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SELF-DUAL CENTROAFFINE SURFACES
OF CODIMENSION TWO
WITH CONSTANT AFFINE MEAN CURVATURE

HITOSHI FURUHATA AND TAKASHI KUROSE

ABSTRACT. We explicitly determine the minimal, self-dual centroaffine
surfaces in R*\{0} by giving a representation formula. Moreover, we
describe the self-dual centroaffine surfaces with affine mean curvature —1.

1. INTRODUCTION

An immersion f of an n-dimensional manifold M into R™"2?\{0} is called
a centroaffine immersion of codimension two if the position vector f(z) is
transversal to f. 1T, M at each point z of M.

Centroaffine immersions of codimension two were studied by Walter, and
more generally by Nomizu and Sasaki. One of the most fundamental re-
sults given by them is: if f is non-degenerate, then f uniquely determines
a pseudo-Riemannian metric on M, called the affine fundamental form of f;
moreover, the affine fundamental form is invariant under the change f +— Af
of centroaffine immersions by an element A of SL(n + 2;R).

In [1], the first author considered a certain area-variational problem with re-
spect to the affine fundamental form and studied its extremals, which he called
manimal centroaffine immersions. Furthermore, he showed that a space of the
SL(4;R)-congruence classes of minimal ISDC immersions R? — R*\{0} is in
one-to-one correspondence with a space of the solutions for a wave equation
on R%. Here, we refer to ‘self-dual centroaffine immersions with indefinite
affine fundamental form’ as ‘ISDC immersions’.
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In this paper, our main goal is to give a representation formula for the
minimal ISDC surfaces (Thorem 3.1(1)). We also give a formula for the
ISDC surfaces with affine mean curvature —1 (Theorem 3.1(2)).

In Section 4, we show another representation formula for the minimal ISDC
surfaces (Theorem 4.2). As an application of the second formula, we give a
one-parameter family of minimal ISDC surfaces joining two typical examples:
a quadric and the Clifford torus (Example 4.3). _

We also give the affine mean curvature formula for a non-parametric cen-
troaffine immersion in Section 5. Section 2 is devoted to collect basic defini-
tions and facts on centroaffine immersions.

This research was completed while the first author stayed at IMPA. He
wishes to express his sincere gratitude to Professor Marcos Dajczer and the
members of IMPA for their warm hospitality.

2. PRELIMINARIES

In this section, we briefly review geometry of centroaffine immersions of
a simply-connected, oriented, 2-dimensional manifold M into R*\{0}. For
further detail, we refer the reader to [2].

Let f: M — R*\{0} be a centroaffine immersion. We denote by D the
standard flat affine connection of R*, and fix a parallel volume form Det once
and for all. A vector field £ along f is called a normal vector field if it satisfies
that at each point z of M, the tangent space T R* is decomposed as

and that the volume form # defined by
(22) 0(X,Y) :=Det(f.X, LY,&,f), X,Y € T(TM),

is compatible with the orientation of M.

When we choose a normal vector field £, we can determine a torsion-free
affine connection V, two symmetric (0, 2)-tensor fields h and T', a (1, 1)-tensor
field S, and two 1-forms 7 and P by

Dxf.Y = iVxY + (X, Y){+ T(X,Y)f,
Dx& = —f.5X +7(X)§+ P(X)f,
according to the decomposition (2.1).

It is easily shown that the conformal class of h does not depend on the

choice of £. When h is non-degenerate (resp. definite, indefinite), f is said to
2
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be non-degenerate (resp. definite, indefinite). If f is non-degenerate, there is
a normal vector field ¢ satisfying that

7 =0,
(2.4) 6 = Vol,, where Vol, is the volume form with respect to A,
try {(X,Y) —» T(X,Y) + h(SX,Y)} = 0.

Moreover, such a ¢ is unique. We call the & the Blaschke normal vector field.
From now on, we always choose the Blaschke normal vector field as ¢ for a
given non-degenerate f, and we call the metric h the affine fundamental form
of f.

For an element A of SL(4;R), both D and Det are invariant under a trans-
formation v — Av of R*. Hence, Af is also a non-degenerate centroaffine
immersion and its Blaschke normal vector field is A¢; moreover, f and Af in-
duce the same set of the geometric quantities V, h, T', S and P. Conversely,
if two non-degenerate centroaffine immersions fi, f» induce completely the
same quantities, fi; and f; are congruent, that is, there exists an element A
of SL(4;R) such that fo = Afi. .

For later use, we recall the equations of Gauss, of Codazzi, and of Ricci
for a centroaffine immersion f : M — R*\{0}: Let V, h, T, S and P be the
objects determined by (2.3). Then they satisfy

R(X,Y)Z =h(Y,2)SX —h(X,2)SY —-T(Y,Z2)X + T(X, 2)Y,

(Vxh)(Y, Z) = (Vyh)(X, Z),

(VxT)(Y, Z) + h(Y, Z)P(X) = (VyT)(X, Z) + h(X, Z)P(Y),

(VxS)Y + P(X)Y = (VyS) X + P(Y)X,

h(X,SY) = h(Y, SX),

T(X,8Y)-T(Y,5X)=dP(X,Y),

where R denotes the curvature tensor field of the induced connection V.
Conversely, if a torsion-free affine connection V and tensor fields A, T, S,

P are given on M, and if they satisfy the relations in (2.5), then we can

construct a non-degenerate centroaffine immersion of M into R*\{0} with

Blaschke normal vector field £ such that decomposition (2.3) of Dx f,Y and
Dx€ holds.

Let R4 denote the dual space of R* endowed with the volume form induced
by Det. For a given centroaffine immersion f : M — R*\{0}, we define the
dual map f*: M — R4 \{0} by

(2.6)  f1@)(fX)=0, f'(z)(¢(=z)=1 and [(z)(f(z))=0,

for each x € M and X € T,M. When f is non-degenerate, f* is also a

non-degenerate centroaffine immersion with Blaschke normal vector field £*,
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which satisfies

(2.7) §(@)(fiX) =0, &(2)(§(z)) =0, and &(z)(f(2))=1.
Moreover, the dual map of f* is congruent to f.

We note that the differentials of f and of f* are related by the affine
fundamental form h as follows:

(28) ((F)X)(£.Y) = ~h(X,Y).
For the proof, see [2, Lemma 3.1].

Definition 2.1. A centroaffine immersion f : M — R*\{0} is said to be
self-dual if there exists a volume-preserving linear map L : R* — R4 such
that f*=Lf. '

Definition 2.2. For a non-degenerate centroaffine immersion f : M — R*\{0},
the affine mean curvature H is defined to be (1/2) tr S. A non-degenerate cen-
troaffine immersion f is said to be minimal if the affine mean curvature H
vanishes everywhere.

We abbreviate the phrase ‘self-dual centroaffine immersion with indefinite
affine fundamental form’ to ‘ISDC immersion’.

Example 2.3 ([1]). The Clifford torus ¢ : R> — R* and a quadric ¢y : R? —
R* defined below are minimal ISDC immersions.
[ cos(ul + u?)
1 | sin(u' +u?)
V2 | cos(—ul +u?) |’
| sin(—u! 4 u?)
[ ul 4+ u?

1 | —ul +u?

1,2y . L

(2.10) it )= | L
| V2

They have the same induced connection and affine fundamental form
(2.11) V8, =V, =0 and h=h"=2duldu?

Moreover, the Blaschke normal vector field of ¢ is constant.

(2.9) p(ut,u?) ;=

Remark 2.4. Nomizu and Sasaki [2] proved that the image of a centroaffine
immersion lies in an affine hyperplane which does not contain the origin if T
determined by (2.3) vanishes identically. In this case, a minimal centroaffine
surface is reduced to an affine minimal surface (or, one may say, an affine
maximal surface) in R3.



3. REPRESENTATION FORMULA
FOR SELF-DUAL CENTROAFFINE SURFACES
WITH CONSTANT AFFINE MEAN CURVATURE

Throughout Sections 3 and 4, we discuss problems locally, hence we may
assume that M is a simply-connected domain of R? with coordinates (u*, u?).
Furthermore, we always identify two centroaffine immersions M — R*\{0}
if they are congruent.

The aim of this section is to prove the following theorem:

Theorem 3.1. Let ¢y be the quadric (2.10).
(1) For arbitrary two functions u, v in one variable,

flut,uf) = e DD (ul o)

is a minimal ISDC surface. Conversely, any minimal ISDC surface is
locally represented in this form.
(2) For arbitrary two functions u, v in one variable;

f('u,17u2) - - eXp { (/’L(ul) - ;/(uz))/2}
T expu(t)dt + [* exp(—v(t))dt
is an ISDC surface with affine mean curvature —1. Conversely, any

ISDC surface with affine mean curvature —1 is locally represented in
this form.

¢0(u’17 ’LL2)

In order to show the theorem, we prove the following two lemmas.

Lemma 3.2. For any ISDC surface f, there exists a function w so that f =
e“dqg.

Lemma 3.3. The affine mean curvature H of an ISDC surface f = e“¢q is
give by

(3.1) H = —e %0,00w.

Since equation (3.1) with H = 0 is a (linear) wave equation, we easily
obtain Theorem 3.1(1). When H = —1, (3.1) is Liouville’s equation; the so-
lutions are derived from those of the wave equation above through a Bécklund
transformation. We refer the reader to [3] for further information about this
subject, and we note only the following fact that establishes Theorem 3.1: a
function w is a solution of 810w = €% if and only if

1y 2 ul u?
w = “_(1‘_)_2_'&‘_2 — log (/ PO dt +/ e_”(t)dt) )
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Proof of Lemma 3.2.  For any self-dual centroaffine surface f, there ex-
ists a non-degenerate quadratic form @y such that the quadratic cone Cj
determined by ) contains the image of f:

f(M) C C; = {z e R"|Qs(z) = 0}.

This fact was shown in [2, Proposition 3.5, however, we give a proof here
since we need more precise information about the cone Cj.

By definition, there exists a linear isomorphism L; : R* — R4 such that
f*=Lsf. From f*(f) = 0, we see that the quadratic form @Q; determined
by Qf(z) = (Lyz)(x) satisfies Q4(f) = 0.

The quadratic form Q) can be explicitly written as follows: let {e;,es} be
a basis of the tangent space T,M at u € M. We put

E; = f.eq, X E} = (f")«eq,
Ey = fieq, B3 = (f7).eq,
By :=1/V2(£(w) + f(u)), By =1/V2( () + f*(w)),
Ey = 1/v2 (E(w) - f(w)), Ef = 1/V2(E () = f(w),

where £* is the Blaschke normal vector field for f*. Since L;f = f*, we have
L;E; = Ef, i =1,2,3,4. Hence, we see that for any vector 2 = Z?Zl 7'E; €
R*,

Qf(x) = (Lyz)(z Z T x”E'*

t,j=1

—h(el,el) —h(el,eg) O 0 fL'l
—h(ez,e1) —h(ez,ea) 0 0 | |22
_ 1,.2.,.3,.4 2,¢t1 2y
= [¢'2* 2% a’] 0 0 1 0| |23
0 0 0 -1 xt

where the last equality follows from (2.6), (2.7) and (2.8).
Since both f and ¢ have the indefinite affine fundamental forms, the cones
Cy and Cy, are SL(4;R)-congruent. This completes the proof. O

Proof of Lemma 3.3. Step 1. Let & and & be the Blaschke normal vector
fields of the quadric ¢y and an ISDC surface f = e“¢q, respectively. We
choose a positive function p, a function a and a vector field U on M so that

§ = p~H(& + ago + ¢o.U).
By definition, we have
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and

Dxf.Y = Dx((¢“¢0),Y) = Dx [(Ye*)o + “¢0,Y ] .

Comparing the tangent components with respect to ¢q, the &-components, -
and the ¢o-components of the right-hand sides of both equations, we get

VxY +e“p WX, Y)U = V%Y + (Xw)Y + (Yw)X,
h(X,Y) = e’ph®(X,Y),
T(X,Y)+ (VxY)w+ae “p 'h(X,Y)

=T%X,Y) + X(Yw) + (Xw) (Yw),

where V9, b0, 79, 5% PO are the objects determined by (2.3) for ¢. A similar
calculation on Dx¢ derives

€“pSX = 8°X — aX — VoU + (X log p)U,
(3.3)  0=-X (logp) + A%(X,U),
e’pP(X) — e’p(SX)w = P(X) + T X,U) + Xa — aX (logp).

(3.2)

By the second equation of (3.2) and the second condition of (2.4), we have

e‘”pw]det ho(ei,ej)\ = |det h(eiaej)l
: = Det(f*elaf*e27€a f)
e*p~! Det(do,e1, Po.e2, &0, Po)-

This implies that p = €. By the second equation of (3.3), we obtain U =
gradyo w.

It should be remarked that we have not yet used the fact that ¢y is a
quadric. In the next step, we will determine the function a, using the data of

o.
Step 2. By Example 2.3 and Step 1, we get
(3.4) h = 2e*dutdu?,

U= (agw) 61 -+ (81&}) 82,

where we denote 9/9u’ by 8; for i = 1,2. Thus we have
(3.5) Vo, = 20wdu' ® 6;,, i=1,2,

T(@l, 81) = 8181(4) - (81CU)2,
T(@l, 82) = 8182(.() + 81(4)82(4) — a,
T(82, 82) = 8282(.4) - (82&))2,

7



and
Sal = fe—Zw [{8182(4) — 81&)82w + CL} a1 + {8181(*u - (810))2} 82] ’
Sa2 = —6_2“” [{6282(,0 — (82w)2} 81 + {8182(4) - Blwagw -+ a} 82] .
Here we used the first equation of (3.2), the last equation of (3.2), and the first

equation of (3.3). As a consequence of resulting formulas, the last condition
of (2.4) implies that 0 = tr, T + tr .S = 4e~% [8wdsw — a]. Hence, we have

a = OLwlhw.
Accordingly, we obtain
T = {66w — (81w)?} (dut)? + 26ywBwdut du?
+ {8200w — (Bw)?} (du?)?
(36)  S=—e [50wdu' ® 3 + {810w — (Aw)?} du' ® B,
+ {8282w — (azw)2} du? ® 0y + 8, Fwdu? ® (92] ,
P=0,

where the last equation is deduced from the third equation of (3.3). By (3.6),
we have

1 ,
H = 5 tr S = —6—2“)818260,
thereby completing the proof. O

A representation formula for definite centroaffine immersions can be verified
in & similar fashion, and we give the result without proof.

Theorem 3.4. We define an immersion 1 : R> — R* by
1+ (ul)® + (u?)?
1] 1 (u)? = (u2)2
1,2y __ L
d}(u U ) — 2 2’(1,1 )
202

(u',u?) € R%.

Then, we have:
(1) For a holomorphic function X in the complex variable z = u! + /—1u?,

f(ul, u2) = e—2Im>\(z)¢(u17u2)

is a definite minimal self-dual centroaffine surface. Conversely, any def-
inite minimal self-dual centroaffine surface is locally represented in this
form.

(2) For a holomorphic function ) in z,

Loy exp(Re )\(z))
', w’) = 2Re [* exp MNw)dw (
8

ul, u2)




is a definite self-dual centroaffine surface with affine mean curvature —1.
Conversely, any definite self-dual centroaffine surface with affine mean
curvature —1 is locally represented in this form.

4. ANOTHER REPRESENTATION FORMULA
FOR MINIMAL SELF-DUAL CENTROAFFINE SURFACES

In this section, we give another representation formula for the minimal
self-dual centroaffine surfaces of codimension two.

Let f: M — R*\{0} be a minimal ISDC surface. By Theorem 3.1, there
exist two functions p and v in one variable such that f = exp(u(u')+v(u?))¢o.
We re-parametrize the surface as follows:

1 w2

flu) = f(ﬂ(u)), where u(u) = (/u e—2u(t)dt,/ e—-2u(t)dt> .

Then, it follows from (3.4)—(3.6) that the objects induced by f are:

Vo, =0,
h = 2duldu?,
(4.1) T = a(u!)(du')? + b(u?)(du?)?,
S = —a(ul)du! ® 8; — b(u?)du? ® 8,
P =0,

where a, b are functions in one variable given by a = e™* {y" — (1')*} and
b=e*{V — (V)*}. ‘

Conversely, if functions a and b in one variable are given, then V, h, T', S
and P defined by (4.1) satisfy the Gauss, Codazzi and Ricci equations (2.5).
We can therefore construct a minimal ISDC surface with these quantities.
The following lemma gives this surface in a more explicit form.

Lemma 4.1. Let pj, Py, gjo and gy (j = 1,2) be any fized constants satis-
Jying
Prodio P10 Prodio Piodi0
4.9 Phod20 P0G Prodo Progeo | _ 1
( . ) / / / 7 - &
P10 P20%10 P20910 P20410
PhoG20 D205 PaoGo P20920
For given functions a,b € C®(I), let p; and ¢; € C*(I) (j = 1,2) be the
solutions of the following ordinary differential equations
(4.3) p; =ap;, ¢ = by,



with nitial conditions

44 Ui =g
If we set
Pl(ui)(h(uz)
s oy | B |
p2(ut)ge(u?)

then f is a minimal ISDC surface with invariants given by (4.1).

Proof. We prove the lemma while we verify that the Blaschke normal vector
field ¢ is given by

(4.6) £=010f.
- By (4.5) and (4.3), we have .
(47) 6181}‘ = (lf, 8282f = bf

Moreover, we have 0; Det (01 f, 02 f, &, f) = 0 by a direct calculation. Accord-
ingly, the initial conditions (4.4) with (4.2) imply

Det (81f7 62fa€7 f) = 17

from which we see that £ satisfies the condition (2.1).
Equations (4.6) and (4.7) imply that

(4.8) Do § = adsf, Da,§ = bo\f.
It follows from (4.7) and (4.8) that the quantities V, h, T, S, 7 and P are
given by (4.1).

We can now easily see that each condition of (2.4) holds. Then £ is the
Blaschke normal vector field of f, and hence f is a minimal ISDC surface. O

Theorem 4.2. Let p, q be functions in one variable such that
p(0)=1," p(0)=0, ¢0) =1, ¢(0)=0.
If we set v
ooy
1,2y __ | P\u")q\u
flu',u) pul)g(u?) |
pu')glu?)



where

1 u?

Plut) = p(a) / P, Gd) = qed) / (b,

0

then f is a minimal ISDC sﬂrface.
Conversely, any minimal ISDC surface is locally represented as above.

Proof. Setting

P10 = Phy = q10 = G0 = 1,
p'lo = P2 — q/m =g =0,

we can check that p; := p, ps := D, ¢1 := ¢ and ¢» := ¢ satisfy conditions
(4.2), (4.3) and (4.4) in Lemma 4.1 for a := p"p~! and b := ¢"q". O

Example 4.3. We take
p(t) = g(t) = cos(Vit), >0,

as p and ¢ in Theorem 4.2. Then p(t) = q(¢t) = /. sin(v/1t), and we obtain
a one-parameter family {f;; { > 0} of minimal ISDC surfaces containing the
Clifford torus ¢ and the quadric ¢p; indeed, fi = ¢ and lim;_q f; = ¢s.

In the case where f is definite, the following theorem holds.

Theorem 4.4. Let A be a holomorphic function in z = ul ++/—1u? such that
AM0)=1, X(0)=0.

If we set
M) = AM2), Aa(2) = A(2) /0 "2 (w)duw,
and
)\1(2))\1(2) + )\2(2))\2(2)
1 M(2)A1(2) = Aa(2)Xa(2)
I@=51  REME+NENGE |

s (Ag(z))\l(z) - Al(z))\g(z))

then f is a minimal self-dual centroaffine immersion with affine fundamental
form h = dzdz.
Conversely, any minimal self-dual centroaffine surface with definite affine
fundamental form is locally represented as above.
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Example 4.5. For a non-negative constant k, we take cosh(kz) as A in the
theorem above. Then A;(z) = cosh(kz) and Ao(2) = sinh(kz)/k, and hence we
obtain a family {fx; &k € [0,00)} of minimal self-dual centroaffine immersions
of C into R*\{0}. For instance, fy coincides with % in Theorem 3.4 and

cosh(2u!) cosh(2u!)
fi(2) = 1 cosh(2v/—1u?) _ 1| cos(2u?)
=5 sinh(2ut) ~ 2 | sinh(2u!)

v~T1sinh(—2v/—1u?) sin(2u?)

5. AFFINE MEAN CURVATURE OF CENTROAFFINE SURFACES
OF NON-PARAMETRIC TYPE

In this section, we describe the affine mean curvature of a centroaffine
surface of non-parametric type.

Theorem 5.1. Let f: M — R*\{0} be a centroaffine immersion given as
flu) :=t(ut,u?, o(u),¥(u)). The affine mean curvature of f is given by

(5.1) H= ——i| detgo h0l1/4{! detgo h0|1/4Aho} detgo h0|‘1/4 + trpo T —tr SO}

with
2
= (- > uo)du A du?,
1_21 ,
(% =D wo)aidse — (0 — Y u'dp)Bidsy
h(_)_ — I=1 =1
(5.2) Y ’

2
P — Z u'opp
=1

2
TS = (% — Y u'ow) 0,0,
=1
S0 =0,
where Apo denotes the Laplacian with respect to h°, and detgo h° := det (h%(e;, €;))

for a basis (e1, e3) of TuM with 8%(ey, e5) = 1.
: 12



Proof. Step 1. We put & = %(0,0,1,0) and may assume that M C {u €
R? | det Q(u) > 0} where

Q(u) = [fu01, f.02, &0, f] (w)

1 0 O

_ 8?80 6;0 ? o | (W € GLER).
oy Oy 0 o

Let V0, A%, 79, 89 70 P° and #° be the geometric quantities defined as in
(2.3) and (2.2) with respect to &. Because & is constant, S°, 70 and P°
vanish identically. We calculate (5.2) as

00 (81, 82) = det Q,

ot 0
ro? 0
ij | =0 ,
h% 0;05¢
T;j ’ 81(%7,0

2
where Vgﬁj = Z I‘ijc')k.
k=1
Step 2. We choose a positive function p, a function a and a vector field U
on M so that

§=p (6o +af + £U)

is the Blaschke normal vector field of f. Then we have

p = | detgo hO| 74,
(5.3) U = grad;o log p,

a= éll(trho T +tr S° — p~ ' Apop).
‘To prove it, we remark that (3.2) and (3.3) hold in this case with w = 1
(see also [2]). We get the first equation of (5.3) from 6 = p~!6°, the second
equation of (3.2) and the third condition of (2.4), and the second equation

of (5.3) from the second equation of (3.3). The third equation of (5.3) is
obtained as follows. From (3.2) and (3.3), we have

T(X,Y)+h(SX,Y) = T°(X, Y)‘+ RO(S°X,Y) — 2ah%(X,Y) — % (VxU,Y),
which implies
0=tr,{(X,Y)—» T(X,Y)+h(SX,Y)}
=pt (trho T° +tr S° — 4a — divv_U) :
13



Noting V Vol;, = 0, we calculate
1
a=7 (trho T° +tr 8 — divY grady, log p)

1
=1 (trho T° + tr S° — div¥ grad, ,0)

= 5 (b0 T + x50~ Anp).

Since dim M = 2, we obtain the third equation of (5.3).
By (5.3), we obtain that

trS=—trp, T

= —% (trho T° — 2a)

-1
= —2—p (tl‘ho TO —tr SO + p_IAhop) )

which implies (5.1).

REFERENCES

[1] Furuhata, H., Minimal centroaffine immersions of codimension two, to appear in Bull.

Belgian Math. Soc.

[2] Nomizu, K. and Sasaki, T., Centroaffine immersions of codimension two and projective

hypersurface theory, Nagoya Math. J. 132(1993), 63-90.

[3] Rogers, C. and Shadwick, W. F., Béicklund Transformations and Their Applications,

Math. Sci. Engrg. 161, Academic Press, New York, 1982.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060-0817, JAPAN

E-mail address: furuvhata@math.sci.hokudai.ac.jp

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCES, FuKuokA UNI-

VERSITY, FUKUOKA 814-0180, JAPAN
E-mail address: sm036447@ssat.fukuoka-u.ac. jp

14



