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ABSTRACT. We study hyperbolic invariants of hyperbolic plane curves as applications of the
singularity theory of smooth functions

1. INTRODUCTION

One of the main techniques for applying the singularity theory to Euclidean differential
geometry is to consider the distance squared function and the height function on a submanifold
in Euclidean space ([1,2,8]). This is the Thom’s idea for generic differential geometry and
Porteous([10] is the first person who realized this idea. Recently, the authors apply this idea
to several kinds of geometry ([4,5,6]). In these cases the corresponding functions depend on
each geometry. In this paper we apply this idea to hyperbolic differential geometry on plane
curves. We adopt the hyperbola H2 in Minkowski 3-space as the model of the hyperbolic plane.
Since H? is a Riemannian manifold, the direct analogous method is to consider the geodesic
distance function instead of the distance squared function in Euclidean differential geometry.
It is, however, very hard to proceed the calculation. In this paper we consider the Lorenzian
height function on a curve in H2. As an application of singularity theory to the Lorenzian
height function, we detect the hyperbolic evolute and classify singularities of it (Theorems 2.1,
2.2). By the main result, we understand that the hyperbolic evolute can be defined in the case
when the geodesic curvature kg of the curve does not equal to +1. Moreover, if ng > 1, then
the evolute is located in H?, otherwise it is in the pseudo sphere S}.

On the other hand, we can define the notion of the lightcone Gauss map of a curve v in
H?. For the study of the lightcone Gauss map, we define the notion of the lightcone height
function of the curve and apply the singularity theory again. We use the basic notions and
results in Lorentzian geometry (cf., [9]). The basic techniques in this paper depend heavily on
those in the book of Bruce and Giblin {3]. In §2 we introduce the notion of lightcone height
functions and Lorentzian height functions on curves in H? and study these properties. The
Lorentzian height function is just a direct analogy of the height function in Euclidean 3-space.
It is, however, used in the different situation compared with the Euclidean case. We study
some hyperbolic invariants in §3. The proof of Theorem 2.2 is given in §4. In §5 we consider
the generic properties by using the analogy of the notion of Monge-Taylor maps of curves in
[3]. These arguments give the proof of Theorem 2.1. In §6 we give the program by using
Mathematica that draw pictures of hyperbolic evolutes of curves in the Poincaé’s disk.

*On leave from Department of Mathematics, North East Normal University, Chang Chun 130024, P.R.China.
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2. BASIC NOTIONS AND MAIN RESULTS

Let R® = {(21, z2, 73) |1, 2o, 23 € R} be a 3-dimensional vector space, = = (%1, 2, z3) and
Y = (y1,Y2,93) be two vectors in R3, the pseudo scalar product of = and y is defined by
(,y) = —x1y1 + Toys + T3ys. We call (R3,(,)) a 3-dimensional pseudo Euclidean space, or
Minkowskt 3-space. We denote R instead of (R3, (,)).

We say that a vector  in R is spacelike, lightlike or timelike if (w, xz) >0, (z,z) =0or
(z, ) < 0 respectively. We now define pseudo-spheres in R? as follows:

HY = {zeR}| —2t+a}+al=-1,2, > 1},
H: = {exeR}| —zl+ai+ai=—12, <1}
S} ={zeR}| —2?+23+22=1}.

We call H2 a hyperbola and S? a pseudo-sphere.

Let v : I — H} C R} y(t) = (z1(t), 22(t), 23(t)) be a smooth regular curve in H?
(i.e.,%(t) # 0 for any t € I), where I is an open interval. We can show that (¥(t),4(t)) > 0 for
any t € I. We call such the curve a spacelike curve. The norm of the vector & € R? is defined
by ||z|| = v/|(x, x)|. The arc-length of a spacelike curve ~, measured from Y(to), to € I is

0= [ et

Then the parameter s is determined such that |7/(s)|| = 1, where v/(s) = dv/ds(s). So we
say that a spacelike curve +y is parameterized by arc-length if it satisfies that 1Y ()] = 1.
Throughout the reminder in this paper we denote the parameter s of v as the arc-length
parameter. Let us denote £(s) = +/(s), and we call £(s) a unit tangent vector of v at s.

For any & = (z1, %2, %3), ¥y = (y1,¥2,¥3) € R, the pseudo vector product of  and y is defined
as follows:

—€; €y e3 |
TANY=| 1 29 T3 |= (‘-(Iwa - Cﬂsyz), T3Y1 — T1Ys, T1Y2 — 932311)-
: Yi Y2 Y3

We now set a unit vector e(s) = v(s) A t(s). Then we have a pseudo-orthonormal frame
{7(s),t(s),e(s)} along ~. of the curve v at s. Since t(s) is spacelike, we have (b(s), b(s)) =
—3(7(s)) and sign (v'(s)) = 1. By the similar arguments as those as in the ordinary Frenet-
Serret formula for the Euclidean space curve, the following Frenet-Serret type formula holds:

V(s) = #(s)
£(s) = 1(s) + r,(s)e(s)
e/(s) = —rg(s)t(s),

where ry(s) is the geodesic curvature of the curve + in H? which is given by

kg(s) = det ((s), t(s), t'(s)).
We call the above formula the hyperbolic Frenet-Serret formula of .

Since (7(s),v(s)) = —1, we have (e(s), e(s)) = ~(7(s),v(8))(t(s),t(s)) = 1. Therefore, we
can show that [|v(s) + e(s)|| = 0. This means that v(s) + e(s) is a lightlike vector for any s € I.
Define

St ={z € R¥|z = (1, 2y, z3), 22 + 22 =1}.

We call Si a lightlike unit circle. For any lightlike vector & = (%1, %2, x3), We denote that

2



We now define a map HGY : I — S} by HG(s) = ’y(sm(s). We call HG the hyperbolic
lightcone Gauss map of . Under the assumptlon that ky4(s) # £1, we also define a space curve

HE,(s) = ——e (5, (s)7(s) + ()
R2() 1]

We remark that HE,(s) is located in HZ if and only if k2(s) > 1, otherwise it is in S?. We
call HE, the hyperbolzc evolute of «y. The geometric meanings of the above subjects w111 be
dlscussed in §4. :

Let v : S — H2 be a regular curve. We consider the following conditions on ~

(A 1) The number of points p = y(t) where Kg(t) = 0 is finite.

(A 2) There is no point p = ~(t) where 4(t) = &/ 5(t) =0.

(A 3) There is no point p = (t) where ) (t) = //(t) = 0.

(A 4) The number of points p = 7(t) Where k2(t) = 1 is finite.

(A 5) There is no point p = y(t) where ng(t)ng(t) =0 and x2(s) = 1.

Our main results are formulated as follows:

Theorem 2.1. Let Imm(S', H}) be the space of immersions equipped with Whitney C°-
topology. Then the set of curves which satzsfy (A1), (A2),(A3), (A4),(A5) is a residual set
in Imm(S*, H2).

Theorem 2.2. Lety: 1 — H} be a regular curve which satisfies the conditions (A 1), (A 2),
(A 3), (A4), (A5). Then

(1) The hyperbolic lightcone Gauss map H G has a fold point at sy if and only if KS(So) = 1.
(2) The germ of hyperbolic evolute at HE. (sy) is smooth if and only if Ky(s0) # 0.

(3) The germ of hyperbolic evolute at H E,(so) is locally diffeomorphic to the ordinary cusp if
and only if K, (so) = 0.

Here, the ordinary cusp is the plane curve whichi is given by C = {(z1, z2)|z,? = 2,°}. We
also say that a point o € R" is a fold point of a map germ f : (R™, zo) — (R", f(xo)) if there
exist diffeomorphism germs ¢ : (R",20) — (R",0) and ¢ : (R", f(zo)) — (R",0) such that
Yo fodHzy,....zr) = (21,...,Tr_1,72).

In [7] M. Kossowski introduced the notion of S x S'-valued Gauss maps associated with
spacelike curves in Minkowski 3-space. Since curves in H% 2 are spacelike, so we can define the
S x S1l-valued Gauss maps. As a matter of fact, the notlon of hyperbolic lightcone Gauss maps
in this paper is equal to the S}-component of the S* x S'-valued Gauss maps. It is, however,
given by the explicit form H G’:YL in this special case.

3. LORENTZIAN INVARIANT FUNCTIONS ON CURVES IN H2

In this section we introduce three different families of functions on a regular curve y : I — H?.
Hyperbolic height function

We now define a function H” : I x H2 — R by HT(s,u) = (v(s),u). We call HT the
hyperbolic timelike height function on a curve . We also define a function HS : I x S2 — R
by H5(s,u) = (v(s),u). We call HS the hyperbolic spacelike height function on a curve ~v. We
denote that (h])(s) = HT(s,u) and (h5)(s) = H5(s,u). We have the following proposition.

Proposition 3.1. Let v: 1 — H_% be a unit speed curve.
(A) For any (s,u) € I x H2,



(a) (hTY(s) =0 if and only if u € (y(s), e(s))r. ,
(b) (hg)'(s) = (hd)"(s) = 0 if and only if u = +————= (k4(s)7(s) + €(s)) and k2(s) > 1.

K2(s) — 1
(c) (hg)'(s) = (hg)"(s) = (h)®)(s) = 0 if and only if
u= (s, (s11(s) + (s)),
K2(s) — 1 :

k2(s) > 1 and & (s) = 0.
(@) (hY)'(s) = (R)"(s) = (h)(3)(s) = (h{)“(s) = 0 if and only if
w= e (s, (1(s) + e(s)),
K2(s) —~ 1

k2(s) > 1 and & (s) = k)(s) = 0.

(B) For any (s,u) € I x S,
(a) (RSY(s) = 0 if and only if u € (A\y(s), e(s))r.

() (hSY(s) = (hSY"(s) = 0 if and only if u = £———— (k,(s)y(s) + e(s)) and £2(s) < 1.

1 —k2(s)
() (hSY(s) = (hS)"(s) = (hS)®(5) = O if and only if
U=t (5y(s)1(s) + e(5)),
1 —k2(s)

k2(s) < 1 and k)(s) = 0. ,
(@) (S (5) = (RS)"(s) = (R (s) = (AS)(s) = 0 if amd! only if

U= e (14 (5)7(8) + €(3)),

%2(s) < 1 and K[ (s) = ky(s) = 0.

Proof. By the hyperbolic Frenet-Serret formula, we have the following calculations:

(1) (h3) (s) = ((s), w).
(2) (hg)"(s) = (¥(s) + Kg(s)e(s), u).
(3) (RD)®(s) = (1 = K2(s))V(8) + Ky (s)e(s), u).
(4) (RD)W(s) = (1 — KZ(s))(s )+ﬂg( Vrg(8)E(s) + (kg(s) — K3(s) + Ky (s))e(s), ).
The assertion (a) follows from the above formula (1). By the assertion (a), there exists

A, 4 € R such that u = Ay(s)+pe(s). By the formula (2), we have 0 = (y(s)+x4(s)e(s), Ay(s)+
pe(s)) = Ay(s),v(s))+urg(s)(e(s), e(s)) = —A4pur,(s). Thus we have u = u(k4(s)v(s)+e(s)).
Since (u,u) = —1, we have y = :l:—l——.
K2(s) —1
Other assertions (containing the assertions (B)) are also followed by the similar arguments.
U
Lightcone height functions

We define a function H : I x S3 — R by H(s,v) = (7(s),v). We call H the Lightcone height

function on a curve . In [4] we introduced the notion of Lightcone height function on a spacelike
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curve in Minkowski 3-space. Since curves on H? are always spacelike, the definition in here
is exactly the same as the definition in [4]. However, we adopt different pseudo orthonormal
frame along the curve 7, so that we have the different features as follows:

Proposition 3.2. Let v : I — H? be aregular curve 7. We also denote that h,(s) = H(s, ).
Then

(a) h
(b) A
(c) h
(d) A

Proof. If we calculate the derivative of h,(s) with respect to s-variable, we have the formulae
exactly the same form as those in the proof of Proposition 3.1. We only change the variable u
to v. So we use the same number (1) to (4) as the corresponding formula.

By the formula (1), there exists A, 4 € R such that v = Ay(s) + pe(s). Since v is lightlike,
(7(s),7v(s)) = —1 and (e(s), e(s)) = 1, we have =A%+ % = 0. So we have v = A(y(s) L e(s)) =

v(s) £ e(s). Other assertions are followed by the similar arguments as those in the proof of
Proposition 3.1. (N

—

s) = 0 if and only if v = v(s) £ e(s).
s) = hy(s) = 0 if and only if v = y(s) + e(s) and k2(s) = 1.
s) = hl(s) = hq(,?’)(s) =0 if and only if v = v(sm(s), ka(s) =1 and (s) = 0.

o
(s) = hi(s) = b (s) = 0 if and only if v = y(s) % e(s), k2(s) = 1 and K (s) = K(s) = 0.

ol
of

4. HYPERBOLIC INVARIANTS OF CURVES

In this section we study the geometric properties of the hyperbolic evolute and the lightcone
Gauss map of a curve in H3. For any r € R and ug € H2 or uy € S, we denote that

PSYug, ) = {u € H? | (u,uo) =7}

We call PS'(ug, ) a pseudo-circle in H2. We call ug the center of the pseudo-circle PS*(ug, 7).
Then we have the following proposition.

Proposition 4.1. (1) Let v : I — H7 be a unit speed curve with x2(s) # 1. Then &/ (s) =0

1
if and only if ug = £ —————===(k4(s)7(s) + €(s)) are constant vectors. Under this condition,

\/1k5(s) =1
7 is a part of a pseudo-circle in H? whose center is uy.
(2) Let v : I — H? be a unit speed curve. Then x2(s) = 1 if and only if v"(s) € Co.
Here, Co = {z € ]R3 |{z, ) = 0} is the lightcone in R3.

Proof. (1) We denote that Pyi(s) = ftug = :I:———l—-—(mg(s)'y(s) + e(s)), then we have

|k5(s) — 1]

! !

Py o T ()
(Ik3(s) — 1)z (Is3(s) — 1))z

Then P;(s) = 0 if and only if x;(s) = 0.
_r() and ug = i;(m (s)v(s) + e(s)).
Ik — 1 Y ORI
Then it is easy to show that v(s) is a part of the pseudo-circle PS*(uq, ).

(2) By the Frenet-Serret type formula, we have 7"(s) = (s) & e(s) when 2(g) = 1. Since

v(s) £ e(s) is always lightlike, the assertion (2) follows. O
5

e(s).

Under this condition, we put r = F



Let v: I — H_% be a unit speed curve with K,Z‘(S) # 1. For any sy € I, we consider the
Kg(S0)

|r5(s0) — 1

pseudo-circle PS(ug,r), where ug = H E,(so) and r =+ . Then we have the

following proposition.

Proposition 4.2. Under the above notations, v and PS*(ug,r) have at least 3-point contact
at ¥(so)-

Proof.  Firstly, we assume that P.S*(ug,r) C H?. In this case we consider the hyperbolic
timelike height function HT. By definition, we have PS*(ug,r) = (hZ)7*(r). Proposition 3.1
(A) (b) means that y and PS*(ug,7) have at least 3-point contact at y(so). If PS(ug,r) C S2
we adopt the hyperbolic spacelike height function H®, and the assertion follows from exactly
the same arguments as those of the previous case. U

We call PS™(ug,r) in Proposition 4.2 the osculating pseudo-circle (or, the pseudo-circle of
geodesic curvature) ; its center ug is called the center of geodesic curvature. So the hyperbolic
evolute is the locus of the center of geodesic curvature. Moreover, we have the following corollary
of Propositions 3.1 and 4.2.

Corollary 4.3. The osculating pseudo-circle and -y have 4-point contact at y(so) if and only
if kg(s0) = 0 and &} (so) # 0.

If the curve vy satisfies the conditions (A 1)-(A 5), Theorem 2.2 asserts that the cusp point
of the hyperbolic evolute corresponds to the point y(sg) where the osculating pseudo-circle and
~ have 4-point contact.

5. UNFOLDINGS OF FUNCTIONS OF ONE-VARIABLE

In this section we use some general results on the singularity theory for families of function
germs. Detailed descriptions are found in the book [3]. Let F : (R x R, (sg,z9)) — R be a
function germ. We call F' an r-parameter unfolding of f, where f (s) = Fmo(s Zo). We say that
f has the Ay-singularity at so if f®(sg) =0forall 1 < p <k, and FE(s0) # 0. We also say
that f has the Asy-singularity at so if f®)(sg) =0 for all 1 < p < k. Let F be an unfolding of
f and f(s) has Ag- smgularlty (k2 1) at s. We denote the (k — 1)-jet of the partial derivative
(—9? at so by j*&-D(2E ~(s,%0))(s0) = Z;;ll ays? for i = 1,...,7. Then F is called a (p)versal
unfolding if the (k — 1) X r matrix of coefficients (cy;) hasrank k—1 (k— 1< 7).

We now introduce important sets concerning the unfoldings relative to the above notions.
The singular set of F is the set Sp = {(s,2)|2E (s, z) = 0}. The bifurcation set B of F is the
cr1t1ca1 value set of the restriction to Sr of the canonical projection 7 : R x R" —s R":

2
Br = {z € R"| there exists s with %g = ?93}; =0 at (s,z)}

Then we have the following well-known result (cf., [3]).

Theorem 5.1. Let F': (R xR", (s0,20)) — R be an r-parameter unfolding of f(s) which has.
the Ay singularity at so. Suppose that F is an (p)versal unfolding.

(1) Ifk = 2, then (s0, %o) is the fold point of w|Sp and B is locally diffeomorphic to {0} x R"™1,
(2) If k = 3, then B is diffeomorphic to C x R™2,

‘As an application of the above theorem, we have the following fundamental proposition in
this paper.
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Proposition 5.2. Let v: I — H? be a unit speed curve with x,(so) # 0 and K2(so) # 1.
(1) If A, (s) has the Ay-singularity (k = 2,3) at so, then HT is the (p)versal unfolding of hZ .
(2) If h (s) has the Ag-singularity (k = 2,3) at so, then HS is the (p)versal unfolding of AS .
(3) If hyy(s) has the Ap-singularity at so, then H is the (p)versal unfolding of h,.

Proof. (1) We denote by v(s) = (X(s),Y(s),Z(s)), u = (z1,22,4/—1+22 —123) € H2.

Therefore we have
HT(s,u) = —2:X(s) + 7Y (s) + /=1 + 22 — 22 Z(s)

and
7 (aHT(S,U0)> (so)= | —X'(s0) + L "(s0) | s
Oz, ~1+ 22— 13
1 I
+ = _X// 4 " s 82
2 ( bt =g 2 )
8HT ) )
2 : = | Y'(s0) — "(s0) | s
7 (G s,00)) (50 ( (0) = S 7 (s
1 T2 1 2
+ = Y"(sy) — Z"(s0) | s
2( (s0) —1+ 2?2 — 22 (s0)

Case (1) If hZ has the Ay-singularity at so, then 8—(30, uo) = (7' (s0), up) =0
Suppose that the rank of the matrix

z1

A= <—X/(30) + Z'(s0),Y'(s0) — 2 Z’(SO))

2 2 2 2

is zero, then we have

L1 ’ ) / L2 /
Z'(8g), Y'(s9) = Z'(80).
> (s0) (s0) = (s0)

Since [|7'(s0)|| = 1, we have Z'(sp) # 0, so that we have the contradiction as follows:

X/(S()) =

_ T ; Zy ! 7l 2 2)
0= Z', 4,7 T1,To,\/—14+zf—x
(V—l—i—x%—x% V=142~ 22 )( n P
m% ! x% ! 2 2 !
= — 5 2Z+ > 2Z+V—1+$1"‘x22
v —1+2z7— 75 vV =1+z7— x5
. ZI
;O V—1+a2 -2
This means that the rank of A is one. By Theorem 5.1, H” is the (p)versal unfolding of AT .

Case (2) It follows from Proposition 3.1 that hZ (s) has the As-singularity at sq if and only
if

o = £ —— (i, (s0)(s0) + €(s0)),
K,S(So) -1
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Ka(80) > 1, K)(so) = 0 and Ky (S0) # 0. For the purpose, we require the 2 x 2 matrix

X'+ Y —
: B= \z‘1+$1—$2 \/—1+III1—£L‘2
__XII YI/

\/—1+$1—x2 «/—1+x1—$2

to be nonsingular. The determinant of this matrix at sq is

—_ .'L'l Z/
\/__m
det B = (—(Y'Z" - Z'Y"), Z’X" - X'Z", X'Y" - Y'X") | _ byt 7z
V-1+17 -1}
-1
—_ xl 7
-1+ 22 — 22
={(X"Y,Z)AX"Y" Z")} | .2 7
-1

I
1
= — (tne) T2
w“——m%—w% i
, U

( _1+x1_xg)i\/%<“’“”””
=+

1
ky

0.
V- 1—}—3v1—:r2\/l$2—17'é

(2) For H, the arguments for the proof is exactly the same as those for H7, so that we omit

it.

(3) We denote by ~(s) = (X(s),Y(s), Z(s)) and v = (1,cosf,sinf). By definition we have
H

H(s,0) = —X(s)+cos Y (s)+sin §Z(s). Therefore, we have —— 50 —(8,0) = —sinOY (s) + cos 2 (s)

and

00 (
So we require the matrix
C = (—sinfoY (so) 4 cos 6 Z (so), —sin 6yY " (s0) + cos 82" (o))

to have rank 1, which it always does since —sin BOY’ (80)+cosbpZ(so) # 0. In fact, —Y"(s0)sin 6+
Z'(sg)cos B is equal to the first component of v’ Av. Suppose that —Y”’ (so)sm0+Z’ (so)cos 8 = 0.

Since (v A v,y Av) = (£(sp) A (7 + e)(s0), t(so) A (v £ €)(so)) = 0, we have
((0,Z' = X'sing, X'cos§ — Y'), (0, Z' — X'sin8, X'cos — Y')) =0
This is equivalent to the condition that |
Z"* —2X'Z'sin 6 + X"sin? 0 + X'%cos? 6 — 2X'Y cos 6 + V' = 0.

J (8}[ s 00)> (50) = (—sinbpY"(sp) + cos 6o Z’(s0)) s.

So we have
Z”+Y? 4+ X — 2X'(Y'sin8 + Z'cos§) = 0.
8



Since —X' +Y'sinf 4 Z'cos§ = (v, v) = 0, we have —X"2+Y"® + 7> = 0. On the other hand,
—X?4+Y?+ 2% = (v,%') = 1. This is a contradiction. Hence H is (p) versal. a
We now give the proof of Theorem 2.2.

Proof of Theorem 2.2 For the proof of assertion (1), we consider the singular set associated with
the lightcone height function H denoted by Sy. By Proposition 3.2, we have Sy = {(s,v) €

—

I'x Sy |v=~(s)+e(s)}. We also consider the canonical projection 7 : I x Sy, — St
and we can identify 7|Sy and the hyperbolic lightcone Gauss map H Gjy' . By the assumption
and Proposition 3.1, h, has the Aj-singularity at so if and only if ng(so) = 1. It follows from
Proposition 5.2 that H is the (p)versal unfolding of h at sq. Therefore Theorem 5.1,(1) asserts
that 7|Sy has a fold point at sq.

For the proof of the assertions (2) and (3), we consider the hyperbolic timelike height HT
functions on curves. By Proposition 3.1, the discriminant set of H7 is

Brr = { kL (s, (5)1(5) + e(s)) |K2(s) > 1

K2(s) —1

The hyperbolic evolute of v in H2 is a part of this set. By Theorem 5.1 and Proposition 5.1, the

discriminant set Byr at up = ——==(r,(s0)7(s0) + €(50))is locally diffeomorphic to to
K;(So) —1

the cusp if ky(so) = 0, otherwise it is diffeomorphic to the line. If we consider the hyperbolic

spacelike height function HS, we can prove the remaining assertions of the theorem. O

6. GENERIC PROPERTIES OF HYPERBOLIC PLANE CURVES

In this section we consider the notion of hyperbolic Monge-Taylor maps for curves in H 2 analogous
to the ordinary notion of Monge-Taylor maps for curves in Euclidean plane (cf., [3]). For any
regular curve v : I — H?2, we choose v,t,e as a pseudo-orthonormal frame of R? along .
Applying some Lorentz transformation, we may assume that ~y(tg) = (1,0,0). Then the co-
ordinates 7, (,& of ~(¢) relative to axes v,t,e are functions of t:n(t) = (v(t),v(to)), ((¢) =
(v(2),8(80)), £(8) = (7(t), elto),n = fou(¢) and € = f14(¢) with £5,(0) = 1 and f,,(0) = 0.
Since y(t) € H3, we have the relation fo;, = ,/¢2+ fii+ 1. Let Vi(k < 2) be the space of

polynomials in a single variable ¢ of degree < k and > 2. So we can identify V; with R*-1. If
we have a function £ = f(¢) with f(0) = 0, then we have an element

7°F(0) = a2 + agC® + -+ + arC* € Vi,
d lf(O) The hyperbolic Monge-Taylor map (of order k) p, : I — Vj is defined to
be piy(t) = 7* f1,4(0).

We are showing that there are sufficiently many deformations of our original curve v to give
all of deformations of the hyperbolic Monge-Taylor map Ky Let Py denote the set of maps
¥ : R? — R? of the form ¥(z,y) = (¢1(z,v), ¥a(z, y)) where each v; is a polynomial in z and
y of degree < k, so P, can be thought as a Euclidean space RY with N = (k + 1)(k + 2).

We now define the canonical projection a3 : H2 — R? by mg3(21, 29, 23) = (23, 23). It
is clear that w3 is a diffeomorphism. Let § : I — R? be a regular curve, then we have
the hyperbolic plane curve given by Ty, 3006, We call it the hyperbolic lift of § and denote it

where a; =

5. To simplify matters we assume that the curve v(I) is compact, i.e. I = SI. By using the
9



compactness y(S1) there is a neighbourhood of 1g: in P, with the property that if 1 € U then

Y 0 Te3 0 is a regular curve in H%. We can prove the following theorem by exactly the same
arguments as the proof of ([3], Theorem 9.5).

Theorem 6.1. Let Q be a manifold in Vi, = R*~1. For some open set Uy C U containing the
identity map the map p: S* x Uy — Vi defined by u(t, ) = “w@w(t) is transverse to Q.

By the direct calculations, we have the following lemmas. The calculations are rather long
and tedious so we omit details.

Lemma 6.2. Lety:I — H? be a space curve with y(to) = (1,0,0), v(t) = (f1:(¢), ¢, f2.4(¢))
and f24(C) = ax(t)¢® + as(t)¢®* + - . Then
(1) Hg(to) = 2&2(t0), lﬁ:;(to) = 6&3(t0) and K,lgl(to) = 240,4(t0) — 6a2(t0)(4a§(t0) — 1)
(2) (a) Kq(to) = &, (to) if and only if ay(to) = as(to) = 0.
(b) I‘L;(to) = K)Z(to) =0 ’Lf and only Zf a3(t0) = 4(14(t0) — ag(to)(4a3(t0) — 1) = 0.
We now define 7 sets in V; as follows:
Ql = {(al,ag,a3,a4) & V;l | as = 0},
@2 = {(a1,02,a3,a4) € V4 | a2 = a3 = 0},
Qs = {(a1,02,a3,01) € Vi | a3 = 4as — az(4a} — 1) = 0},
QZ}: = {(al,ag,a3,a4) € ‘/4 l Qg = :tl},
Q7 = {(a1,as,03,a4) €V} | ay = 1,03 = 0}.

Then Q; and QF are codimension one submanifolds and Q,, Q3 and Q% are codimension two
-submanifolds respectively. We can use the above submanifolds and Theorem 6.1 for the proof
of Theorem 2.1 exactly the same way as the proof of Corollary 9.7 in [3]. So we omit the detail
here. ' '

7. DRAWING PICTURES ON THE POINCARE’S DISK

In this section we describe how we can draw the picture of the hyperbolic evolute of a curve
in the Poincaré’s disk. We now consider the Poincaré’s disk D = {(z,y) | 22 + v < 1} with
the hyperbolic metric

2
| ds o
It has been known that there is the canonical isometric diffeomorphism
1+ 22 +192 2z 2y
. 2 . —
®:D— Hi; ®z,9) = <1—x2—y2’1—x2—y2’1—x2—y2 :

The inverse mapping of ® is given by

v H_?_ — D 3 \I/($1,$2,£E3) = (xlxj_ 1’ %) .
If we consider a regular curve v : I — D, then we have the lift ® oy : I — H?2 of the
curve 7. By the previous sections, we have the hyperbolic evolute HEg,,. We denote that
J = {s€1I]|kZ(s)> 1}, then J is an open interval in I. If we consider the restriction |J of
7, we have the hyperbolic evolute HEgoy : J — H?+ in H2.
Therefore, we have the hyperbolic evolute

Vo HEgo:J— D
10



of v|J. We can draw the picture of ¥ o HEgoq s by a computer graphics. The following is a
program written by using Mathematica:
hevolute[{yl_,y2.}]:=

Module[{Phi,phi,dl,dlst,Mi,d2,d2nd,determ,Mo,x,Psi},

Phi[1] :=(1+y1~(2)+y27(2))/(1-y1~(2)-y2~(2)) /.t —> tt;
Phi[2] :=2xy1/(1-y1~(2)-y2~(2)) /.t -> tt;
Phi[3]:=2+y2/(1-y1"(2)-y2~(2)) /.t -> tt; phi:={Phi[1],Phi[2],Phi[3]};
Do(d1[il=D[Phil[i],tt],{i,3}]; dist:={d1[1],d1[2],d1[3]1};
Mi=-d1[1]%d1[1]+d1[2]*d1[2]+d1[3]*d1[3];
Do[d2[i]=D[Phi[il,{tt,2}1,{i,3}]; d2nd:={d2[1],d2[2],d2[3]};
determ=Det [{phi,dlst,d2nd}];
Mo[1]=-Phi [2]%d1[3]+Phi [3]*d1[2];
Mo [2]=Phi [3]*d1[1]-Phi[1]%d1[3];
Mo [3]=Phi[1]*d1[2]-Phi[2]*d1[1];
Do[x[i]l=(Mi~ (-3)*determ”(2)-1) " (-1/2)*(
Mi~(-3/2)*determ*Phi [i]+Mi~ (-1/2)%Mo[i]),{1,3}];

Psil1]l=x[2]/(x[11+1) /. tt->t ;
Psi[2]=x[3]/(x[1]1+1) /. tt->t ;
{Psi[1],Psi[2]1}];

ellipse[t_] :={1/7xCos[t],1/12xSin[t]};

Show [

ParametricPlot [Evaluatel[ v
Table[hevolutelellipse[t]+{s,0}],{s,0,1,1/5}11,{t,0,2xPi},
DisplayFunction -> Identity],

ParametricPlot [Evaluate[
Table[ellipse[t]l+{s,0},{s,0,1,1/5}1]1,{t,0,2%Pi},
DisplayFunction -> Identity],

ParametricPlot [Evaluate[

Table [hevolute[ellipse[t]+{0,s}],{s,0,1,1/5}1],{t,0,2«Pi},
DisplayFunction -> Identity],

ParametricPlot [Evaluatel[
Table[ellipse[t]+{0,s},s,0,1,1/51],{t,0,2«Pi},
DisplayFunction -> Identity],

ParametricPlot [Evaluatel[
Table[hevolute[ellipse[t]+{s,s},{s,0,1,1/5}1],{t,0,2%Pi},
DisplayFunction -> Identity],

ParametricPlot [Evaluate[
Table[ellipse[t]+{s,s},s,0,1,1/5]]1,{t,0,2«Pi},
DisplayFunction -> Identity],

ParametricPlot [Evaluate [{Cos[t],Sin[t]}],t,0,2%Pi,

PlotStyle -> Dashing[{0.02}], DisplayFunction -> Identity],

DisplayFunction -> $DisplayFunction,

AspectRatio -> Automatic,

Axes -> None]

Fig.1 is the picture of a family of ellipse and these heperbolic evolute in the Poincaré’s disk.

The dotted circle denotes the boundary of the Poincaré’s disk.
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