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Abel-Tauber theorems for Hankel and Fourier

transforms and a problem of Boas

AxiHiko INOUE anD HipEyuki KIKUCHI

ABSTRACT. We prove Abel-Tauber theorems for Hankel and Fourier transforms. For
example, let f be a locally integrable function on [0, co) which is eventually decreasing
to zero at infinity. Let p = 3,5,7,.-- and £ be slowly varying at infinity. We
characterize the asymptotic behavior f(¢) ~ £(t)t~? as t — oo in terms of the
Fourier cosine transform of f.  Similar results for sine and Hankel transforms are
also obtained. As an application, we give an answer to a problem of R. P. Boas on
Fourier series.

1. Introduction and results

As a prototype, we use Fourier cosine transforms to explain our problem. Let f
be a locally integrable, eventually decreasing function on [0, co) which tends to zero
at infinity, and let F, be its Fourier cosine transform. Let p > 0 and £ be slowly
varying at infinity (see below). We are concerned with Abel-Tauber theorems which
characterize the asymptotic behavior f(¢) ~ £(£)t~7 as t — oo in terms of F,. It
turns out that the values 1,3,5, -+ of p are exceptional. For p #£ 1,3,5,-- -, one can
obtain the desired Abel-Tauber theorems using regular variation — or Karamata
theory. See Bingham-Goldie-Teugels [BGT, Ch. 4], where references to earlier work
by Hardy and Rogosinski, Aljan¢ié¢, Bojani¢ and Tomié, Vuilleumier, Zygmund and
others are given. However the same theorems do not hold for p = 1,3,5,---. These
‘exceptional values are related to the power series expansion of the kernel cos z (see
Soni-Soni [SS}).

In [I1], one of the authors showed that one could use II-variation — or de Haan

theory in the terminology of [BGT] — to obtain the desired Abel-Tauber theorem
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Key words and phrases. Abel-Tauber theorems, Hankel transforms, Fourier transforms, Fourier
series, II-variation.



for cosine transforms when p = 1. For theorems of the same type, we refer to [I1]
(cosine series and integrals), [I2] (sine series and integrals), [I3] (Fourier-Stieltjes
coefficients), and Bingham-Inoue [BI] (Hankel transforms).

In this paper, we consider the remaining exceptional values, e.g., p = 3,5, - - for
cosine transforms. In fact, as in [BI], we consider those for Hankel transforms from
the beginning; the results for cosine and sine transforms follow as special cases. As
an application, we give an answer to a problem of R. P. Boas on Fourier series.

We write Ry for the class of slowly varying functions at infinity, that is, the class

of positive measurable £, defined on some neighbourhood of infinity, satisfying
00)/lm) 1 (3o 00) VA 0.
For £ € Ry, the class II; is the class of measurable f satisfying
{f(xz) = f(x)} J4(z) = clogh (z—>o0) VA>O0

for some constant c, called the £-indez of f. See [BGT] for background.

Let v > —1/2, t“+3h(t) € LL _[0,00), and h be ultimately decreasing to zero at

105:

infinity. We consider the Hankel Transform
Hy(z) = /000— h(t)(zt)Y/2J, (zt)dt (0 < z < 00), (1.1)
where f0°°_ denotes an improper integral limps—, o fOM and J, is the Bessel function
J,(z) = i iz tH (0<z < o)
§=0

with

(=1 .
= - >-1/2 =0,1,--+). 1.2
C,,,J 2V+2J . J' . F(V + ] + 1) (V = 1/ y J 0) ) ) ( )

Since the improper integral on the right of (1.1) converges uniformly on each (a, o)
with @ > 0, H, is finite and continuous on (0, co).
| For n € N and z € (0,00), we define H,, by
| ’ n—1 0o
Hypn(e) = a4 S HL(1/2) = Y /0 32 p(g)dt - R L (1.3)
j=0

Cif [t 2 (t)dt < co.



Theorem 1. Let £ € Ry andn € N. Let v > —1/2, t*+3h(t) € L} _[0,00), and h

loc

be ultimately decreasing to zero at infinity, with Hankel transform H,. Then

h) ~t7872000) (2 o0) (14)

if and only if
/ tu—%—l—Znh(t)dt < oo and }_Iu,n € Il with £-index Cumn- (15)

0

Note that Theorem 1 includes results for Fourier cosine and sine transforms, as
1/2 2 1/2 2
T _1y9(z) = —cosz, T Jija(z) = —sinz.
For z € (0,00), we define A, by
H,(z) == 2"t H,(1/). (1.6)

We will prove Theorem 1 by reducing the problem to the following known result

(which corresponds to the case n = 0 of (1.4)):

Theorem A ([BI], extending [I1], [I2]). Let v, h, H, and £ be as in Theorem 1.

Then
A(t) ~t7"780(1)  (t — o0) (1.7)
if and only if
H, € II; with £-indez cyp. (1.8)
The cosine case v = —3 of Theorem A is due to [I1], the sine case v = 1 to [I2],

and the general case v > —2 to Bingham-Inoue [BI].
The theorems above treat the boundary cases to the following known Abel-

Tauber theorem for Hankel transforms:

Theorem B ([RS], [SS], extending [P], [B]). Let v,h, H, and ¢ be as in Theorem
1.

(1) For0< p<v+ %,
h(t) ~t2L(t) (t — 00) (1.9)

3



if and only if

T +%—2)
Hy(z) ~ P~ 9(1/z) 28 P 42 2 0+ 1.10
(2) LetneNandy—%+2n<p<l/+%+2n. Then (1.9) holds if and only

if [0t 320h(t)dt < co and

n—1 00
- ey / A p(t)dt . gt
=070 (1.11)

o
IS RN
+1+
[ ST BTN
+

|
L1~ ¥ 1 STas
~—

~—

~ zP (1)) - 227° (z — 0-+).

I(
The part (1) of Theorem B is due to Pitman [P], Bingham [B], and Ridenhour-
Soni [RS], while the part (2) to Soni-Soni [SS].

We focus on Fourier (cosine and sine) transforms. Let f € Ll [0,00) and f

loc

be ultimately decreasing to zero at infinity. We write F, for the Fourier cosine

transform of f:
Fo(z) = /00— f(t) cos{zt)dt (0 <z < o0). (1.12)
0

Similarly, let g(t)¢t € Li [0, 00), and g be ultimately decreasing to zero at infinity.

We write G for the Fourier sine transform of g:
00—
Gs(z) = / g(t) sin(zt)dt (0 <z < c0). (1.13)
0
Now, at least formally,

R0 = (-1 [ B pa, a0 = 1 [ et
0

0
So for n € N we define F;, ,, by

n-l (25)
Fon(X) =z {F(l/m > F(2 (©) —ZJ} (0 <z < o) (1.14)

i=
if Fy € C*"~%([0,00)). Similarly, for n € N, we define G, ,, by

Gonlz) =221 { G, (1/z _"—1 wx”zj“l 0<z<oo 1.15
(@) e - 3 S8 ( ) (L)
i=o

if Gs € C?™~1([0,00)). Here as usual, C™([0,00)) is the class of functions which

are of C™ (I)-class for some open neighbourhood I of [0, 00).

4



Theor_‘em 2. Let £ € Ry andn € N. Let f € Li _[0,00) and f be ultimately

decreasing to zero at infinity, with Fourier cosine transform F,. Then
fit) ~t72""10(t) (¢t — o0) (1.16)

if and only if

(="
@en)t’

F, € 0™ %([0,00)) and F,,€ll, with f-index (1.17)

Theorem 3. Let { € Ry and n € N. Let g(t)t € L [0,00) and g be ultimately

loc

decreasing to zero at infinity, with Fourier sine transform Gg. Then
glt) ~t722(t) (- o0) : (1.18)
if and only if

- = . . "
Gs € C1([0,00)) and Gs,n € Il with £-index (2(71:)7? (1.19)

Remark. In Theorem 2, F, € C?"2([0,00)) implies that the limit F,(0+) exists
and that F, with F.(0) := F.(0+), is in C?"~2([0, 00)); similarly for the meaning
of G5 € C*~1([0, 00)) in Theorem 3.

We will prove Theorems 2 and 3 using Theorem 1.

We give an application of Theorem 3 to probability theory. Let X be a real
random variable defined on a probability space (Q, F, P). The tail-smﬁ of X is the
function 1" defined by

T(z) = P(X € —2)+ P(X > z) (0 <z < ).
Note that T is finite and decreases to zero at infinity. Now
U-v@ye= [ T@sineede  (0<€< o),
where U is the real part of thevcharacteristic function of X:

U(£) := Efcos(¢X)] (£ €R)

5



(see [BGT, p. 336]). By Theorem 3, the asymptotic behavior
T(z) ~ 72" 24(z) (x — o)

with n € N and £ € Rg is characterized in terms of U.
We can apply Theorems 1 and A to Question 7.19 of Boas [Bo]. For f € L[0,n],

we define its Fourier cosine coefficients a,, by

/f Yeos(nt)dt (n=1,2,- /f t)ydt (n=20). (1.20)

Similarly, for g € L'[0, 7], we define its Fourier sine coefficients b, by

by, 1= 2 /7r g(t) sin(nt)dt n=1,2---). (1.21)
0 .

™

Theorem 4. Let f € L'[0,n] with Fourier cosine coefficients (ax). We assume

that ap, > 0 for allk > 0. Letn € N and £ € Ryg. Then

Z m2" % (m — o0) (1.22)

if and only if

feC®™%0,7) and f,ecIl, with f-index ((2n)', (1.23)
where
Fulz) =z { Zf( )(O - } (Yr<z<oo).  (1.24)

Corollary. In Theorem 4, we further assume that (ax) is decreasing. Then (1.23)

s equivalent to

¢(m)

Om ~ oAt

(m — o). (1.25)



Theorem 5. Let g € L[0, 7] with Fourier sine coefficients (b). We assume that
b, >0 forallk>1. Letn €N and £ € Ry. Then

1 .
E : b ~ m2n+1 m+1 (m = co) (126
if and only if
g€ C™1([0,n]) and Gn €Iy with f-index (_i (1.27)

where

—1 o(25+1) ;
Gn(z) —$2n+1{ (1/z) - 29(211(0)9«“ “1} (1/m <z <o0). (1.28)

Corollary. In Theorem 5, we further assume that (by) is decreasing. Then (1.27)

18 equivalent to
£(m)

bm ~ m2nt2

(m — o). (1.29)

Remark. We understand that L'[0, ] consists of equivalence classes With respect to
the equivalence relation f1 ~ fo & fi1 = fa a.e. So, e.g., in (1.23), f € C?"~2([0,7])
implies that there exists a function in C?"~2([0, 7]) which lies in the equivalence
class of f and that we identify the function ‘With f. In particular, if Y p- o |ax| < oo,
then by [Z, Ch. III, Theorem 3.9] (Theorem of Lebesgue on Cesaro summability)
f € C([0,7]) and we may assume that f(z) = 3 7 axcos(kz) for 0 < z < .
Similarly, if Y72 |bk| < oo, then g € C([0,7]) and we may assume that g(z) =
Sope bisin(kz) for 0 < z < .

For (1.26) with n = 0, we have the following:

Theorem 6. Let g, (b) and £ be as in Theorem 5. We write §(z) = zg(1/x) for

z > 1/mw. Then
= £(m)
bk~ = (m—ooo) (1.30)
—m m
if and only if
g€ C([0,7]) and- gelly withf-index 1. (1.31)

7



See also [I2, Theorem 1.2].
Theorems 4, 5 and 6 treat the boundary cases to the following known results

due to Yong [Y]:

Theorem C ([Y]). Let f, (ax) and £ be as in Theorem 4. Letn € N and 2n—1 <
p<2n+1. Then

k;nak ~ jfﬁ)l : p%l (m — o) (1.32)

if and only if f € C**~2((0,7]) and

=l e(29) ‘ -

Theorem D ([Y]). Let g, (bx) and £ be as in Theorem 5. Letn € N and 2n < p <
2n+ 2. Then

Z;nbk ~ f;f,?f)l : ;—1—1 (m — o) (1.34)

if and only if g € C?"~1([0,7]) and

nol 2i+1) .
IO 2, 2 lY(1)z) (2 — 04). (L.35)

g(z) — =~ (25 + 1)! 2I'(p) sin(pm/2)

Theorems 4, .5 and 6, together with Theorems C and D, give an answer to [Bo,

Question 7.19].

2. Proof of Theorem 1

We note that (1.4) implies
g 3
/ =220 (1) dt < oo. (2.1)
0

So, when proving the equivalence of (1.4) and (1.5), we may assume (2.1).

We define hg,- -, hn—1 by

o0 1
ho(t) := / h(s)s*tids (0 <t < oo),
¢

oo
hj(2) :=/ hj-1(s)sds 0<t<oo, j=1,---,n—1).
¢

8



Since h is eventually non-negative, h; are all eventually decreasing. By Fubini’s

theorem,
h;(0) = / dtjt; / dtj_1t;_q- /ooh(to)t0+ 2 dto
+1 ” ti-1
/ dtoh(to)te §/ dtltl---/o tidt;
= %7 / R(t)tr T2 +2i gy,
Since

T @) =0(1) (v - o),
i e
. {x “J,L(a:)} = -z *Ji(z),
zTHJu(z) — cuyo (x —0+)
for any p > —1/2 (see Watson [W], pages 199 and 45), we obtain, by integration

by parts,

H,(z) =z"t2 / o ()3 { (t2) 7" J, (tz) } dt
0

= x”+%ho(0)cu,0 - 93"+%+2/ ho(t)t {(t2) ™" " 41 (i) } dt =
0

3
|
-

= 3 (=12 3+ h(0)c, 140

.
i
o

+ (~1yrgrteen /0 iy (O (t2) ™ "™, (1) Yol

n—1 o0 —
= 3 (~ 13z A2 (0)cy 450 + (~1)"2" / 9(8) (t2) /2 Ty o (t2)dt,
j=0 0

where
g(t) ==t E R, (1) (0 <t < o0).
Since
. w 1 .
(Vs Ocunso = s [ ¥ 5R(0a1
0
we have

Hyn(@) = (~1)ra®+m+h /0 OO AT (2.2)

9



Now t+m)+34(t) € L} [0,00) and g is eventually decreasing to zero, whence by

Theorem A (with v replaced by v + n) (1.5) is equivalent to

ot) ~ 1 Ra(y S G oy

Cuin,0 2"n

or
1

R (t) ~ 1728 - oo

(t — c0). (2.3)

Since h; is eventually decreasing, log {h;(t)¢} is slowly increasing, whence by the

Monotone Density Theorem (see [BGT, §1.7]) (2.3) is equivalent to
* 1 1
ho(t) = / $Fh(s)ds ~ £4(E) 5L (1 00) (2.4)
t

By assumption, & is eventually decreasing, whence log {h(t)t'“r% } is slowly increas-
ing. Again by the Monotone Density Theorem, (2.4) is equivalent to (1.4). This

completes the proof. [

3. Proofs of Theorems 2 and 3

Lemma 3.1. Letn € N, and let f € LL _[0,00), f be ultimately decreasing to zero

loc

at infinity, with Fourier cosine transform F,. If F, € C*2(]0,00)) and

n—1 Fézj) 0
SCRI

o

2% = O(z"?) (z — 0+), (3.1)

then [;°t"~2f(t)dt < co. In particular,

F%) () = (—1) /00 % f(t) cos(zt)dt 0<z<o0, j=0,---,mn—1).
0

Remark. For the meaning of F, € C?"~2(|0,00)), see the remark just after the

corollary to Theorem 3.

Proof. We first show that we lose no generality by supposing that f is finite and

decreasing on [0, 00). -

10



Choose X so large that f is finite and decreasing on [X, 00). Set
fR=fX) (0<t<X), =ft (X<,
and let F’C be its Fourier cosine transform:
Fo(z) = Ooo— f(t) cos(zt)dt (0 <z < o0).
Set D(z) := Fy(z) — F,(z). Then

/ {f(® X)} cos(xt)dt (0 <z < 00),

and so D can be extended to a function in C*° ([0, c0)). Moreover,

}dt

So for F; to be in C?*"~2([0,c0)) and satisfy (3.1) it is necessary and sufficient that

F, has the same properties. Thus we may replace f by f — that is, we may assume

that f is finite and decreasing on [0, c0).

Since F.(z) — F;(0) as x — 0+, we have fooo f(t)dt < oo by [SS, Theorem 20]

(with k(t) = cost). In particular,

= /oo () cos(zt)dt (0 <z < 00).
0

(3.2)

If n > 2, then we proceed to the next step. We follow the idea of the proofs:of
Chan[C, Theorems 1-10]. By (3.1), Fy(z) — F;(0) = O(z?) as & — 0+ or, by (3.2),

/0 ZH) {1 - cos(ta)}dt = 0(2?)  (z — 04).

Since the integrand is non-negative,

1/z

f@®) {1 = cos(zt)} dt = O(z?) (z — 0+).

11



By [C, Lemma 3] (or directly), 1 — cos(tz) > (tz)2/4 for 0 < tz < 1, whence
1/z
22 / 2FH)dt = 0(z)  (z — 0+)
0
or

/z
/1 £2f@)dt=0(1)  (z— 04).
0

Thus [°t2f(¢)dt < co and so
FED(z) = (-1) /00 t2f(t) cos(xt)dt (0 <z < 0). (3.3)
0

If n > 3, then we proceed to the next step. By (3.1),

(2)
Fo(z) - {FC(O) + &;@mz} =0@")  (z-04)

or, by (3.3),

/0oo f(t) [cos(tx) - {1 _ ($2t!)2 H dt=0(z*)  (z - 0+).

Since

u? A ut
cosu-—(l—a)zo (0 <u< o), 22—-4ﬁ 0<u<l)

(see [C, Lemma 3]), we have, as z — 0+,

4 1/z

24!

/ol/mt‘*f(t)dts AL [COS(tm) - {1_ (a:;!)2 } ] #=06,

whence [°t*f(t)dt < co. Therefore
{o0)
F¥9(z) = (—1)2/ t4£(t) cos(zt)dt (0 <z < o0).
0
If n > 4, then in a similar way we obtain inductively

/ Tiif@dt <o, F(s) = (-1 / T ) cos(at)dt (0 2 < o0)
0 0

for j =38,---,n— 1. This completes the proof. 0

12



Proof of Theorem 2. If (1.16) holds, then f0°° 272 f(t)dt < oo, and so F, €
C*~%([0,00)) and

F#)(0) = (-1)7 / Tifd (=0, 1) (3-4)
4]

Therefore, by Theorem 1 with » = —1/2, (1.17) follows.

Conversely, if F; satisfies (1.17), then by [BGT, Theorem 3.7.4] we obtain (3.1),
whence, by Lemma 3.1, ;7 t2"~2f(t)dt < 0o as well as (3.4). Therefore, by Theo-
rem I with v = —1/2, (1.16) follows. O

Lemma 3.2. Let n € N, and let g(t)t € L [0,00), g be ultimately decreasing to

loc

zero at infinity, with Fourier sine transform Gs. If G € C**~1([0,00)) and

Gs(z) ~ nil mmzﬂl = O(z?" 1) (z — 0+) - (3.5)
= Y] ‘ ’ ‘

then [;° 12" ~1g(t)dt < co. In particular,

[o, 2]
G (g) = (_1)j/() t29+1g(t) cos(xt)dt 0<z<o0, j=0,---,n—1).

The proof of Lemma 3.2 is quite similar to that of Lemma 3.1; we use [SS,
Theorem 20] with k(t) = sint as well as [C, Lemma 2] instead of [C, Lemma 3]. We
omit the details.

The proof of Theorem 3 is also quite similar to that of Theorem 2; we use
Theorem 1 with v = 1/2 as well as Lemma 3.2 instead of Lemma 3.1. The details

are omitted.

4. Proofs of Theorems 4, 5 and 6
Lemma 4.1. Let n € N, and let g € L*[0,n] with Fourier sine coefficients (bg).
We assume by, > 0 for all k > 1. If g € C**~1([0, 7)) and

X g2+ (0)

g(CIJ) - 2o m.’l)z‘j+1 = O(.’Ezn_l) (.'L‘ — 0+), (41)

13



then Y po | k2"~ 1by, < co. In particular,

o0
g ¥t (g) = (—1) Zkzj“bk cos(kz) 0<z<m j=0,1,--,n—-1).
k=1

Proof. Since g’ is bounded on [0, 7], g € Lip 1 (in the sense of [Bo, pp. 46-47]). By
[Bo, Theorem 7.28], we have Y7 ; kby < co. Therefore,
o0 o0
glz) = Zbk sin(kz), g (z) = Zkbk cos(kz) 0<z< ). (4.2)
k=1 k=1 '
If n > 2, then we proceed to the next step. As in the proof of Lemma 3.1, we
follow the idea of the proofs of [C, Theorems 1-10]. By (4.1), g(z)—zg"(0) = O(z?)
as ¢ — 0+, or by (4.2),

Z by, {kz — sin(kz)} = O(z3) (z — 04).
k=1

~ Since
u3
u—sinu>0 (0<u<o00), u—sinuzﬁ (0<u<1)
(see [C, Lemma 2]), we have
3 m m '
m . -
53 > kb < b {(k/m) — sin(k/m)} = O(m™3)  (m — o),
k=1 k=1
whence 3 5o, k3bx < oo and
oo
9® ()= (1)) Kkbpcos(kz) (0<z<m).
k=1
If n > 3, then ih a similar way we can show inductively
Zk2j+1bk <oo, ¥t (z)=(-1) Zijku cos(kz) (0<z <)
k=1 k=1

for j =2,--- ,n — 1. This completes the proof. [

Proof of Theorem 5. By [BGT, Theorem 3.7.4], (1.27) implies (4.1), whence by

Lemma 4.1,
o0

> k2 < oo (4.3)
k=1

14



On the other hand, by partial summation, (1.26) also implies (4.3). Therefore,
when proving the equivalence of (1.26) and (1.27), we may assume (4.3), whence

g € C**7}([0, 7)), and

g(2j+1)(x) = (_l)j Zk2j+1bk COS(kx) (0 <z<m j=0,---,n— 1)
k=1

Following [SS, pp. 620-621], we define a function h by

> kg i (t<1),
h(t) = =51 B (4.4)
Y k1 Ok (n<t<n+1, n=1,2,---).
Then .
g(z) = —/ sin(zt)dh(t) = ;,;/ h(t) cos(zt)dt
o ° (45)
= \/§$H~1/2($) 0<z <7
(recall H_y/5 from (1.1)). On the other hand, for j =0,1,.-- ,n — 1,
/00 t2h(t)dt = _1 i i b {(n F )% n2j+1}
0 2j+1 =
1 [os] k—1 »
= — 2§+1 _ o 25+1 46
k=1 =0
=1 Sy = G e

In particular, [;° t2"~2h(t)dt < co. Recall H_1/5,, from (1.3). By (4.5) and (4.6),

B n—l (2j+1) )
Hoajanle) = e {g(l/x) -Y ey g’,)x} Cun

=0

Now (1.26) is equivalent to

£(t) 1
MO~ it opp1 B
which by Theorem 1 is equivalent to
aH € TI, with f-index —27 \/? =07 (4.8)
—l/zn = 5 on + 1 ™ (2n + 1)! :
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or to (1.27) by (4.7). This completes the proof. [J

Proof of Theorem 6. By [BGT, Theorem 3.7.4], (1.31) implies ¢(t)/t € L[0,].

Therefore, since

Xn:Sin kz = sin{%g;(n-+ 11)}Sin(%:cn)
k=1 sin(x)

and |sin(Lz)| > z/7 for (0 < z < ), we obtain

n
> -
k=1

2 [" >\
;/0 g(t)ésm(kt)dt
/7r o0 sin{3t(n + 1)} sin(}tn) dt’

0 sin(3t)

Xis
¢
52/ 19Ol 4t < oo,
, ¢

Thus
> b < 0. (4.9)
k=1

On the other hand, (1.30) also implies (4.9). So, when proving the equivalence of
(1.30) and (1.31), we may assume (4.9), whence g € C([0, 7)) and

g(m):Zbksinkx 0<z<m).
k=1
We define h by (4.4). Then (1.30) is equivalent to
h(t) ~ E(Tt) (t — o0). (4.10)

On the other hand, by (4.5) and Theorem A with v = —1/2, (4.10) is equivalent to
(1.31). This completes the proof. O

Lemma 4.2. Letn € N, and let f € L0, 7] with Fourier cosine coefficients (ay).

We assume a, > 0 for all k > 0. If f € C*~2([0,7]) and

n—1 (245) )
flz) - Z f—(—gj)(—?)xzf =0=™?)  (z—04), (4.11)
3=0 )
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then Y po o k2"~ 2ay, < co. In particular,

@ (z) = (1) Zijak cos(kz) O0<z<m 7=0,1,--- ,n—1).
k=0
Proof. Since f(z) approaches f(0) as z — 0+, we have ) 7. jar < oo by [Bo,
Theorem 7.26]. The rest of the proof is similar to that of Lemma 4.1 (see also the

proof of Lemma 3.1), whence we omit the details. O

Proof of Theorem 4. By [BGT, Theorem 3.7.4], (1.23) implies (4.11), whence by
Lemma 4.2

oo
Zkzn_zak < 0. (4.12)
k=0

On the other hand, by partial summation, (1.22) also implies (4.12). Therefore,
when proving the equivalence of (1.22) and (1.23), we may assume (4.12), whence

f€C*™2(jo,n]) and

o0
f@)(z) = (—l)jZkzjakcos(km) 0<z<m 7=0,1,--- ,n—1).
k=0

Following [SS, p. 623], we define a function k by

— Zzo:O ak (t < 0)’
h(t) o { E:ozn—{—la’k (n5t<n+17 nzo,l’) (413)
Then (1.22) is equivalent to
o€ty 1
h(t) ~ T o (t — 00). (4.14)
Recall Hy/, from (1.1). Since
flz)=— /[o,oo) cos(zt)dh(t) = f(0) — x/o h(t) sin(zt)dt
for 0 < z < 7, we obtain
10~ 5 = \[Zathple) 0z <. (415)
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First we assume n = 1. Then, by Theorem A with v = 1/2, (4.14) holds if and

ounly if
Ciy20 1 (2

Hyjp(z) € T with f-index 5 =3\

(recall Hy ) from (1.6)), which by (4.15) is equivalent to (1.23) with n = 1.

Next we assume n > 2. For j=0,1,-+- ,n — 2,
/oo tzj“h(t)dt = 1 i E2it2g, — (__Dj_+1f(2j+2) (0) (4.16)
0 2j+2 &4 Y ' '

In particular, f0°° t27=3h(t)dt < oo. Recall H1/2,'n.—1 from (1.3). By (4.15) and
(4.16), ‘

_ nl p(25) )
Hyjzpn-1(z) = —/ %xzn f(1/z) — g f(;j)('o)x‘ZJ . (4.17)
i=0 '

By Theorem 1 with v = 1/2, (4.14) is equivalent to

- . . C1/2,n—1 2 (—1)n1
Hi/y 1 € IIp with Z-index —/2:— = ;£~(2—?)2—)'——,

which by (4.17) is equivalent to (1.23). This completes the proof O
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