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Contemporary Mathematics

Some Special Bounded Homomorphisms Of A Uniform
Algebra

Takahiko Nakazi

ABSTRACT. Let L(H) be the algebra of all bounded linear operators on a
Hilbert space H and let A be a uniform algebra. In this paper we study the
following questions. When is a unital bounded homomorphism & of A in L(H)
completely bounded ? When is the norm ||®{] of & equal to the completely
bounded norm ||®||c» ? In some special cases we answer this question. Suppose
& is p-contractive (0 < p < co) where @ is contractive if p = 1. We show that
if A is a Dirichlet algebra or dim 4/ ker & = 2 then & has a p-dilation. If®is
a p-contractive homomorphism then [|®]] = max(1, p) and if it has a p-dilation
then ||®]|cs = max(l,p). Moreover we give a new example of a hypo-Dirichlet
algebra in which a unital contractive homomorphism has a contractive dilation.

1. Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complex-
valued continuous functions on X, and let A be a uniform algebra on X. Let H be
a complex Hilbert space and L(H) the algebra of all bounded linear operators on
H. I = Iy is the identity operator in H. An algebra homomorphism f — &(f) of
A in L(H), which satisfies

®(1) = I and [[2(N) £ Y flleo

for some positive constant v > 1, is called a unital bounded homomorphism of A.
If 4 = 1, it is called a unital contractive homomorphism.

For a subspace B of A, let M,(B) denote the set of n X n matrices with entries
from B. For a map ¢ : B — L(H), we obtain maps ¢ : Mn(B) — M, (L(B)) via

the formula
dn((ai5)) = (¢(aiz))-

Tf ¢ is a bounded map, then each ¢, will be bounded, and when sup,, ||¢x| is finite,
we call ¢ a completely bounded map of B in L(H). We write

¢lle = sup gl

The following problem is natural and important.
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2 TAKAHIKO NAKAZI

PROBLEM . Suppose ® is a unital bounded homomorphism of A.
1. When is ® completely bounded ?
II. When is ® completely bounded and ||®|| = ||®||cs ?

A unital contractive homomorphism v — &(v) of C(X) on a Hilbert space K
is called a contractive dilation of the unital contractive homomorphism f — @(f)
of A on H if H is a Hilbert subspace of K and

o(f)=Pe(f)|H (f€4)

where P is the orthogonal projection of K onto H. If & has a contractive dilation

then ® is completely contractive and hence ||®|| = ||®||c;. If @ is completely con-
tractive then ® has a contractive dilation. This is well known (see [18, Corollary
6.7]).

If A is a uniform algebra and the uniform closure of A+ A, that is, [A + A] has
finite codimension n in C(X) then A is called a n-hypo-Dirichlet algebra and it is
called a Dirichlet algebra when [A + A] = C(X), that is, n = 0.

If dim H < oo, ® is completely bounded for arbitrary uniform algebra A (see
[18, Exercises 3.11]). If dim H = co and A is the disc algebra, then there exists
a unital bounded homomorphism & which is not completely bounded. This was
recently shown by G.Pisier [19]. If A is a n-hypo-Dirichlet algebra and @ is a unital
contractive homomorphism then & is completely bounded. This was shown by
R.G.Douglas and V.LPaulsen [6]. However we don’t know whether & is completely
contractive or not. They are known solutions for Problem I

Now we will give known solutions for Problem II when @ is contractive. If A is
the disc algebra then there exists a contractive dilation. This is a famous theorem
of B.Sz.-Nagy [10]. T.Ando [2] generalized this to the bidisc algebra. However
S.K.Parrot [17] gave an example of & which does not have a contractive dilation
in the polydisc algebra for n > 3. If A is a Dirichlet algebra then there exists a
contractive dilation (cf. [7]). For a n-hypo-Dirichlet algebra with n # 0, we don’t
know whether there exists a contractive dilation or does not. The polydisc algebra
for n > 2 is not a n-hypo-Dirichlet algebra. If A is an annulus algebra, that is,
a rational function algebra on an annulus, then there exists a contractive dilation.
This was shown by J.Agler [1]. An annulus algebra is a 1-hypo-Dirichlet algebra.
Tf A is the disc algebra and A = {f € A; f(0) = f(1)}, then A is also a 1-hypo-
Dirichlet algebra. The author [12] proved that @ has a contractive dilation for this
example. Even if dim H < oo, by an example of 5.K.Parrot [17] @ may not have a
contractive dilation for some uniform algebra. The author and the late K.Takahashi
[14], and Che-Chen Chu [5] showed that if dim H < 2, & has a contractive dilation
for an arbitrary uniform algebra.

Now we will give more concrete problems than Problem IIL.

PROBLEM . Suppose ® is a unital bounded homomorphism of A.

(I-a) Suppose ||®|| < 1. When A is a n-hypo-Dirichlet algebra and n > 1, does
® have a contractive dilation ?

(I1-b) Under what conditions on ® which is ||®|| > 1, is & completely bounded
with ||®|| = ||®||cs when A is a n-hypo-Dirichlet algebra andn >0, or dimH < 2 ¢

In this paper, we study Problem (II-a) and (II-b). In §2, we give a new example
of a 1-hypo-Dirichlet algebra in which a unital contractive homomorphism has a
contractive dilation. In §3, we define a p-contractive homomorphism & and a p-

dilation of ® for 0 < p < oo. If @ is a p-contractive homomorphism then [|®|| <
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max(1, p) and if it has a p-dilation then [|®|s < max(1,p). In §4, we introduce
a 6-homomorphism of A for —oo < § < 1. This homomorphism is bounded. In
fact, we show more, that is, ‘é~homomorphism’ is equivalent to ‘p = 1 /(1 = 6)-
contractive homomorphism’. In §5, we show that a p-contractive homomorphism
has a p-dilation when A4 is a Dirichlet algebra. In §6, we consider Problem IT under
conditions on ®, that is, dim A/ ker ® = 2 or a hypothesis on ker ®.

2. Third example of a hypo-Dirichlet algebra for Problem II-a

For a n-hypo-Dirichlet algebra with n # 0, we know only two examples ([1],
[11]) in which a unital contractive homomorphism has a contractive dilation, that
is, Problem (Il-a). They are 1-hypo-Dirichlet algebras. In this section, we give a
new example which is also a 1-hypo-Dirichlet algebra. In the proof of Theorem 2.1,
a theorem of T.Ando [2] is used essentially. Unfortunately we could not generalize
Theorem 2.1to A= {f € A; f'(0) = f"(0) = --- = fM(0) = 0}.

THEOREM 2.1. Let A be the disc algebra and A = {f € A; f'(0) = 0}. If
& is a unital contractive homomorphism of A then ® has a contractive dilation or
equivalently ® is a completely contractive.

PROOF. Since A = C + 224, 4y = {f € A ; f(0) = 0} = 22A4. Ap has two
generators, that is, Ag is generated by 2% and 2® beause 2££1 can be written as the
form 2n+3m. Let ®(22) = S and &(2%) =T then ST =TS, ||S|| < 1and ||T|| £ 1.
By a well known theorem of T.Ando [2], there exist two commuting operators U
and V on a Hilbert space K with H C K such that

S*T™ = PU"V™|H
for all nonnegative integers n and m where P is an orthogonal projection from K
to H. Any polynomial f in Ag is written as the following :

f= 01022 + a01z3 + Z a,jgzzjz”

j£21

and so
(P(f) = a8 +anT + Z ang’ij
Jt21
= PlawpU +aplV + z angjV‘)IH
321

By a theorem of C.R.Putnam and B.Fuglede [20, Corollary 1.19], U*V = VU™.
Hence if we set $((22)7(2%)¢) = U/V* for any integers j and £ then @ is a unital
contractive homomorphism of C(X) in L(K) and ® = P®|H on Ag. Thus ®.is a
contractive dilation of @. O

3. p-Contractive homomorphism

A bounded linear operator T' on H is said to be of class C, if there exists a
unitary operator U (called a unitary p-dilation) on a Hilbert space K O H such
that T™ = pPU™ H for n = 1,2,-+ where P is an orthogonal projection from K
to H. B.Sz.-Nagy [9] showed that if T is a contraction then it is of class Cy. If the
numerical radius of T' is less than equal to one then it is of class Cs [3]. If T is of
class C, then ||T|| < max(1, p).



4 TAKAHIKO NAKAZI

Suppose ® is a unital algebra homomorphism of A in L(H) and 0 < p < co.
When ®(f) is of class C, for any f in A with [|f||c <1, @ is called a p-contractive
homomorphism of A. A 1-contractive homomorphism is equivalent to a contractive
homomorphism. A 2-contractive homomorphism @ is equivalent to that

sup sup [(®(fly,y)|=1.
feEA yeH
lIfllee<1 llyli=1

If & is p-contractive then ||®|| < max(1,p). We will study Problem (II-b) when &
is p-contractive. _

A unital contractive homomorphism v — ®(v) on a Hilbert space K is called
a p-dilation of the unital bounded homomorphism f — &(f) of A on H ifHisa
Hilbert subspace of K and

3(f) = pPO(f)|H (f € Ar)

where P is the orthogonal projection of K onto H, A, is the kernel of 7 in M (4)
and 0 < p < 00.
If ® has a p-dilation then ® is a unital completely bounded map. However the

converse is not true even for the disc algebra A and dim H = 2. This may be well
1 1

0 —1 ] , then f = ®(f) = f(T) is a unital completely
bounded homomorphism but it has not a p-dilation for any p [15]. If @ is a unital
completely bounded homomorphism, then @ /p is completely contractive but it is
not unital. However if ® has a p-dilation then the following is true.

known. Suppose T = [

PROPOSITION 3.1. For a unital bounded homomorphism ®, ® has a p-dilation
with respect to T if and only if ®(f) = p®o(f) (f € A,) where ¢ is a unital
completely contractive map on A, equivalently o has a contractive dilation.

PRroOF. For the ‘only if’ part, put ®0(f) = P(f)|H (f € A). Then &, has
a contractive dilation ® and hence it is completely contractive on A. The ‘if’ part
follows from a theorem of W.Arveson (cf.[18, Corollary 6.7]). O

4. é-homomorphism

For —oco < § < 1, & is called a §-homomorphism for 7 in M(A) if @ is a unital
algebra homomorphism of A and Re®(f) > 0 whenever f in A, 7( f)=1and
Ref > 6. In this section we show that @ is a §-homomorphism for some 7 if and
only if @ is a p = 1/(1 — d)-contractive homomorphism.

PROPOSITION 4.1. If a unital algebra homomorphism ® has a p-dilation for 7,

then ® is ¢ § = (1 - %) -homomorphism for T.

PROOF. Suppose that ®(h) = pP®(h)|H for he A,. If f € A, 7(f) = 1'and
Ref>1- %, since 7(f — 7(f)) =0,

8(f) — T(H)I = pPR(f)|H — pr(H)I
and so

o) = p{PEOIE +7(1) (5 -1) 1}
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Since Ref > 1— %, ®(Ref) > 1- % and so

Re®(f) > p{Pé(Rean + (% - 1) I} > 0.
O

PROPOSITION 4.2. Suppose 6 # 0. ® is a §-homomorphism for T if and only if
for any h in A, with ||hlle <1,

1 26 —1
< a2 2
[(@(h)y, y)| < 20| llyll* + 30| |@(h)yli> (v € H)
PROOF. Suppose & is a §-homomorphism for 7. Put

F=-01th s
where h € A, and ||hlleo < 1 then f € A, Ref > & and 7(f) = 1. For € H, put
z = (I — ®(h))y then
Re(®(f)z, )
(1—6)Re <-:;—f%%w, 1:> +dlle|l?
= (1= 8)Re((I + &(h))y, (I — @(R))y) + 6{(I — ®(h))y, (I — (R))y)
(1 = &)(Ilyli? - 1@8(R)yII%) + s(llyll* + | @(R)ylI* — 2Re(B(h)y,v))
llyll? + (26 — D){|@(R)yl1® — 26(2(R)y, )

By hypothesis on @,
26Re(®(h)y,y) < Ilyll* + (26 — D@ (A)yll®

and so
1 26 -1
® < —|ly|® + ==~ 2,
(A, )| < gl + g 1o
The proof is reversible. In fact, if f € A, Ref > d and 7(f) =1 then
1+h
f=Q0- 6)T——_h +4
for some h € A, with ||h|lec < 1. Hence if we put for 0 <e <1
14+¢h
then f. — f uniformly as e = 1, |lehllo < 1 and 7(fc) = 1. Since Re(®(fe)z,x) >
0,as € = 1, Re(®(f)z,z) >0 for any z € H. O

THEOREM 4.3. ® is a 6-homomorphism for some (or any) T in M(A) if and
only if ® is a p=1/(1 — 8)-contractive homomorphism.

PROOF. [16, Theorem 2] and Proposition 4.2 imply the theorem, or we can
show this by the proof of Proposition 4.2 and [11, Theorem 11.1]. a
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5. Condition A

In this section, we show that a p-contractive homomorphism has a p-dilation
when A is a Dirichlet algebra. This is a generalization of a theorem of C.Foias and
LSuciu [7] for p = 1 and a theorem of B.Sz.Nagy and C.Foias (cf. [11]) for the disc
algebra. They give solutions for Problem (II-b).

THEOREM 5.1. Let A be a Dirichlet algebra and 0 < p < oo. If ® is a p-
contractive homomorphism of A in L(H) then for any T in M(A) it has a p-dilation.

ProOOF. Put ®'(h) = %@(h) —7(h) (% - 1) I for h € A. By Theorem 4.3 if

1
& is p-contractive then ® isa d = | 1— ;) - homorphism for any 7 € M(A).

Hence if Reh > 0 then Re®'(h) > 0. If we extend &' to $: A+ A~ L(H)
by &(f + 3) = ®'(f) + ®'(9)*, then & : C(X) —» L(H) is positive because A is
a Dirichlet algebra. By the dilation theorem of M.A Naimark (cf. [21, Theorem
7.5]) there exists a Hilbert space K, an -orthogonal projection P : K — H and

a multiplicative linear map u — ®(u) of C(X) in L(K), which satisfies &(1) =
I, 18] < |ulloo, v € C(X) and @'(f) = PR(f)|H for f € A If f € A, then

&' (f) = %@(f) and so

&(f) = pP2(f)|H.
O

PROPOSITION 5.2. Let A be an arbitrary uniform algebra and 0 < p < oo.
Suppose ® is a p-contractive homomorphism of A in L(H). If A/ ker @ is isometri-
cally isomorphic to A/J where A is a Dirichlet algebra on some compact Hausdorff
space Y and J is a closed ideal in A, then ® has a p-dilation for any T in M(A)
with 7 = 0 on ker ®.

PROOF. Let ¢ be an isometric isomorphism from A/J onto A/ker®. For
each f € A, we will write ¢(f + J) = ¢(f) + ker ® where ¢(f) € A. Moreover
we will write ® again for the map : f +ker® — &(f). Put ¥ = Pog, then ¥
is a unital homomorphism of A/J in L(H). We will write ¥ again for the map
. f = U(f + J), then J = ker¥. Since we may assume that 7 is a complex
homomorphism on A/ker® by [8, Theorem 6.2 in Chapter I], To¢ is a complex
homomorphism on .A/J and so we may assume that 7o € M(4). If f € Arog.
and ||flleo < 1, then ¢(f) € A, and ||¢(f) + || < 1. By hypothesis, $(¢(f)) is of
class C, and so ¥(f) = ®og(f) is of class C, for f € Arop with [|#llec < 1. Hence
T is a p-contractive homomorphism of A in L(H) with respect to Tog. Since A is a
Dirichlet algebra, by Proposition 3.1 and Theorem 5.1 ¥ = p¥o on Aoy where ¥y
is a unital completely contractive map on A. Put & = Toop~! then &y is a unital
completely contractive map on A and & = p®o on A,. Proposition 3.1 implies the
theorem. a

Let A be a n-hypo-Dirichlet algebra and let N, be the set of all representing
measures of 7 in M(A). Then dim N, = n and there exists a core measure m of
N, (cf. [8, p106]). Then by [8, Theorem 5.1 in Chapter IV], there is a constant
¢ > 0 such that v < cm for all v in N,. Hence if h is the Radon-Nikodym
derivative of v with respect to m then v = hdm. Set N* = {h : v = hdm and
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v € N,}, then N is a subset of L>*(m). Thus N;* can be considered as a subset
of L°°(m). Many important n-hypo-Dirichlet algebras satisfy a natural condition
on N™ : N™ C C(X). The author showed. [13] that if N7* C C(X) then a unital
contractive homomorphism ® of A has a p-dilation with respect to 7. It is a long
standing open question whether we can choose p = 1. The motivation of our study
in this paper is in this open question. The following Proposition 5.4 implies that if
& is p-contractive for enough small p > 0 then ® has a 1-dilation.

LEMMA 5.3. Let A be a n-hypo-Dirichlet algebra and N* C C(X). Then there
exists a positive linear map T from C(X) to [A + A] such that T(f) = f (f e A;)
and T(1) is a positive constant > 1.

PROOF. This is proved in the proof of [13, Theorem]. [

PROPOSITION 5.4. Let A be a n-hypo-Dirichlet algebra and NI* C C(X) for
some T in M(A) where m is a core measure of Ny. If ® is a p-contractive homo-
morphism of A in L(H) then it has a p'-dilation where p' = p T(1) and T is a map
in Lemma 5.3.

PROOF. Suppose ® is p-contractive. Then ®isad = (1 - —:;) -homomorphism
for 7 by Theorem 4.3. Put

V() = 28(1) - 7(6) (% - 1) I (fed),

then by the proof of Theorem 5.1, there exists an extension &' of & on [A + 4]
and @' is positive on it. Then T(1)~'®' o T is a positive map from C(X) to
L(H) and T(1)~1®&' o T(1) = I. By the dilation theorem of M.A.Naimark (cf. [21,
Theorem 7.5] there exists a Hilbert space K, an orthogonal projection P from K
to H and a multiplicative linear map u — ®(u) of C(X) in L(K), which satisfies
(1) = Ik, |®w)] € llulles, v € C(X) and &' o T(u) = T(1)P&(u)|H. Because
T(f)=f (f€4r),
o(f) =p TMPR(NH (f€Ar).

Suppose p' = p T(1). |
6. Condition on @

In this section, under conditions on ® we consider Problem IIL We consider
p-contractive homomorphisms when A/ker® is of two dimension. The author and
the late K.Takahashi [13] showed that ® has a 1-dilation when p = 1. We generalize
it to any p. Proposition 6.3 is a generalization of a result of G.Misra [8] which was
shown for a rational uniform algebra on the complex plane and p = 1.

For z,y in M(A) and a bounded point derivation J at z, let

oalz,y) =sup{|f )| ; f(z) =0,f € Aand|fllo <1}
and
wa(z,8) = sup{|6(f)| ; f(z)=0,f € Aand [|fll <1}

THEOREM 6.1. Let A be an arbitrary uniform algebra. If ® satisfies one of
the following conditions (1), (2) and (3), then ® is completely bounded and l|1®|] =
(1@ llcs-

L [|@(f)ll =ll@NI* (feA)
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9. E is an interpolation set in X andker®={f € A; f=0on E}
3. |8]| < L,ker® = {f € A; f =0 on E} for some finite set £ C M(A) and
oa(z,y) =1 for any z,y in E withz #y.

ProoF. (1) If |®(£)%]| = |8(f)||* (f € A) then the closure of ®(A) is regarded
as a uniform algebra. By [18, Theorem 3.8], [|@[| = ||®||cs-

(2) Since E is an interpolation set in X, A/ker® is isometrically isomorphic
to a subalgebra of C(E) and hence ®(A4) C C(E). Again by [18, Theorem 3.8],
2]l = [|2]lc-

(3) Since E = {z1,-- ,2n} is a finite set, dim A/ ker® =n < oo and ®(A4) =

{Z aij ; aj € C,Pin = Jiij andj=1, - ,n}. Suppose @(fj) = Pj and fj €
Jj=1

A. Then fif; = 6;;f; and fi(z;) = 6i;. Since oa(zi,z;) = 6i;, there exist {ggf)};”:l

in A such that ¢ (z;) = 1 (n = o), gq(f)(xj) =0(j #1) and |lg$f)||°° < 1. Since

Alkerd = {Zaifi +ker®; a; € Candi=1,--+,n}, 0 — ainfi € ker ® and
i=1

@(gﬁf)) = a;, P;. Since @ is contractive, |ai||P;|| < 1 and so {ai»} is bounded.

Hence there exists a subsequence {ain(j)} such that a;n(;) — a: as j — 00 for each

i. Then JIEEO 95:()]') — a;f; € ker® and Jll)ngo gff()j) (z;) = 1. Therefore a; = 1 and

l#; + ker ®|| < 1, and P; is selfadjoint for ¢ = 1,.--,n because & is contractive.

Thus ®(A) is a commutative C*-algebra. By [18, Theorem 3.8], 1@l = ||®|lc- O

THEOREM 6.2. Suppose ® is a p-contractive homomorphism of A. If Al ker®
is of two dimension then ® has a p-dilation for any 7 in M (A) with T =0 onker ®.

PROOF. Suppose ker® = {f € A ; f(z) = f(y) = 0} where z,y € M(A) with
z # y. By [13, Lemma 1 and its proof],

_( f@Im (flz) - f®)C o
<I>(f)—( OH F)Im, ) on H=H, & Hs

for all f € A where C is a bounded linear operator from H, to Hy, and

Alker® = {f(z)f1 + f(y)fa+ker®; f € A}
where fi(z) = fa(y) = 1 and fi(y) = f2(z) = 0. By [13, Lemma 3], if ICI? +1=
1/ca(z,y)? then [|8(f)|| = ||f + ker &|| for all f € A.

For any 7,y € M(A), there exist a Dirichlet algebra A and s,t € M (A) such
that oa(z,y) = oa(s,t). In fact, we can choose the disc algebra A. Suppose
_{ F()Im, (F(s) - F(2))B
lII(F) a ( 0 F(t)IHz

for all F € A where B is a bounded linear operator from Hj to Hy. Then

Alker® = {F(s)F, + Ft)Fz + ker ¥ ; F € A}
where Fy(s) = Fx(t) and Fi(t) = Fa(s), and [|2(f)|| = ||¥(F)|| whenever flz) =
F(s) and f(y) = F(t),and B = C. f B =C and |IC|? +1 = 1/oa(z,y)?,
then |[B||2+1 = 1/04(s,t)? and so ||f +ker &[| = [|8()|| = [ ()| = || + ker L.
Hence for given ®, we can find a unital homomorphism ¥ on A such that A/ ker ® =

A/ ker ¥. By Proposition 5.2, ® has a p-dilation for any 7 € M(A) with 7 = 0 on
ker ®.. If ker ® is not the above form, then ker® = {f € A ; f(z) = §(f) = 0}
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where z € M(A) and § is a bounded point derivation at 2. By [13, Lemma 1 and

its proof],

for all f € A where C is a bounded linear operator from H; to Hj, and
Alker® = {f(z)1+6(f)fo +ker®; f € A}

where fo(z) = 0 and &(fo) = 1. By [13,Lemma 3], if ||C|| = 1/wa(z,d) then
I@(H)I| = || f +ker @] for all f € A. Asin the first part of the proof, by Proposition
5.9 we can show that ® has a p-dilation for any 7 € M(4). O

If dim H = 2, then an algebra homomorphism @ has the following form :
f@) (@) - ) )
d =
where z,y € M(A) and x # y or

f(z) <d(f) )
[} =
where z € M(A) and d is a bounded point derivation at z.

PROPOSITION 6.3. Suppose ® is a unital bounded homomorphism of A in L(H)
and dim H = 2.

1. When ® = &,,® is a p-contractive homomorphism if and only if
(1 +1eP) e (z) — SO o
< o+ 1= pF@CHe+ 1 —p) )} - F@FWICPP

for-any f € A with ||fllc <1 and any ( € D.
2. When ® = ®,,® is a p-coniractive homomorphism if and only if

lel8(5)I”
< (p=-2f @) +20 - p)lf(@)| +p
for any f € A with ||fll < 1.
PRroOF. The author and Okubo [15] gave a necessary and sufficient condition

for that a triangle 2 x 2 matrix is of class C,. By [15, Theorem] ®,(f) is of class
C, if and only if
|21 £(@) = FO)I° +1(2) - F@)P?

- |+ 0= F@BHe+ - ) - T WP |
~ (eD 176

and by [15, Remark] ®2(f) is of class C, if and only if
el216(H)2 < (p — 2If (@)7 +2(1 = P)If ()] + p-

|

In Proposition 6.3, suppose p = 1. @ = &, is a 1-contractive homomorphism
if and only if |2 < (1 - |f(@))(1 — [f®))/|f(z) - f@)|* for any f € A with
Iflleo < 1. This implies {9, Theorem 1.1]. ® = ®, is a 1-contractive homomor-
phism if and only if [¢|*> < (1 - IF@)2)/16(f)|? for any f € A with ||fllo < 1.
Suppose p = 2. ® = &, is a 2-contractive homomorphism if and only if 1+ [¢|* <
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2= G+ s@0|
¢ep| ((f(=) - f)
homomorphism if and only if |¢[? < 2(1 — |f(2)])/|6(f)|* for any f € A with
Il < 1.

for any f € A with ||f|lcc < 1.8 = &, is a 2-contractive
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