~ Y2 kg

(211}

S C(l =+ 010)1/2—‘“.
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Here we have used (10.17). If ag < 0, then 14+ —ag <1 — f for ap < f < ap/2 and
148 —ap > —ag/2 for B > ap/2. Deviding the integral into two intervals, we obtain
(10.30). Thus, we find from (10.29) and (10.30) that

Io < C(L+ et +r]) 1@, () x

cit+r
x/ (14 a) # 1+ et +r — o) V21 + |ao]) Y 2da
l

cit—r|

< O+ fest + 7)1 (B,(1))%

Therefore, we have proved the assertion (10.26).

The rest of this section is devoted to the proof of Proposition 6.2 (ii) (iii) for

c1(t—s)

t
/(t—s)ds / 772 J,(0F (s,y); x,T)dT
(10.31) o calt—s)

t 2m
1 (t— s)ds/ ’7'_2>\d>\d7‘/ E0F (s, \O)dp.
D 0

o 471"" 0
where

D:{(A7T):C2(t"‘8)STSCl(t——S), IT_TISAST'f‘T}.

We divide the integral domain D into D; and Ds:

Di={(A7):calt-s)ST<ei(t—s), =7 SA<|r—7[+8

or r+7—-0<A<r+r7},

.Dz = D\Dl, 6= min(l,r).



Making use of (10.19) and (10.31), the integration by parts yields

t c1(t—g)
47r7'/ (t—s)ds/ 7 2J.(VF(s,y); x,7)dr
0 c

z(t—s)

t 2
= / (t — s)ds / 72 )\d)\dr / B2V F (s,20)dp
0 ' D, . 0

t c1(t—s) 2m
_|_/ (t — S)dS/ 7_—2[)‘@/ EaF(Sa )\@)d@]izﬁr—qiadT
0 c 0 .

2 (t—s)
(10.32)

t 2m
+ / (t — 8)ds / 7720, (AOE%)dAdr / F(s,20)dy
4] Doy 0

t ‘ 27 ‘

+ / (L — 5)ds / 2d)dr / 29[0{0,0 - (O A QF (s, 30))}
0 D, : 0
— X180 AQF (s, 20)ldo,

t c1(t—s)
47r7'/ (t—s)ds/  T72J.(0,F(s,y); x,T)dr
0 &

2(t—3)

t 27
::/ (t — s)ds/ T—2)\d)\d7'/ E20.F (s, 20)dp
0 D; 0

cit r+7—6 2T
(10.33) +t / T2dr / AdA / TeF(s,20)dyp
c: | 0

ot r—7|+6

2 t
FID [ 7= 9 (st - o)
i=1
t 2m
—/,ds/ T“zd)\d)\dT/ Z*F (s, A\0)dp.
0 Dy ]

The third integral in the right hand side of (10.33) has been treated in (10.22), (10.23)
and is estimated by the first integral of (10.26). Therefore, we find from (6.14), (10.10)
(10.32) and (10.33) that Proposition 6.2 (ii) (iii) follows from the following estimates:

9

(10.34) IF < Cw(t,r) (&, ()%, k=0,1,---8,
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where

¢
1§ = 7”_1/ (t - s)ds/ T_ZZL{L(S,)\)d)\dT,
0 D;

t ci(t—s)
1& =(1 —|—7°)‘1/ (t— s)ds/ T~ szl)L(s r+ 1) tdr,
0 ca(t—s)

t c1(t—s)
Ig = (1—]—7')_1/ (t—s)ds/ T ‘Z,L(J,JL( ’IT__TI)—ldT,
0 c

z(t*-S)

t
B+ [amsds [ a7 s
0 Do ’
ot
Iy= (14‘7")_1/ (t—S)dS/ 77820) (s, \)d\dr,
0 Dy
1
I3 = (1+r)“1/ (t—s)ds/ 77210x0)27), (s, \) " Ld)dr,
0 Do
t
IS = (1—|—r)_1/ (t—s)ds/ 3 “;#(S,)\)d)\dT
0 Do

ci1t r+7
IT=1+7r)" t/ (T+1)_2d7/ sz(O,)\)_ld)\,
| .

r—T|

=(1+r)” 1/ de/ ~220) (s, \)rdAdr
(J - 07172)

o“m

We first prove (10.34) for I§(k = 1.7). Since 14+ ci5+7+7 > 1+ ¢pl + 1 for

T > co(t — 8), we have
R<@+1)"10 + et +7)Fx
t c1(t—s)
></ (t - s)ds/ 721+ |ejs — T — ) THdrT.
0 cz2(t—8)

Integration by parts in 7 yields
Ig < Cr+1)7 1 + cot +7) 74, (1).

Since z2,(0, A) = (1 + A\)2#, we have

cit
fgSC(l-l—r)_l(l—}—t)‘l/ (L — )2y
cat

SCA4+r)" YL+ t+7r)"1®,(1).
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Moreover, 1§ is equivalent to I and
Iy < C(I5 + I§),

because 716 < 2(r +1)~1. Thus, we will prove (10.34) for I¥(2 < k < 6) by separating

four cases.

Case 1. r > 2c¢4t.
In this case, it holds that 1+ |c;s — A >7/2 (j=0,1,2) and 1+ c18+ A >r/2 in

the domain of integration. Then we easily see
E<ct@+r) " <l +7)" A+t +r)", k=23.
By the definition of I§, we easily see

Cl(t s)
Ig<Cl+7) 12“/ ds/ (14 7)"2dr

z(t 8)
SCA+7)HA+t+7r)"18,(1).

From (10.24),

(10.35) 020 < 27h(A, T)TY2 < 2{(r —|r = A)(r + A — 1)} 1/2

and

(10.36) TTINONO] < 2Mh(A, 7)Y < 2{(A — |r — 7)) (r + 7 — N},

Hence, we find from (10.36) that

t c1(t—s)
IS < Cm(1+ 7")"1_2“/ (t— s)ds/ 772dr
0 co(t—s)

<CQ1+ r)_l(l +t4 r)_l

Extending the domain Dy of (A, 7)-integration to {(\, 7); )\gl) <AL )\gl), A—rl<T
< c1(t — s)} and inverting the order of (), 7)-integration, we find from (10.35) that

A

t
I < Cvr(l-i—r)_l‘z“/ (1+t—s)*1ds/(2) dX
0 Al

SCL+7) T 1+t +7)"1D,(t)
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Case 2. 1t <r<2ctorcgt<r< cit, it —s) <r.
~Since r > 7 in this case, it holds that

t c1(t—s)

g<oin [ egds [ - nan

(c1t—r)4/c1 c2(t—s)

In the domain of integration,
(10.37) 1+ers+A>14+es+r—7> 1+ et — 7).
In fact,

cls+r—72013+r—cl(t—s):r—clt—i—QCls
S r—cyt for r > cit,
r—cit+2(cit —7) for 7 <ejt, c1(t—s) <r.

Hence, making use of (10.37), we have
(1+r)1+cit—r|) I3
t c1{t—s)
< C/ (t—s)ds/ 7721+ |ejs — v + 7])THdT
0 c

z(t—s)
< OB, (1).

Extending the domain of (), 7)-integration in I3 to [)\gl), )\gl)] X [ea(t—s),c1(t - s)],
(10.38) (1+r)I3
A

< C/ ds/ A+ 1)L+ |ejs — A)TH(1 + e15 + A)"HdA.

For j = 0, the change of variables (10.14) with ¢ = 0 yields

cit+r o

<o +r)—1/ (1+ a)““da/ (14 B)"17*dp
lert—mr| ap
cit+r

<CA+r)Y 1+ |eat — ) ¥ / (1+ laol)~#dB
leit—r|

SCA+r)7 M1+ et — 7)) 7#3,(1).
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Since

L+ X" 1+ Jejs = A)7H
< { CA+ )11+ cis+ N+ for A <e¢;s/2
Cl+lejs = A) (A +cis+ M)~ for A>c¢;s/2

for j = 1,2, it holds that
| 1+t (’) L&A S C{A+ NP4+ (1 + s = A) Il + s+ ) 7HH
which implies by the change of variables (10.14)
3 <C+7)HA + et —r))THB,L(1).

Extending the domain of (), 7)-integration to [)\gl), )\;1)] X [ca(t — 8),c1(t — 8)], we
have
(1+7)I§

cl(t 3) )\gl)
<C’/ ds (1+7) 2d7-/, 23 (s, 2)d)
c )\§1) ’

z(t s)
AL

< C/ (1+t—s)"tds /(: (I+|cjs — A1+ 18+ A)THd.
0 A
which is the same integral as (10.28) with s = 1. Hence,
I3 < CL+7) 7T 1+ et — )71 (Bu())?.

Extending the domain Dy of (A, 7)-integration to {(\, 7); )\gl) <A< )\él), A—r| <
7 < c1(t — 8)} and inverting the order of (), 7)-integration, we find from (10.35) that

(1+7)I5
¢ Y ,
< C/ (1+t— s)_lds/ (I+[c;s =AD" (L 4+ 18+ A)"HdA
0

A
which is the same integral as (10.28) with ¢ = 1. Hence,

I <CA+7r) 1+ et —r[)"H(@,(2))2.
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Extending the domain Dj of (A, 7)-integration to {(\, 7), )\gl) < )\él), 1+ [x—

T < c1(t — s)}, we find from (10.36) with 7 <  that

6
)‘( ) c1(t—s)
/ dé/ s x| =)
R 14+ A—r|
Since
/ aT . 2T 1 T+‘/7—2—k2
NG P
it holds that "
c1 (t—s) )
T—l{TZ _ (}\ _ 7,.)2}—1/2d7_
I+{A—7|
ci(t—s)
(10.30) < [ R
14+ A =7

< w1+ A=)
Hence, we find from (10.37) and (10.39) that
1§ < COU4r) " 1+ et — o))~ E,,
where

r+c1(t—s)
1061*/ (ls/ (T4 s+ 0H(L+ |ejs — A)TH(L 4+ A — 7))~ 1dA

c1(t—s)

Since
citdr (e1t+r—A)/c1
18, 5/ (1+,\)1—“(1+A—7~)—1dA/ (1+ les — A))~*ds
T 0

r (r—c1t—A)/cy
+/ (1+A)1*”(1+>\—r)‘1d,\/ (1 + lejs — M) "Hds,
c 0

1t—r

we conclude that
1§ < O+ 1) (1 + ext — 1) H(@,(1))2.

r| <
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Case 3. ot <r<cit,ci(t—s)>rorr<cgt,calt—s)<r.

In this case,

(eit—r)/er c1(t—s) '
]g <C(+ r)_I/ (t- s)ds/ T‘zzL{L(s, |7 —r|) " tdr.
(czt—r)4/ca ca(t—s)

In the case where cot < r < ¢4,
T > et — 8) > caeTlr > C(r +1).
Hence,

(L+r)A+t+7)I3
(e1t—7r)/c1 ci(t—s)
<C / ds / (I+|r— 71|+ e18) (1 +|cj8 — |r — 7||) Hdr

(eat—r)4/c2 (cat—s)
c1(t—s)

t
< C/ (14 c18)"Hds / (L4 lejs — |[r— 7||)"Hdr
0
c2(t—s)

< C(2u(1)%
In the case where r < cyt, co(t — s) <,
c18 > clcz,‘l(czt —7)

Hence, the integration by parts yield
‘ . c1(t—s)
(1+7)I3 < C(1 4 cot — r)—“/ (t —s)ds / T72(1 + |c;8 — |r — 7]) "Hdr
o .

ca(t—s)

< C(1L+ cat — ) "B, (t).

Dividing the integral domain Dj into Do N {7 < r} and DN {7 > r} and inverting

the order of (), 7)-integration, one can verify that

5
§<C+r)) I3,

=1
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where

A
[01 /ds/ A+ M +es+ )~ A+ ejs = A) X (i=1,2),
A

(e1t—1)/c1 /\51) r4A+1
/ f—.s)ds/ AT zU 2 (8 )\)d)\/ T2dr,
( 0 r

cot—7) .y /ca

(cit—r)/c1 )\(12) ) r
I = / (t —s)ds f AT120) (5, )dA / 24,
(cat—r)y/co 0 ’ Tdr—A

(cit—r)/cy 2r
/ (L — s)d.s/ AT szL d)\/
(cat— 1")+/Cf> )\(2 ’ 14+A—r

Since I§ (i = 1,2) is the same integral as one in (10.38), we obtain
B, <O +r)" 1+ et —r))™H@,(), i=1,2.

Each 7-integral is estimated by

(10.40) Char 1+t —s)t

Hence, in the case where ¢at < r < ¢1¢, it follows from (10.40) that

(k-2
AF=2)

, ¢
Ig”k <CA+t+ r)“l/ (1+ (:15)_“(1.9/ (14 lejs — A)"HdX
0 0

SC+t+0)"H2u(1)?, k=34
and

t 2r
18’5 <CA+t+ 7..)—1/ ds/( )(1 + ca8 + X)THL + |¢j5 — A)THdA
0 A

<CA+1+r)710,(1),

here we have used that 1 + cps + X > )\éz) > 17 > ¢gt. In the case where r < cof,
c2(t — s) <, it follows from (10.39), (10.40) that

(c1t—7r)/cq A(lk_z)
I3 <Cr7 1+ ot — 7')_1/ ds/ (14 c¢i8 — A)7HdX
' (cat—7r)/ca 0
SCA+egt —r) @,(1), k=34,
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and, in the same way,

IBs <C+cat—7r)710,(1).

If 7 > ), I§ < I3. Then we can assume in the treatment of I that A > 7. Set

Dy = Dy {)\>7}. Then,

(cit—r)/c1 ’
I <Cl+r) / ds /_ 77220 (s, \)dAdr.

(Cgt~'r‘)+/02 Dy

Since r — ca(t — s) > 27'r and t — s > ¢] 7, inverting the order of (), 7)-integration

yields

3
Ig<C+n)7 ) I

i=1
where

t AlM
lh; =1+ r)‘lf ds/(.) (I4+cs+ X)L+ ejs— A)MdA (i=1,2)
0 1’

(crt—r) /e 2r
IEa=(1+ r)—l/ ds [ (L eas+ X)L+ legs — A)#dA,

(Czt—’r‘)+/cz A2
Making use of the change of variables (10.14),

cit+r o

(1+a) Hdo / (1+18)#dp

aQ

Ig,i <(1 +7")_1/

|est—r]

< (L4 et — 7)) 7R ,(0).

Since
1+r>C(l+t+r) for cot <r < eyt

1+ce8+A2>
! _{1+02t—r for r < est,

we conclude that

A—1
I§3<¢>p(t) (I+t+7) for cot <r <eqt
= (1+cot —7)~t for r < eyt.

Extending the domain D, of (), 7)-integration to {(\,7) : 0 < X\ < )\gl), A—r| <
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T < A4}, it follows from (10.35) that

(1+n)I3
(cit—r)/ca AL
2.
<Cm / (1+t- s)ds/ sz,L (5,A)"1d\
0

(czt—r)4/ca |
2t A
< CZ/ (1+t— s)'lds/ (s +HN)TE(L 4 |ejs — A)THAA
=10 Al
(cit—r)/ca1 )\(12)

o / (1+t—s)‘1ds/ (1+ c1s + N)~#(1 + ej8 — A|)~#d\.
0

10.41
( ) +
(cat—r)+/ca

The first integral of (10.41) is same as (10.28) and then estimated by
C+ et —r)7HBu(?))?

In the case where cpt < r < c1t, the second integral of (10.41) is estimated by

. RS
C(1+t+r)—1/ (1+Cls)_“d5/ © (1 fejs — Al A
0

0
<COA+t+7)"1(@u(1)%

In the case where r < cyt, ca(t — 5) < r, the second integral of (10.41) is estimated

(c1t—1)/c1 )\&2)

C’(1+r)_1(1—|—czt—-r)"“/ ds/ (I +|cjs — Al)7HdA
0

» (cat—7)/ca
< C(1+ct —r) 1P, (2).

If 7 >\, I§ < I§. Then we can assume that A > 7. By (10.36),

(12— (A —r)?)~1/2 for T<r

(10.42) 772020 < { {r=A+r)A+r—7)}V2  for r>7.

Extending the domain Dy of (), 7)-integration to {(\,7); )\(12) <AL2r, 14+ A=7| <
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7<r}and {(A\7); r <A< )\f(ll), A—7r <7 < r}, it holds from (10.39) and (10.42) that

A+
(cit—r) /el 2r

<C / ds / z‘(f;L(s, NHLH A=) ldA

(cat—r)y/ca Agz)
(erit—r)/c1 Agl) '
+Cr /( (L+t—s)"tds / 23 (s, \)71d).

cat—r)t/ca r
The first integral is estimated in a similar way as I§ in Case 2

(I+t+7r)7t for cot <7r < eyt
(I+ct—7)"t  for r < cyt.

c(@, (0
The second integral is estimated in a similar way as I ;.

Case 4. r <cat, r < ca(t — ).

In this case,

(cat—7)/ca c1(t—s) .
2<Co@+r)t / (t — s)ds / 77220 (s, 7 — r)dr.
0 c2(t—s) ’

In the domain of integration,
T—7T+¢18>cot —r.

Then, the integration by parts yields
c1(t—s)

< C(l—i—r)*l(l—}—czt—r)_“/ 21+ |ejs — A)~Hdr
ca(t—s)

S CA+7)"H 1+ cat —r)7#®,(t).

Extending the domain Dy of (A, 7)-integration to [)\gz) <A< )\gl)] X [ca(t—s),c1(t—8)],

(cat—1)/ca /\él) ]
B<c@+r)? / ds / A2 (s, \)dA
0 A

2) 22y
1

2
<C+n) z Ig,z';
i=1
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where I§; is defined in Case 3. Hence,

2
I3 <CA+r)"®u(t)Y (L+et—r)7H

=1

By a similar manner,

(cat—r)/ca AR
I<c@+ r)—lf (1+1t— s)ds/(z) 27 (s, )7 1dx
0 A

2
S C(l + 7")*1 Z [3,1}7

=1

where I§ ;(i = 1,2) is defined in Case 3. Hence,

2
I3 <C+7)710,(8)) (1+ct—r)7
i=1
Extending the domain of D; of (A, 7)-integration to {(}, 7); )\gz) <AL )\gl) S A—T <7<
A+r}, we also find from (10.35) and (10.42) with 7 > r that I§ and I¢ are estimated
by
A(l)

(cat—1)/ca b
C’(1+r)_1/ (1—|—t—s)ds/
0

(7) -1
@ zﬂ,u(s, A)THdA

2
<CL+r) Z I5s

=1

Therefore, we have proved the assertion (10.33).
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