Some Special Bounded Homomorphisms Of A Uniform

Takahiko Nakazi

Series #443. February 1999

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

- #418 M. Ishikawa and S. Matsui, Existence of a forward self-similar stagnation flow of the Navier-Stokes equations, 8 pages. 1998.
- #419 S. Izumiya, H. Katsumi and T. Yamasaki, The rectifying developable and the spherical Darboux image of a space curve, 16 pages. 1998.
- #420 R. Kobayashi and Y. Giga, Equations with singular diffusivity, 45 pages. 1998.
- #421 D. Pei and T. Sano, The focal developable and the binormal indicatrix of a nonlightlike curve in Minkowski 3-space, 14 pages. 1998.
- #422 R. Kobayashi, J. A. Warren and W. C. Carter, Modeling grain boundaries using a phase field technique, 12 pages. 1998.
- #423 T. Tsukada, Reticular Legendrian Singularities, 28 pages. 1998.
- #424 A. N. Kirillov and M. Shimozono, A generalization of the Kostka-Foulkes polynomials, 37 pages. 1998.
- #425 M. Nakamura, Strichartz estimates for wave equations in the homogeneous Besov space, 17 pages. 1998.
- #426 A. Arai, On the essential spectra of quantum field Hamiltonians, 18 pages. 1998.
- #427 T. Sano, Bifurcations of affine invariants for one parameter family of generic convex plane curves, 11 pages. 1998.
- #428 F. Hiroshima, Ground states of a model in quantum electrodynamics, 48 pages. 1998.
- #429 F. Hiroshima, Uniqueness of the ground state of a model in quantum electrodynamics: A functional integral approach, 32 pages. 1998.
- #430 J. F. Van Diejen and A. N. Kirillov, Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators, 33 pages. 1998.
- #431 G. Ishikawa, Determinacy, transversality and Lagrange stability, 13 pages. 1998.
- #432 T. Yoshida, Categorical aspects of generating functions(II): Operations on categories and functors, 65 pages. 1998.
- #433 K. Ito, Loss of convexity of compact hypersurfaces moved by surface diffusion, 20 pages. 1998.
- #434 Y. Shimizu, L^{∞} -estimate of first-order space derivatives of Stokes flow in a half space, 22 pages. 1998.
- #435 T. Uemura, Morita-Mumford classes on finite cyclic subgroups of the mapping class group of closed surfaces, 14 pages. 1998.
- #436 A. Inoue and H. Kikuchi, Abel-Tauber theorems for Hankel and Fourier transforms and a problem of Boas, 20 pages. 1998.
- #437 T. Nakazi and T. Osawa, Finite rank intermediate Hankel operators on the Bergman space, 16 pages. 1998.
- #438 R. Yoneda, Compact Toeplitz operators on Bergman spaces, 14 pages. 1998.
- #439 A. Inoue and Y. Kasahara, On the asymptotic behavior of the prediction error of a stationary process, 12 pages. 1998.
- #440 A. Arai, M. Hirokawa and F. Hiroshima, On the absence of eigenvectors of Hamiltonians in a class of massless quantum field models without infrared cutoff, 26 pages. 1998.
- #441 A. N. Kirillov, A. Schilling and M. Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, 66 pages. 1999.
- #442 M. Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps, 28 pages. 1999.

Some Special Bounded Homomorphisms Of A Uniform Algebra

Takahiko Nakazi

ABSTRACT. Let L(H) be the algebra of all bounded linear operators on a Hilbert space H and let A be a uniform algebra. In this paper we study the following questions. When is a unital bounded homomorphism Φ of A in L(H) completely bounded? When is the norm $\|\Phi\|$ of Φ equal to the completely bounded norm $\|\Phi\|_{cb}$? In some special cases we answer this question. Suppose Φ is ρ -contractive ($0 < \rho < \infty$) where Φ is contractive if $\rho = 1$. We show that if A is a Dirichlet algebra or $\dim A/\ker \Phi = 2$ then Φ has a ρ -dilation. If Φ is a ρ -contractive homomorphism then $\|\Phi\| = \max(1, \rho)$ and if it has a ρ -dilation then $\|\Phi\|_{cb} = \max(1, \rho)$. Moreover we give a new example of a hypo-Dirichlet algebra in which a unital contractive homomorphism has a contractive dilation.

1. Introduction

Let X be a compact Hausdorff space, let C(X) be the algebra of complexvalued continuous functions on X, and let A be a uniform algebra on X. Let H be a complex Hilbert space and L(H) the algebra of all bounded linear operators on H. $I = I_H$ is the identity operator in H. An algebra homomorphism $f \to \Phi(f)$ of A in L(H), which satisfies

$$\Phi(1) = I$$
 and $\|\Phi(f)\| \le \gamma \|f\|_{\infty}$

for some positive constant $\gamma \geq 1$, is called a unital bounded homomorphism of A. If $\gamma = 1$, it is called a unital contractive homomorphism.

For a subspace B of A, let $M_n(B)$ denote the set of $n \times n$ matrices with entries from B. For a map $\phi: B \to L(H)$, we obtain maps $\phi_n: M_n(B) \to M_n(L(B))$ via the formula

$$\phi_n((a_{ij})) = (\phi(a_{ij})).$$

If ϕ is a bounded map, then each ϕ_n will be bounded, and when $\sup_n ||\phi_n||$ is finite, we call ϕ a completely bounded map of B in L(H). We write

$$||\phi||_{cb} = \sup_{n} ||\phi_n||.$$

The following problem is natural and important.

©0000 (copyright holder)

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A20, 46J25.

The author was supported in part by Grant-in-Aid for Scientific Research, Ministry of Education.

PROBLEM . Suppose Φ is a unital bounded homomorphism of A.

I. When is Φ completely bounded?

II. When is Φ completely bounded and $\|\Phi\| = \|\Phi\|_{cb}$?

A unital contractive homomorphism $v \to \tilde{\Phi}(v)$ of C(X) on a Hilbert space K is called a contractive dilation of the unital contractive homomorphism $f \to \Phi(f)$ of A on H if H is a Hilbert subspace of K and

$$\Phi(f) = P\tilde{\Phi}(f) \mid H \quad (f \in A)$$

where P is the orthogonal projection of K onto H. If Φ has a contractive dilation then Φ is completely contractive and hence $||\Phi|| = ||\Phi||_{cb}$. If Φ is completely contractive then Φ has a contractive dilation. This is well known (see [18, Corollary 6.7]).

If A is a uniform algebra and the uniform closure of $A + \overline{A}$, that is, $[A + \overline{A}]$ has finite codimension n in C(X) then A is called a n-hypo-Dirichlet algebra and it is

called a Dirichlet algebra when $[A + \bar{A}] = C(X)$, that is, n = 0.

If dim $H<\infty$, Φ is completely bounded for arbitrary uniform algebra A (see [18, Exercises 3.11]). If dim $H=\infty$ and A is the disc algebra, then there exists a unital bounded homomorphism Φ which is not completely bounded. This was recently shown by G.Pisier [19]. If A is a n-hypo-Dirichlet algebra and Φ is a unital contractive homomorphism then Φ is completely bounded. This was shown by R.G.Douglas and V.I.Paulsen [6]. However we don't know whether Φ is completely contractive or not. They are known solutions for Problem I.

Now we will give known solutions for Problem II when Φ is contractive. If A is the disc algebra then there exists a contractive dilation. This is a famous theorem of B.Sz.-Nagy [10]. T.Ando [2] generalized this to the bidisc algebra. However S.K.Parrot [17] gave an example of Φ which does not have a contractive dilation in the polydisc algebra for $n \geq 3$. If A is a Dirichlet algebra then there exists a contractive dilation (cf. [7]). For a n-hypo-Dirichlet algebra with $n \neq 0$, we don't know whether there exists a contractive dilation or does not. The polydisc algebra for $n \geq 2$ is not a n-hypo-Dirichlet algebra. If A is an annulus algebra, that is, a rational function algebra on an annulus, then there exists a contractive dilation. This was shown by J.Agler [1]. An annulus algebra is a 1-hypo-Dirichlet algebra. If A is the disc algebra and $A = \{f \in A ; f(0) = f(1)\}$, then A is also a 1-hypo-Dirichlet algebra. The author [12] proved that Φ has a contractive dilation for this example. Even if dim $H < \infty$, by an example of S.K.Parrot [17] Φ may not have a contractive dilation for some uniform algebra. The author and the late K.Takahashi [14], and Che-Chen Chu [5] showed that if dim $H \leq 2$, Φ has a contractive dilation for an arbitrary uniform algebra.

Now we will give more concrete problems than Problem II.

PROBLEM . Suppose Φ is a unital bounded homomorphism of A.

(II-a) Suppose $\|\Phi\| \le 1$. When A is a n-hypo-Dirichlet algebra and $n \ge 1$, does Φ have a contractive dilation?

(II-b) Under what conditions on Φ which is $||\Phi|| > 1$, is Φ completely bounded with $||\Phi|| = ||\Phi||_{cb}$ when A is a n-hypo-Dirichlet algebra and $n \geq 0$, or dim $H \leq 2$?

In this paper, we study Problem (II-a) and (II-b). In §2, we give a new example of a 1-hypo-Dirichlet algebra in which a unital contractive homomorphism has a contractive dilation. In §3, we define a ρ -contractive homomorphism Φ and a ρ -dilation of Φ for $0<\rho<\infty$. If Φ is a ρ -contractive homomorphism then $||\Phi||\leq$

 $\max(1,\rho)$ and if it has a ρ -dilation then $||\Phi||_{cb} \leq \max(1,\rho)$. In §4, we introduce a δ -homomorphism of A for $-\infty < \delta < 1$. This homomorphism is bounded. In fact, we show more, that is, ' δ -homomorphism' is equivalent to ' $\rho = 1/(1-\delta)$ -contractive homomorphism'. In §5, we show that a ρ -contractive homomorphism has a ρ -dilation when A is a Dirichlet algebra. In §6, we consider Problem II under conditions on Φ , that is, $\dim A/\ker \Phi = 2$ or a hypothesis on $\ker \Phi$.

2. Third example of a hypo-Dirichlet algebra for Problem II-a

For a *n*-hypo-Dirichlet algebra with $n \neq 0$, we know only two examples ([1], [11]) in which a unital contractive homomorphism has a contractive dilation, that is, Problem (II-a). They are 1-hypo-Dirichlet algebras. In this section, we give a new example which is also a 1-hypo-Dirichlet algebra. In the proof of Theorem 2.1, a theorem of T.Ando [2] is used essentially. Unfortunately we could not generalize Theorem 2.1 to $A = \{f \in \mathcal{A} : f'(0) = f''(0) = \cdots = f^{(n)}(0) = 0\}$.

THEOREM 2.1. Let A be the disc algebra and $A = \{f \in A : f'(0) = 0\}$. If Φ is a unital contractive homomorphism of A then Φ has a contractive dilation or equivalently Φ is a completely contractive.

PROOF. Since $A=\mathbb{C}+z^2\mathcal{A}$, $A_0=\{f\in A\; ;\; f(0)=0\}=z^2\mathcal{A}$. A_0 has two generators, that is, A_0 is generated by z^2 and z^3 because $2\ell\pm 1$ can be written as the form 2n+3m. Let $\Phi(z^2)=S$ and $\Phi(z^3)=T$ then $ST=TS,\; ||S||\leq 1$ and $||T||\leq 1$. By a well known theorem of T.Ando [2], there exist two commuting operators U and V on a Hilbert space K with $H\subset K$ such that

$$S^n T^m = P U^n V^m | H$$

for all nonnegative integers n and m where P is an orthogonal projection from K to H. Any polynomial f in A_0 is written as the following:

$$f = a_{10}z^2 + a_{01}z^3 + \sum_{j,\ell \ge 1} a_{j\ell}z^{2j}z^{3\ell}$$

and so

$$\Phi(f) = a_{10}S + a_{01}T + \sum_{j,\ell \ge 1} a_{j\ell}S^{j}T^{\ell}$$
$$= P(a_{10}U + a_{01}V + \sum_{j,\ell \ge 1} a_{j\ell}U^{j}V^{\ell})|H$$

By a theorem of C.R.Putnam and B.Fuglede [20, Corollary 1.19], $U^*V = VU^*$. Hence if we set $\tilde{\Phi}((z^2)^j(z^3)^\ell) = U^jV^\ell$ for any integers j and ℓ then $\tilde{\Phi}$ is a unital contractive homomorphism of C(X) in L(K) and $\Phi = P\tilde{\Phi}|H$ on A_0 . Thus $\tilde{\Phi}$ is a contractive dilation of Φ .

3. ρ -Contractive homomorphism

A bounded linear operator T on H is said to be of class C_{ρ} if there exists a unitary operator U (called a unitary ρ -dilation) on a Hilbert space $K \supset H$ such that $T^n = \rho P U^n | H$ for $n = 1, 2, \cdots$ where P is an orthogonal projection from K to H. B.Sz.-Nagy [9] showed that if T is a contraction then it is of class C_1 . If the numerical radius of T is less than equal to one then it is of class C_2 [3]. If T is of class C_{ρ} then $||T|| \leq \max(1, \rho)$.

Suppose Φ is a unital algebra homomorphism of A in L(H) and $0 < \rho < \infty$. When $\Phi(f)$ is of class C_{ρ} for any f in A with $||f||_{\infty} \leq 1$, Φ is called a ρ -contractive homomorphism of A. A 1-contractive homomorphism is equivalent to a contractive homomorphism. A 2-contractive homomorphism Φ is equivalent to that

$$\sup_{\substack{f \in A \\ \|f\|_{\infty} \le 1}} \sup_{\substack{y \in H \\ \|y\| = 1}} |\langle \Phi(f)y, y \rangle| = 1.$$

If Φ is ρ -contractive then $\|\Phi\| \leq \max(1, \rho)$. We will study Problem (II-b) when Φ is ρ -contractive.

A unital contractive homomorphism $v \to \tilde{\Phi}(v)$ on a Hilbert space K is called a ρ -dilation of the unital bounded homomorphism $f \to \Phi(f)$ of A on H if H is a Hilbert subspace of K and

$$\Phi(f) = \rho P\tilde{\Phi}(f)|H \quad (f \in A_{\tau})$$

where P is the orthogonal projection of K onto H, A_{τ} is the kernel of τ in M(A) and $0 < \rho < \infty$.

If Φ has a ρ -dilation then Φ is a unital completely bounded map. However the converse is not true even for the disc algebra A and dim H=2. This may be well known. Suppose $T=\begin{bmatrix}1&1\\0&-1\end{bmatrix}$, then $f\to\Phi(f)=f(T)$ is a unital completely bounded homomorphism but it has not a ρ -dilation for any ρ [15]. If Φ is a unital completely bounded homomorphism, then Φ/ρ is completely contractive but it is not unital. However if Φ has a ρ -dilation then the following is true.

PROPOSITION 3.1. For a unital bounded homomorphism Φ , Φ has a ρ -dilation with respect to τ if and only if $\Phi(f) = \rho \Phi_0(f)$ $(f \in A_{\tau})$ where Φ_0 is a unital completely contractive map on A, equivalently Φ_0 has a contractive dilation.

PROOF. For the 'only if' part, put $\Phi_0(f) = P\tilde{\Phi}(f)|H$ $(f \in A)$. Then Φ_0 has a contractive dilation $\tilde{\Phi}$ and hence it is completely contractive on A. The 'if' part follows from a theorem of W.Arveson (cf.[18, Corollary 6.7]).

4. δ -homomorphism

For $-\infty < \delta < 1$, Φ is called a δ -homomorphism for τ in M(A) if Φ is a unital algebra homomorphism of A and $Re\Phi(f) \geq 0$ whenever f in A, $\tau(f) = 1$ and $Ref \geq \delta$. In this section we show that Φ is a δ -homomorphism for some τ if and only if Φ is a $\rho = 1/(1-\delta)$ -contractive homomorphism.

Proposition 4.1. If a unital algebra homomorphism Φ has a ρ -dilation for τ , then Φ is a $\delta = \left(1 - \frac{1}{\rho}\right)$ -homomorphism for τ .

PROOF. Suppose that $\Phi(h) = \rho P\tilde{\Phi}(h)|H$ for $h \in A_{\tau}$. If $f \in A$, $\tau(f) = 1$ and $Ref \geq 1 - \frac{1}{\rho}$, since $\tau(f - \tau(f)) = 0$,

$$\Phi(f) - \tau(f)I = \rho P\tilde{\Phi}(f)|H - \rho \tau(f)I$$

and so

$$\Phi(f) = \rho \left\{ P \tilde{\Phi}(f) | H + \tau(f) \left(\frac{1}{\rho} - 1 \right) I \right\}.$$

Since
$$Ref \geq 1 - \frac{1}{\rho}$$
, $\tilde{\Phi}(Ref) \geq 1 - \frac{1}{\rho}$ and so
$$Re\Phi(f) \geq \rho \left\{ P\tilde{\Phi}(Ref) | H + \left(\frac{1}{\rho} - 1\right)I \right\} \geq 0.$$

PROPOSITION 4.2. Suppose $\delta \neq 0$. Φ is a δ -homomorphism for τ if and only if for any h in A_{τ} with $||h||_{\infty} < 1$,

$$|\langle \Phi(h)y, y \rangle| \le \frac{1}{2|\delta|} ||y||^2 + \frac{2\delta - 1}{2|\delta|} ||\Phi(h)y||^2 \quad (y \in H)$$

PROOF. Suppose Φ is a δ -homomorphism for τ . Put

$$f = (1 - \delta)\frac{1 + h}{1 - h} + \delta$$

where $h \in A_{\tau}$ and $||h||_{\infty} < 1$ then $f \in A$, $Ref \geq \delta$ and $\tau(f) = 1$. For $x \in H$, put $x = (I - \Phi(h))y$ then

$$\begin{split} Re\langle \Phi(f)x,x\rangle &= (1-\delta)Re\left\langle \frac{I+\Phi(h)}{I-\Phi(h)}x,x\right\rangle + \delta||x||^2 \\ &= (1-\delta)Re\langle (I+\Phi(h))y,(I-\Phi(h))y\rangle + \delta\langle (I-\Phi(h))y,(I-\Phi(h))y\rangle \\ &= (1-\delta)(||y||^2 - ||\Phi(h)y||^2) + \delta(||y||^2 + ||\Phi(h)y||^2 - 2Re\langle \Phi(h)y,y\rangle) \\ &= ||y||^2 + (2\delta - 1)||\Phi(h)y||^2 - 2\delta\langle \Phi(h)y,y\rangle. \end{split}$$

By hypothesis on Φ ,

$$2\delta Re\langle \Phi(h)y,y\rangle \le ||y||^2 + (2\delta - 1)||\Phi(h)y||^2$$

and so

$$|\langle \Phi(h)y,y\rangle| \leq \frac{1}{2|\delta|}||y||^2 + \frac{2\delta - 1}{2|\delta|}||\Phi(h)y||^2.$$

The proof is reversible. In fact, if $f \in A$, $Ref \ge \delta$ and $\tau(f) = 1$ then

$$f = (1 - \delta)\frac{1 + h}{1 - h} + \delta$$

for some $h \in A_{\tau}$ with $||h||_{\infty} \leq 1$. Hence if we put for $0 < \varepsilon < 1$

$$f_{\varepsilon} = (1 - \delta) \frac{1 + \varepsilon h}{1 - \varepsilon h} + \delta$$

then $f_{\varepsilon} \to f$ uniformly as $\varepsilon \to 1$, $||\varepsilon h||_{\infty} \le 1$ and $\tau(f_{\varepsilon}) = 1$. Since $Re\langle \Phi(f_{\varepsilon})x, x \rangle \ge 0$, as $\varepsilon \to 1$, $Re\langle \Phi(f)x, x \rangle \ge 0$ for any $x \in H$.

Theorem 4.3. Φ is a δ -homomorphism for some (or any) τ in M(A) if and only if Φ is a $\rho = 1/(1-\delta)$ -contractive homomorphism.

PROOF. [16, Theorem 2] and Proposition 4.2 imply the theorem, or we can show this by the proof of Proposition 4.2 and [11, Theorem 11.1].

5. Condition A

In this section, we show that a ρ -contractive homomorphism has a ρ -dilation when A is a Dirichlet algebra. This is a generalization of a theorem of C.Foias and I.Suciu [7] for $\rho = 1$ and a theorem of B.Sz.Nagy and C.Foias (cf. [11]) for the disc algebra. They give solutions for Problem (II-b).

THEOREM 5.1. Let A be a Dirichlet algebra and $0 < \rho < \infty$. If Φ is a ρ -contractive homomorphism of A in L(H) then for any τ in M(A) it has a ρ -dilation.

PROOF. Put $\Phi'(h) = \frac{1}{\rho}\Phi(h) - \tau(h)\left(\frac{1}{\rho} - 1\right)I$ for $h \in A$. By Theorem 4.3 if Φ is ρ -contractive then Φ is a $\delta = \left(1 - \frac{1}{\rho}\right)$ - homorphism for any $\tau \in M(A)$. Hence if $Reh \geq 0$ then $Re\Phi'(h) \geq 0$. If we extend Φ' to $\tilde{\Phi}: A + \bar{A} \to L(H)$ by $\tilde{\Phi}(f + \bar{g}) = \Phi'(f) + \Phi'(g)^*$, then $\tilde{\Phi}: C(X) \to L(H)$ is positive because A is a Dirichlet algebra. By the dilation theorem of M.A.Naimark (cf. [21, Theorem 7.5]) there exists a Hilbert space K, an orthogonal projection $P: K \to H$ and a multiplicative linear map $u \to \tilde{\Phi}(u)$ of C(X) in L(K), which satisfies $\tilde{\Phi}(1) = I_K$, $\|\tilde{\Phi}(u)\| \leq \|u\|_{\infty}$, $u \in C(X)$ and $\Phi'(f) = P\tilde{\Phi}(f)|H$ for $f \in A$. If $f \in A_{\tau}$ then $\Phi'(f) = \frac{1}{\rho}\Phi(f)$ and so

 $\Phi(f) = \rho P\tilde{\Phi}(f)|H.$

PROPOSITION 5.2. Let A be an arbitrary uniform algebra and $0 < \rho < \infty$. Suppose Φ is a ρ -contractive homomorphism of A in L(H). If $A/\ker\Phi$ is isometrically isomorphic to A/\mathcal{J} where A is a Dirichlet algebra on some compact Hausdorff space Y and \mathcal{J} is a closed ideal in A, then Φ has a ρ -dilation for any τ in M(A) with $\tau=0$ on $\ker\Phi$.

PROOF. Let ϕ be an isometric isomorphism from \mathcal{A}/\mathcal{J} onto $A/\ker\Phi$. For each $f\in A$, we will write $\phi(f+\mathcal{J})=\phi(f)+\ker\Phi$ where $\phi(f)\in\mathcal{A}$. Moreover we will write Φ again for the map : $f+\ker\Phi\to\Phi(f)$. Put $\Psi=\Phi\circ\phi$, then Ψ is a unital homomorphism of \mathcal{A}/\mathcal{J} in L(H). We will write Ψ again for the map : $f\to\Psi(f+\mathcal{J})$, then $\mathcal{J}=\ker\Psi$. Since we may assume that τ is a complex homomorphism on $A/\ker\Phi$ by [8, Theorem 6.2 in Chapter I], $\tau\circ\phi$ is a complex homomorphism on A/\mathcal{J} and so we may assume that $\tau\circ\phi\in M(A)$. If $f\in A_{\tau\circ\phi}$ and $\|f\|_{\infty}\leq 1$, then $\phi(f)\in A_{\tau}$ and $\|\phi(f)+\mathcal{J}\|\leq 1$. By hypothesis, $\Phi(\phi(f))$ is of class C_{ρ} and so $\Psi(f)=\Phi\circ\phi(f)$ is of class C_{ρ} for $f\in \mathcal{A}_{\tau\circ\phi}$ with $\|f\|_{\infty}\leq 1$. Hence Ψ is a ρ -contractive homomorphism of \mathcal{A} in L(H) with respect to $\tau\circ\phi$. Since \mathcal{A} is a Dirichlet algebra, by Proposition 3.1 and Theorem 5.1 $\Psi=\rho\Psi_0$ on $\mathcal{A}_{\tau\circ\phi}$ where Ψ_0 is a unital completely contractive map on \mathcal{A} . Put $\Phi_0=\Psi_0\circ\phi^{-1}$ then Φ_0 is a unital completely contractive map on \mathcal{A} . Put $\Phi_0=\Psi_0\circ\phi^{-1}$ then Φ_0 is a unital completely contractive map on \mathcal{A} . Put $\Phi_0=\Psi_0\circ\phi^{-1}$ then Φ_0 is a unital completely contractive map on \mathcal{A} . Put $\Phi_0=\Psi_0\circ\phi^{-1}$ then Φ_0 is a unital completely contractive map on \mathcal{A} . Put $\Phi_0=\Psi_0\circ\phi^{-1}$ then Φ_0 is a unital completely contractive map on \mathcal{A} and \mathcal{A} . Proposition 3.1 implies the theorem.

Let A be a n-hypo-Dirichlet algebra and let N_{τ} be the set of all representing measures of τ in M(A). Then $\dim N_{\tau} = n$ and there exists a core measure m of N_{τ} (cf. [8, p106]). Then by [8, Theorem 5.1 in Chapter IV], there is a constant c>0 such that $\nu \leq cm$ for all ν in N_{τ} . Hence if h is the Radon-Nikodym derivative of ν with respect to m then $\nu=hdm$. Set $N_{\tau}^{m}=\{h: \nu=hdm \text{ and } m\}$

 $\nu \in N_{\tau}$ }, then N_{τ}^{m} is a subset of $L^{\infty}(m)$. Thus N_{τ}^{m} can be considered as a subset of $L^{\infty}(m)$. Many important n-hypo-Dirichlet algebras satisfy a natural condition on $N_{\tau}^{m}: N_{\tau}^{m} \subset C(X)$. The author showed [13] that if $N_{\tau}^{m} \subset C(X)$ then a unital contractive homomorphism Φ of A has a ρ -dilation with respect to τ . It is a long standing open question whether we can choose $\rho = 1$. The motivation of our study in this paper is in this open question. The following Proposition 5.4 implies that if Φ is ρ -contractive for enough small $\rho > 0$ then Φ has a 1-dilation.

LEMMA 5.3. Let A be a n-hypo-Dirichlet algebra and $N_{\tau}^m \subset C(X)$. Then there exists a positive linear map T from C(X) to $[A + \overline{A}]$ such that T(f) = f $(f \in A_{\tau})$ and T(1) is a positive constant ≥ 1 .

PROOF. This is proved in the proof of [13, Theorem].

PROPOSITION 5.4. Let A be a n-hypo-Dirichlet algebra and $N_{\tau}^m \subset C(X)$ for some τ in M(A) where m is a core measure of N_{τ} . If Φ is a ρ -contractive homomorphism of A in L(H) then it has a ρ' -dilation where $\rho' = \rho T(1)$ and T is a map in Lemma 5.3.

PROOF. Suppose Φ is ρ -contractive. Then Φ is a $\delta = \left(1 - \frac{1}{\rho}\right)$ -homomorphism for τ by Theorem 4.3. Put

$$\Phi'(f) = \frac{1}{\rho}\Phi(f) - \tau(f)\left(\frac{1}{\rho} - 1\right)I \quad (f \in A),$$

then by the proof of Theorem 5.1, there exists an extension $\tilde{\Phi}'$ of Φ' on $[A+\bar{A}]$ and $\tilde{\Phi}'$ is positive on it. Then $T(1)^{-1}\tilde{\Phi}'\circ T$ is a positive map from C(X) to L(H) and $T(1)^{-1}\tilde{\Phi}'\circ T(1)=I$. By the dilation theorem of M.A.Naimark (cf. [21, Theorem 7.5] there exists a Hilbert space K, an orthogonal projection P from K to H and a multiplicative linear map $u\to\tilde{\Phi}(u)$ of C(X) in L(K), which satisfies $\tilde{\Phi}(1)=I_K$, $\|\tilde{\Phi}(u)\|\leq \|u\|_{\infty}$, $u\in C(X)$ and $\tilde{\Phi}'\circ T(u)=T(1)P\tilde{\Phi}(u)|H$. Because T(f)=f $(f\in A_{\tau})$,

$$\Phi(f) = \rho \ T(1)P\tilde{\Phi}(f)|H \quad (f \in A_{\tau}).$$

Suppose $\rho' = \rho T(1)$.

6. Condition on Φ

In this section, under conditions on Φ we consider Problem II. We consider ρ -contractive homomorphisms when $A/ker\Phi$ is of two dimension. The author and the late K.Takahashi [13] showed that Φ has a 1-dilation when $\rho=1$. We generalize it to any ρ . Proposition 6.3 is a generalization of a result of G.Misra [8] which was shown for a rational uniform algebra on the complex plane and $\rho=1$.

For x, y in M(A) and a bounded point derivation δ at x, let

$$\sigma_A(x,y) = \sup\{|f(y)| \; ; \; f(x) = 0, f \in A \text{ and } ||f||_{\infty} \le 1\}$$

and

$$\omega_A(x,\delta) = \sup\{|\delta(f)| \; ; \; f(x) = 0, f \in A \text{ and } ||f||_{\infty} \le 1\}.$$

THEOREM 6.1. Let A be an arbitrary uniform algebra. If Φ satisfies one of the following conditions (1), (2) and (3), then Φ is completely bounded and $\|\Phi\| = \|\Phi\|_{ch}$.

1.
$$\|\Phi(f)^2\| = \|\Phi(f)\|^2$$
 $(f \in A)$

2. E is an interpolation set in X and $\ker \Phi = \{ f \in A ; f = 0 \text{ on } E \}$

3. $||\Phi|| \leq 1$, ker $\Phi = \{ f \in A ; f = 0 \text{ on } E \}$ for some finite set $E \subset M(A)$ and $\sigma_A(x,y) = 1$ for any x,y in E with $x \neq y$.

PROOF. (1) If $\|\Phi(f)^2\| = \|\Phi(f)\|^2$ $(f \in A)$ then the closure of $\Phi(A)$ is regarded as a uniform algebra. By [18, Theorem 3.8], $\|\Phi\| = \|\Phi\|_{cb}$.

(2) Since E is an interpolation set in $X, A/\ker \Phi$ is isometrically isomorphic to a subalgebra of C(E) and hence $\Phi(A) \subseteq C(E)$. Again by [18, Theorem 3.8],

 $(3) \text{ Since } E = \{x_1, \dots, x_n\} \text{ is a finite set, } \dim A/\ker \Phi = n < \infty \text{ and } \Phi(A) = \{\sum_{i=1}^{n} a_i P_j ; a_j \in \mathbb{C}, P_i P_j = \delta_{ij} P_j \text{ and } j = 1, \dots, n\}. \text{ Suppose } \Phi(f_j) = P_j \text{ and } f_j \in \mathbb{C}$ A. Then $f_i f_j = \delta_{ij} f_j$ and $f_i(x_j) = \delta_{ij}$. Since $\sigma_A(x_i, x_j) = \delta_{ij}$, there exist $\{g_n^{(i)}\}_{n=1}^{\infty}$ in A such that $g_n^{(i)}(x_i) \to 1$ $(n \to \infty)$, $g_n^{(i)}(x_j) = 0$ $(j \neq i)$ and $||g_n^{(i)}||_{\infty} \leq 1$. Since $A/\ker\Phi=\{\sum_{i=1}^n a_if_i+\ker\Phi\;;\;a_i\in\mathbf{C}\;\mathrm{and}\;i=1,\cdots,n\},\;g_n^{(i)}-a_{in}f_i\in\ker\Phi\;\mathrm{and}\;$ $\Phi(g_n^{(i)}) = a_{in}P_i$. Since Φ is contractive, $|a_{in}|||P_i|| \leq 1$ and so $\{a_{in}\}$ is bounded. Hence there exists a subsequence $\{a_{in(j)}\}$ such that $a_{in(j)} \to a_i$ as $j \to \infty$ for each i. Then $\lim_{j\to\infty}g_{n(j)}^{(i)}-a_if_i\in\ker\Phi$ and $\lim_{j\to\infty}g_{n(j)}^{(i)}(x_i)=1$. Therefore $a_i=1$ and $||f_i+\ker\Phi||\leq 1$, and P_i is selfadjoint for $i=1,\cdots,n$ because Φ is contractive.

THEOREM 6.2. Suppose Φ is a ρ -contractive homomorphism of A. If $A/\ker\Phi$ is of two dimension then Φ has a ρ -dilation for any τ in M(A) with $\tau = 0$ on $\ker \Phi$.

Thus $\Phi(A)$ is a commutative C^* -algebra. By [18, Theorem 3.8], $\|\Phi\| = \|\Phi\|_{cb}$.

PROOF. Suppose $\ker \Phi = \{ f \in A : f(x) = f(y) = 0 \}$ where $x, y \in M(A)$ with $x \neq y$. By [13, Lemma 1 and its proof]

$$\Phi(f) = \begin{pmatrix} f(x)I_{H_1} & (f(x) - f(y))C \\ 0 & f(y)I_{H_2} \end{pmatrix} \text{ on } H = H_1 \oplus H_2$$

for all $f \in A$ where C is a bounded linear operator from H_2 to H_1 , and

$$A/\ker\Phi = \{f(x)f_1 + f(y)f_2 + \ker\Phi \ ; \ f \in A\}$$

where $f_1(x) = f_2(y) = 1$ and $f_1(y) = f_2(x) = 0$. By [13, Lemma 3], if $||C||^2 + 1 =$ $1/\sigma_A(x,y)^2$ then $||\Phi(f)|| = ||f + \ker \Phi||$ for all $f \in A$.

For any $x, y \in M(A)$, there exist a Dirichlet algebra A and $s, t \in M(A)$ such that $\sigma_A(x,y) = \sigma_A(s,t)$. In fact, we can choose the disc algebra A. Suppose

$$\Psi(F) = \left(\begin{array}{cc} F(s)I_{H_1} & (F(s) - F(t))B \\ 0 & F(t)I_{H_2} \end{array} \right)$$

for all $F \in \mathcal{A}$ where B is a bounded linear operator from H_2 to H_1 . Then

$$\mathcal{A}/\ker \Psi = \{F(s)F_1 + F(t)F_2 + \ker \Psi ; F \in \mathcal{A}\}\$$

where $F_1(s) = F_2(t)$ and $F_1(t) = F_2(s)$, and $\|\Phi(f)\| = \|\Psi(F)\|$ whenever f(x) = F(s) and f(y) = F(t), and B = C. If B = C and $\|C\|^2 + 1 = 1/\sigma_A(x, y)^2$, then $||B||^2 + 1 = 1/\sigma_A(s,t)^2$ and so $||f + \ker \Phi|| = ||\Phi(f)|| = ||\Psi(f)|| = ||f + \ker \Psi||$. Hence for given Φ , we can find a unital homomorphism Ψ on \mathcal{A} such that $A/\ker\Phi\cong$ $\mathcal{A}/\ker\Psi$. By Proposition 5.2, Φ has a ρ -dilation for any $\tau\in M(A)$ with $\tau=0$ on $\ker \Phi$.. If $\ker \Phi$ is not the above form, then $\ker \Phi = \{f \in A \; ; \; f(x) = \delta(f) = 0\}$ where $x \in M(A)$ and δ is a bounded point derivation at x. By [13, Lemma 1 and its proof],

 $\Phi(f)=\left(\begin{array}{cc}f(x)I_{H_1}&\delta(f)C\\0&f(x)I_{H_2}\end{array}\right) \text{ on } H=H_1\oplus H_2$ for all $f\in A$ where C is a bounded linear operator from H_2 to H_1 , and

$$A/\ker\Phi = \{f(x)1 + \delta(f)f_0 + \ker\Phi \ ; \ f \in A\}$$

where $f_0(x)=0$ and $\delta(f_0)=1$. By [13,Lemma 3], if $\|C\|=1/\omega_A(x,\delta)$ then $\|\Phi(f)\| = \|f + \ker \Phi\|$ for all $f \in A$. As in the first part of the proof, by Proposition 5.2 we can show that Φ has a ρ -dilation for any $\tau \in M(A)$.

If dim H=2, then an algebra homomorphism Φ has the following form :

$$\Phi_1(f) = \begin{pmatrix} f(x) & c(f(x) - f(y)) \\ 0 & f(y) \end{pmatrix}$$

where $x, y \in M(A)$ and $x \neq y$ or

$$\Phi_2(f) = \left(\begin{array}{cc} f(x) & c\delta(f) \\ 0 & f(x) \end{array} \right)$$

where $x \in M(A)$ and δ is a bounded point derivation at x.

PROPOSITION 6.3. Suppose Φ is a unital bounded homomorphism of A in L(H)and $\dim H = 2$.

1. When $\Phi = \Phi_1, \Phi$ is a ρ -contractive homomorphism if and only if

$$(1+|c|^{2})|\rho\zeta(f(x)-f(y))|^{2} \le |\{\rho+(1-\rho)\overline{f(x)}\overline{\zeta}\}\{\rho+(1-\rho)f(y)\zeta\}-\overline{f(x)}f(y)|\zeta|^{2}|^{2}$$

for any $f \in A$ with $||f||_{\infty} \leq 1$ and any $\zeta \in D$.

2. When $\Phi = \Phi_2, \Phi$ is a ρ -contractive homomorphism if and only if

$$|c|^2 |\delta(f)|^2$$

 $\leq (\rho - 2)|f(x)|^2 + 2(1 - \rho)|f(x)| + \rho$

for any $f \in A$ with $||f||_{\infty} \leq 1$.

PROOF. The author and Okubo [15] gave a necessary and sufficient condition for that a triangle 2 \times 2 matrix is of class C_{ρ} . By [15, Theorem] $\Phi_1(f)$ is of class C_{ρ} if and only if

$$|c|^{2}|f(x) - f(y)|^{2} + |f(x) - f(y)|^{2}$$

$$\leq \inf_{\zeta \in D} \left| \frac{\{\rho + (1 - \rho)\overline{f(x)}\overline{\zeta}\}\{\rho + (1 - \rho)f(y)\zeta\} - \overline{f(x)}f(y)|\zeta|^{2}}{\rho\zeta} \right|^{2}$$

and by [15, Remark] $\Phi_2(f)$ is of class C_{ρ} if and only if

$$|c|^2|\delta(f)|^2 \leq (\rho-2)|f(x)|^2 + 2(1-\rho)|f(x)| + \rho.$$

In Proposition 6.3, suppose $\rho = 1$. $\Phi = \Phi_1$ is a 1-contractive homomorphism if and only if $|c|^2 \le (1-|f(x)|^2)(1-|f(y)|^2)/|f(x)-f(y)|^2$ for any $f \in A$ with $||f||_{\infty} \le 1$. This implies [9, Theorem 1.1]. $\Phi = \Phi_2$ is a 1-contractive homomorphism if and only if $|c|^2 \le (1-|f(x)|^2)/|\delta(f)|^2$ for any $f \in A$ with $||f||_{\infty} \le 1$. Suppose $\rho = 2$. $\Phi = \Phi_1$ is a 2-contractive homomorphism if and only if $1 + |c|^2 \le$

 $\inf_{\zeta\in D}\left|\frac{2-(\overline{f(x)}\overline{\zeta}+f(x)\zeta)}{\zeta(f(x)-f(y))}\right|^2 \text{ for any } f\in A \text{ with } ||f||_{\infty}\leq 1.\Phi=\Phi_2 \text{ is a 2-contractive homomorphism if and only if } |c|^2\leq 2(1-|f(x)|)/|\delta(f)|^2 \text{ for any } f\in A \text{ with } ||f||_{\infty}\leq 1.$

References

- [1] J.Agler Rational dilation on an annulus, Ann. of Math., 121 (1985), 537-564.
- [2] T.Ando On a pair of commutative contractions, Acta Sci. Math., 24 (1963), 88-90.
- [3] C.A.Berger A strange dilation theorem, Notices Amer. Math. Soc., 12 (1965), 590.
- [4] F.Bonsal and J.Duncan Complete normed algebras, Springer-Verlag, New York and Berlin, 1973.
- [5] Che-Chen Chu Finite dimensional representation of a function algebra, Ph.D. thesis in the University of Houston, 1992.
- [6] R.G.Douglas and V.I.Paulsen Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math., 50 (1986), 143-157.
- [7] C.Foias and I.Suciu Szegő-measures and spectral theory in Hilbert spaces, Rev. Roum. Math. Pures. et Appl. 11 (1966), 147-159.
- [8] T.Gamelin *Uniform Algebras*, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- [9] G.Misra Curvature inequalities and extremal properties of bundle shifts, J. Operator Theory 11 (1984), 305-317.
- [10] B.Sz.-Nagy Sue les contractions de e'spase de Hilbert, Acta Sci. Math. 15 (1953), 87-92.
- [11] B.Sz.-Nagy and C.Foias Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, 1970.
- [12] T.Nakazi A spectral dilation of some non-Dirichlet algebra, Acta Sci. Math., 53 (1989), 119– 122
- [13] T.Nakazi ρ-dilations and hypo-Dirichlet algebras, Acta Sci. Math., 56 (1992), 175-181.
- [14] T.Nakazi and K.Takahashi Two-dimensional representations of uniform algebras, Proc. Amer. Math. Soc. 123 (1995), 2777-2784.
- [15] T.Nakazi and K.Okubo ρ -Contraction and 2×2 matrix, Linear Algebra Appl. 283 (1998), 165–169.
- [16] T.Nakazi and K.Okubo Generalized numerical radius and unitary ρ-Dilation, to appear in Math. Japonica.
- [17] S.Parrot Unitary dilations for commuting contractions, Pacific J. Math., 34 (1970), 481-490.
- [18] V.I.Paulsen Completely Bounded Maps and Dilations, Pitman Research Notes in Math. 146, Longman, Wiley, New York, 1986.
- [19] G.Pisier A polynomially bounded operator on Hilbert space which is not similar to a contraction, J.Amer. Math. Soc. 10 (1997), 351-369.
- [20] H.Radjavi and P.Rosenthal Invariant Subspaces, Springer-Verlag, New York, 1973.
- [21] I.Suciu Function Algebras, Editura Academiej Republicii Socialiste Romania, Bucuresti, 1973.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN E-mail address: nakazi@math.sci.hokudai.ac.jp