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Abstract. We consider the full Navier-Stokes equations for viscous
polytropic fluids with nonnegative thermal conductivity. We prove the
existence of unique local strong solutions for all initial data satisfying
some compatibility condition. The initial density need not be positive
and may vanish in an open set. Moreover our results hold for both
bounded and unbounded domains.

1. Introduction

By ideal vacuums in a compressible or incompressible fluid, we mean
spatial domains occupied by the fluid where the (mass) density vanishes. In
the absence of vacuum, lots of results have been obtained for viscous heat-
conducting compressible fluids since the uniqueness result by J. Serrin [23]
and the local existence results by J. Nash [21] and N. Itaya [13]. We refer
the readers to the papers [5, 6, 12, 18, 19, 20, 28, 29, 32] for some local or
global results. The crucial observation for these results is that the energy
and momentum conservation equations are parabolic when the density is
assumed to be a known positive scalar field. But they lose the parabolicity
at the presence of vacuum.

This difficulty was overcome only for simpler fluid models without consid-
ering the energy conservation equation. For nonhomogeneous incompressible
fluids, the existence of global weak solutions and local strong solutions was
proved first by J. Simon [24, 25] and by H.J. Choe and the second author
[4], respectively. See also the works [2, 8, 14, 16, 27] for some related re-
sults and extensions. Then similar results have been proved for isentropic or
barotropic compressible fluids. For details, refer to [1, 3, 7, 10, 15, 17, 22].
But straightforward adaptations of the previous methods to heat-conducting
fluids have failed because the energy, velocity and pressure fields are strongly
coupled with each other especially when the density is not bounded away
from zero.
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In this paper, we develop a local existence theory for viscous polytropic
fluids with vacuum while the incompressible one will be discussed in a forth-
coming paper.

A viscous polytropic fluid is a viscous compressible fluid obeying both
Joule’s and Boyle’s laws, and governed by the following system of equations

ρt + div (ρu) = 0, p = (γ − 1)ρe,(1.1)

(ρe)t + div (ρeu)− κ∆e + pdivu =
µ

2
|∇u +∇uT |2 + λ(divu)2 + ρh,(1.2)

(ρu)t + div (ρu⊗ u)− µ∆u− (λ + µ)∇divu +∇p = ρf(1.3)

in (0, T )×Ω. Here we denote by ρ, e, p and u the unknown density, specific
internal energy, pressure and velocity fields for the fluid, respectively. The
known constants µ, λ are viscosity coefficients, γ is the ratio of specific heats
and κ is the thermal conductivity coefficient divided by the specific heat at
constant volume. In view of viscosity and classical thermodynamics (see the
book [16] by P.L. Lions), these constants are required to satisfy the natural
restriction

µ > 0, 3λ + 2µ ≥ 0, κ ≥ 0 and γ > 1.

The known fields h and f denote a heat source and external force per unit
mass. Finally, (0, T ) × Ω is the time-space domain for the evolution of the
fluid, where T is a finite positive number and Ω is either a bounded domain
in R3 with smooth boundary or a usual unbounded domain such as the
whole space R3, the half space R3

+ and an exterior domain with smooth
boundary.

As was already suggested in [1, 3], the standard homogeneous and inho-
mogeneous Sobolev spaces are natural function spaces for our local theory in
both bounded and unbounded domains. Throughout this paper, we adopt
the following simplified notations for Sobolev spaces

Lr = Lr(Ω), W k, r = W k, r(Ω), Hk = W k, 2,

Dk, r = {v ∈ L1
loc(Ω) : |v|Dk,r < ∞}, Dk = Dk, 2,

D1
0 = {v ∈ L6(Ω) : |v|D1

0
< ∞ and v = 0 on ∂Ω},

H1
0 = D1

0 ∩ L2, |v|Dk,r = |∇kv|Lr and |v|D1
0

= |∇v|L2 .

Then it follows from the classical Sobolev embedding results that

|v|L6 ≤ C|v|D1
0
, |v|L∞ ≤ C|v|W 1, q and |v|L∞ ≤ C|v|D1

0∩D2 ,

provided that q > 3. Hereafter we denote by C a generic positive constant
depending only on the fixed constants µ, λ, κ, γ, q, T and the norms of h

and f . We also adopt the obvious notation

| · |X∩Y = | · |X + | · |Y for (semi-)normed spaces X, Y.
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Moreover, we denote by H−1 the dual space of H1
0 with < ·, · > being the

dual paring of H−1 and H1
0 . A detailed study of homogeneous Sobolev

spaces may be found in the book [11] by G. Galdi.
The main result in this paper is Theorem 3.1, an existence result on local

strong solutions to the initial boundary value problem for a heat-conducting
viscous polytropic fluid (the case that κ > 0). The most striking feature of
the theorem is that the existence and uniqueness are proved under a minimal
assumption on the initial density ρ0:

ρ0 ≥ 0 in Ω and ρ0 − ρ∞ ∈ H1 ∩W 1, q

for some constants ρ∞ ≥ 0 and q > 3. The W 1, q-regularity of ρ0−ρ∞ seems
inevitable to prove the local well-posedness in the framework of Sobolev
spaces for any compressible fluid model in three dimensions simply because
the Sobolev embedding W 1, q ↪→ L∞ holds only for q > 3. The H1-regularity
is necessary to prove the theorem for unbounded domains and can be re-
placed by W 1, 3 in case that ρ∞ > 0. Moreover, we allow ρ0 and/or ρ∞

to vanish and so we may consider both interior vacuum and vacuum at in-
finity. A similar result was obtained by H.J. Choe and the authors [1] for
barotropic fluids with ρ∞ = 0. But even in this case, the strong coupling of
the energy and velocity fields prevents us from adapting the arguments in
[1] to prove Theorem 3.1.

As has been observed in [1, 3, 22], the lack of a positive lower bound of ρ0

should be compensated with some condition on the initial data (ρ0, e0, u0).
If (ρ, e, u) is a sufficiently smooth solution of (1.1)-(1.3), then letting t → 0
in the equations (1.2) and (1.3), we readily derive a natural condition: there
exists a pair (g1, g2) of scalar and vector fields such that

(1.4) −κ∆e0 −Q(∇u0) = ρ0g1 and Lu0 +∇p0 = ρ0g2 in Ω,

where we adopt the following notations

Q(∇u0) =
µ

2

∣∣∇u0 +∇uT
0

∣∣2 + λ(divu0)2,

Lu0 = −µ∆u0 − (λ + µ)∇divu0 and p0 = (γ − 1)ρ0e0.

But it turns out that a weaker condition than (1.4) is sufficient to prove the
existence and uniqueness of local strong solutions. Indeed our main exis-
tence result is proved under the assumption that the initial data (ρ0, e0, u0)
satisfies the regularity

(1.5) ρ0 − ρ∞ ∈ H1 ∩W 1, q and (e0, u0) ∈ D1
0 ∩D2

and the compatibility condition

(1.6) −κ∆e0 −Q(∇u0) = ρ
1
2
0 g1 and Lu0 +∇p0 = ρ

1
2
0 g2 in Ω

for some (g1, g2) ∈ L2. Roughly speaking, (1.6) is equivalent to the L2-
integrability of

√
ρet and

√
ρut at t = 0, as can be shown formally by letting
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t → 0 in (1.2) and (1.3). Hence the condition (1.6) plays a key role in de-
ducing that (et, ut) ∈ L2(0, T∗;D1

0) as well as (
√

ρet,
√

ρut) ∈ L∞(0, T∗; L2)
for some small time T∗ > 0. This was observed and justified rigorously first
by R. Salvi and I. Straškraba [22] and then by H.J. Choe and the second
author [3], independently, for barotropic fluids. Note that the compatibility
condition (1.6) is satisfied automatically for all initial data (ρ0, e0, u0) with
the regularity (1.5) whenever ρ0 is bounded away from zero.

We also consider viscous polytropic fluids without heat-conduction (the
case that κ = 0). Compared with the isentropic fluid models, one major
difficulty is the presence of the quadratic nonlinear term Q(∇u). However,
from the viewpoint of a local existence theory with vacuum, this case is much
easier than the previous heat-conducting one because the energy equation
(1.2) with κ = 0 can be rewritten equivalently as a hyperbolic equation for
the pressure p

(1.7) pt + u · ∇p + γpdivu = (γ − 1) (Q(∇u) + ρh) .

Assume for the sake of simplicity that h = 0 and p(0) = p0 ∈ H1 ∩ W 1, q

with 3 < q ≤ 6. Then from the standard estimate

|p(t)|H1∩W 1, q ≤
(
|p0|H1∩W 1, q + C

∫ t

0
|Q(∇u)|H1∩W 1, q ds

)

× exp
(

C

∫ t

0
|∇u|H1∩W 1, q ds

)

based on energy methods, we can deduce that

(1.8) sup
0≤t≤T∗

|p(t)|H1∩W 1, q ≤ C (|p0|H1∩W 1, q + 1)

for some small T∗ > 0, provided that the velocity u is sufficiently regular.
Moreover assume that ρ0 ∈ H1 ∩W 1, q. Then it also follows that

(1.9) sup
0≤t≤T∗

|ρ(t)|H1∩W 1, q ≤ C|ρ0|H1∩W 1, q .

In view of the local estimates (1.8) and (1.9), we may regard the equations
(1.1), (1.3) and (1.7) as a weakly coupled system at least for some small
time interval [0, T∗]. This is the reason why the arguments in [1, 3] can
be adapted to prove the local well-posedness of the initial boundary value
problem for the equations (1.1), (1.3) and (1.7) in case that either Ω is a
bounded domain or ρ∞ = 0.

A more general result, Theorem 4.1, is proved in the final section. We
prove the local existence of a unique strong solution under a minimal reg-
ularity assumption on the initial data: (ρ0, p0, u0) is required to satisfy the
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regularity condition

ρ0 ≥ 0, ρ0 − ρ∞ ∈ C0 ∩H1 ∩W 1, 3,

p0 − p∞ ∈ H1 ∩W 1, q, u0 ∈ D1
0 ∩D2

for some constants ρ∞, p∞ and q > 3, and the compatibility condition

Lu0 +∇p0 = ρ
1
2
0 g in Ω for some g ∈ L2.

We remark that the H1 ∩W 1, q-regularity of the initial density is replaced
by a slightly more general one, C0 ∩ H1 ∩ W 1, 3. Being the completion of
W 1, q in L∞, the space C0 consists of continuous functions on Ω vanishing at
infinity. Moreover H1-regularity can be removed in case that ρ∞ > 0. We
also remark that the proof of Theorem 4.1 can be easily adapted to prove a
similar result for barotropic fluids, which generalizes the results in [1, 3, 22].

As indicated above, the local estimates (1.8) and (1.9) are crucial ingre-
dients to provide a rather simple proof of our existence result for the case
that κ = 0. But in case that

(1.10) κ > 0 and inf
Ω

ρ0 = 0,

it seems impossible to derive an estimate analogous to (1.8) since p, e and u

are strongly coupled. To investigate this in some detail, we try to estimate
|∇p|L2 by means of a standard procedure. First, we observe that an estimate
for |∇p|L2 requires some estimate for |∇e|L2 because of the equation of state
p = (γ − 1)ρe. Then in order to estimate |∇e|L2 , we make use of standard
energy methods: multiplying (1.2) by et and integrating over Ω, we obtain

(1.11)
∫

ρe2
t dx +

κ

2
d

dt

∫
|∇e|2 dx ≤ C

∫
|∇u|2|et| dx + (good terms).

The possibility of vanishing density forces us to estimate the first term of
the right hand side as follows

C

∫
|∇u|2|et| dx ≤ C|∇u|2

L
12
5
|et|L6 ≤ C|∇u|2

L
12
5
|et|D1

0
.

Hence we need to estimate |et|D1
0
. Following the ideas in [1, 3], we differenti-

ate (1.2) with respect to t, multiply by et and finally integrate over (0, t)×Ω.
Then from the compatibility condition (1.6), we formally derive

(1.12)

1
2

∫
ρe2

t (t) dx + κ

∫ t

0

∫
|∇et|2 dxds

≤ C

∫ t

0

∫
|∇u||∇ut||et| dxds + (some terms).
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Taking a similar estimate for ut into account, we find that the only way to
estimate the worst term of the right hand side is

C

∫ t

0

∫
|∇u||∇ut||et| dxds ≤ C

∫ t

0
|∇u|L3 |ut|D1

0
|et|D1

0
ds

≤ C

(
sup

0≤s≤t
|∇u|2L3

)∫ t

0
|ut|2D1

0
ds +

κ

2

∫ t

0
|et|2D1

0
ds.

Substituting this into (1.12) and then (1.11), we deduce that

(1.13)
|∇e(t)|2L2 +

∫ t

0
|et|2D1

0
ds

≤ C

(
sup

0≤s≤t
|∇u|2L3

)(∫ t

0
|ut|2D1

0
ds

)
+ (some terms).

On the other hand, since L = −µ∆ − (λ + µ)∇div is an elliptic operator
(see (2.33) below), it follows from the momentum equation (1.3) that

(1.14) |∇u|H1 ≤ C|∇p|L2 + (some terms).

Combining (1.13) and (1.14), we may conclude that in case of a heat-
conducting fluid with vacuum (the case (1.10)), p and u are strongly coupled
with each other for any small time interval, that is, sup0≤s≤t |∇p |L2 depends
on sup0≤s≤t |∇u|H1 for any t > 0 and vice versa. This is the main difficulty
in proving Theorem 3.1.

Our proof of Theorem 3.1 is based on the following two key observations
that (i) the local estimates for sup0≤s≤t |∇u|L2 and

∫ t
0 |ut|2D1

0
ds can be de-

rived without resort to the estimates for p and e, and (ii) |∇p|L2 depends
on |∇2u|L2 via a half power. The latter fact follows immediately from (1.13)
because |∇u|2L3 ≤ C|∇u|L2 |∇u|H1 . See also Remark 2.3 in the next sec-
tion. Then using the elliptic regularity result, we obtain the desired local
estimates for p and u.

The detailed proof of Theorem 3.1 is given in the next two sections. In
Section 2, we consider a linearized problem and derive some local estimates
for the solutions independent of the lower bound of the initial density and in
Section 3, we prove the theorem by applying a classical iteration argument
based on the uniform estimates. The final section, Section 4, is devoted to
proving Theorem 4.1.
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2. A priori estimates for a linearized problem with κ > 0

In this section, we consider the following linearized problem with κ > 0:

ρt + div (ρv) = 0(2.1)

(ρe)t + div (ρev)− κ∆e + pdiv v = Q(∇v) + ρh in (0, T )× Ω,(2.2)

(ρu)t + div (ρv ⊗ u) + Lu +∇p = ρf(2.3)

(ρ, ρe, ρu)|t=0 = (ρ0, ρ0e0, ρ0u0) in Ω,(2.4)

(e, u) = (0, 0) on (0, T )× ∂Ω,(2.5)

(ρ, e, u)(t, x) → (ρ∞, 0, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω,(2.6)

where v is a known vector field on (0, T ) × Ω. Recall that p = (γ − 1)ρe,
Q(∇v) = µ

2

∣∣∇v +∇vT
∣∣2 + λ(div v)2 and Lu = −µ∆u− (λ + µ)∇divu.

We first solve the linear transport equation (2.1)

Lemma 2.1. Assume that ρ0 and v satisfy the regularity

ρ0 ≥ 0, ρ0 − ρ∞ ∈ C0 and v ∈ L∞(0, T ;D1
0 ∩D2) ∩ L2(0, T ; D2, q)

for some constants ρ∞ ∈ [0,∞) and q ∈ (3, 6]. Then there exists a unique
weak solution ρ in ρ∞ + C([0, T ]; C0) to the linear hyperbolic problem (2.1),
(2.4) and (2.6). Moreover the solution ρ can be represented by

(2.7) ρ(t, x) = ρ0( U(0, t, x) ) exp
[
−

∫ t

0
div v(s, U(s, t, x) ) ds

]
,

where U ∈ C([0, T ]× [0, T ]× Ω) is the solution to the initial value problem

(2.8)





∂

∂t
U(t, s, x) = v(t, U(t, s, x) ), 0 ≤ t ≤ T

U(s, s, x) = x, 0 ≤ s ≤ T, x ∈ Ω.

Assume in addition that ρ0 − ρ∞ ∈ W 1, r for some r with 2 ≤ r ≤ q. Then
we also have

(2.9) ρ− ρ∞ ∈ C([0, T ];W 1, r) and ρt ∈ L∞(0, T ; Lr).

Proof. We provide an elementary and self-contained proof based on the clas-
sical method of characteristics; note that the existence of a unique solution
ρ in L∞(0, T ; L∞) was already proved by R. J. DiPerna and P. L. Lions [9].

To begin with, we construct sequences {ρk
0} and {vk} of smooth scalar

and vector fields such that

ρk
0 − ρ∞ ∈ H2 ∩ C2(Ω), vk ∈ L2(0, T ; D1

0 ∩D3) ∩ C2([0, T ]× Ω)

and |ρk
0 − ρ0|L∞ +

∫ T

0
|∇(vk − v)(t)|2H1∩W 1,q dt → 0 as k →∞.

For this purpose, we first recall that H4 and L2(0, T ; H3) are dense in C0

and L2(0, T ; H1 ∩ W 1,q), respectively. Then since ρ0 − ρ∞ ∈ C0 and g =



8 YONGGEUN CHO AND HYUNSEOK KIM

∇v ∈ L2(0, T ;H1 ∩W 1,q), there exist sequences {ρk
0} in ρ∞ + H4 and {gk}

in L2(0, T ;H3) such that ρk
0 − ρ∞ → ρ0 − ρ∞ in L∞ (or C0) and gk → g in

L2(0, T ; H1 ∩W 1,q) as k → ∞. For a.e t ∈ (0, T ), let wk = wk(t) ∈ D1
0 be

the unique weak solution to the elliptic boundary value problem

∆wk = div gk in Ω and wk = 0 on ∂Ω.

Then since |∇wk(t)|L2 ≤ |gk(t)|L2 for a.e t ∈ (0, T ) and gk ∈ L2(0, T ;H3), it
follows from the standard elliptic regularity result (see [1] for instance) that

|wk(t)|D1
0∩D4 ≤ C

(
|div gk(t)|H2 + |wk(t)|D1

0

)
≤ C|gk(t)|H3

for a.e t ∈ (0, T ) and wk ∈ L2(0, T ;D1
0 ∩D4). It is easy to show that

|wk(t)− v(t)|D1
0
≤ |gk(t)− g(t)|L2 for a.e. t ∈ (0, T ).

Hence by virtue of the elliptic regularity result in [1], we deduce that

|∇(wk − v)(t)|H1 ≤ C
(
|divgk(t)− divg(t)|L2 + |wk(t)− v(t)|D1

0

)

≤ C|gk(t)− g(t)|H1

and

|∇(wk − v)(t)|W 1,q ≤ C
(
|divgk(t)− divg(t)|Lq + |∇(wk − v)(t)|Lq

)

≤ C
(
|gk(t)− g(t)|W 1,q + |∇(wk − v)(t)|H1

)

for a.e. t ∈ (0, T ), which implies that ∇wk → ∇v in L2(0, T ; H1 ∩W 1,q) as
k →∞. Therefore, recalling that C∞([0, T ]; D1

0∩D4) is dense in L2(0, T ;D1
0∩

D4), we conclude that there exists a sequence {vk} in C∞([0, T ];D1
0 ∩D4)

such that ∇vk → ∇v in L2(0, T ; H1 ∩ W 1,q) as k → ∞. In view of the
Sobolev embedding results

H4 ↪→ C2(Ω) and D1
0 ∩D4 ↪→ C2(Ω),

we have proved the existence of sequences {ρk
0} and {vk} with the desired

properties. To treat the case of unbounded domains, we also need a cut-off
procedure. Assuming that Ω is an unbounded domain such as the whole
space, the half space and an exterior domain, we choose a sufficiently large
integer R0 > 1 so that

R3 \ Ω ⊂ BR0/2 if R3 \ Ω ⊂⊂ R3,

where for each R > 0, BR denotes the open ball of radius R centered at
the origin: BR = {x ∈ R3 : |x| < R}. Then taking a cut-off function
ϕ ∈ C∞

c (B1) such that ϕ = 1 in B1/2, we define

ϕR(x) = ϕ (x/R) , ρR
0 (x) = ρ∞ + ϕR(x) (ρ0(x)− ρ∞)

and vR(t, x) = ϕR(x)v(t, x) for (t, x) ∈ [0, T ]× Ω and R > R0.
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Note that ρR
0 = ρ∞ and vR = 0 in (0, T ) × (Ω \ ΩR), where ΩR = Ω ∩ BR.

Moreover, it is easy to show that

|ρR
0 − ρ0|L∞ +

∫ T

0
|∇(vR − v)(t)|2H1∩W 1,q dt → 0 as R →∞.

Hence applying this cut-off technique to ρk
0 and vk for each k ≥ 1, we may

assume without loss of generality that if Ω is an unbounded domain, then

(2.10) ρk
0(x) = ρ∞ and vk(t, x) = 0 for t ∈ [0, T ], x ∈ Ω \ ΩRk

,

where {Rk} is a sequence such that R0 < R1 < R2 < · · · and Rk →∞.
Now we consider the following regularized problem

(2.11) ρt + div(ρvk) = 0 in (0, T )× Ω and ρ(0) = ρk
0 in Ω

for k ≥ 1. Then since ρk
0 ∈ C2(Ω), vk ∈ C2([0, T ] × Ω) and vk = 0 on

[0, T ]× ∂Ω, it follows from the classical linear hyperbolic theory that there
exists a unique solution ρk ∈ C2([0, T ] × Ω) to the problem (2.11) and the
solution ρk can be represented by

(2.12) ρk(t, x) = ρk
0(U

k(0, t, x)) exp
[
−

∫ t

0
div vk(s, Uk(s, t, x)) ds

]
,

where Uk ∈ C2([0, T ]× [0, T ]×Ω) is the solution to the initial value problem

(2.13)





∂

∂t
Uk(t, s, x) = vk(t, Uk(t, s, x) ), 0 ≤ t ≤ T

Uk(s, s, x) = x, 0 ≤ s ≤ T, x ∈ Ω.

It should be noted from (2.10) that if Ω is an unbounded domain, then

Uk(t, s, x) = x and ρk(t, x) = ρ∞ for t, s ∈ [0, T ], x ∈ Ω \ ΩRk
.

We will prove that the sequence {ρk} converges to a solution of the original
problem. To show this, we first observe that

|Uk(t, s, x)− U l(t, s, x)| ≤
∫ t

s

∣∣∣vk(τ, Uk(τ, s, x) )− vl(τ, U l(τ, s, x) )
∣∣∣ dτ

≤
∫ t

s
|vk(τ)− vl(τ)|L∞ dτ +

∫ t

s
|∇vl(τ)|L∞ |Uk(τ, s, x)− U l(τ, s, x)| dτ.

Then Gronwall’s inequality implies that

|Uk(t, s, x)− U l(t, s, x)|

≤
(∫ T

0
|vk(τ)− vl(τ)|L∞ dτ

)
exp

(∫ T

0
|∇vl(τ)|L∞ dτ

)

≤ C

(∫ T

0
|vk(τ)− vl(τ)|D1

0∩D2 dτ

)
exp

(
C

∫ T

0
|∇vl(τ)|W 1, q dτ

)
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for each s, t ∈ [0, T ] and x ∈ Ω, and thus

(2.14) sup
s, t∈[0,T ]

|Uk(t, s)− U l(t, s)|L∞ → 0 as k, l →∞.

Hence it follows from the well-known embedding result W 1, q ↪→ C0, θ with
θ = 1− 3

q that as k, l →∞,
∫ T

0

∣∣∣div v(s, Uk(s, t, x))− div v(s, U l(s, t, x))
∣∣∣ ds

≤ C

∫ T

0
|∇v(s)|W 1, q

∣∣∣Uk(s, t, x)− U l(s, t, x)
∣∣∣
θ

ds → 0

uniformly in (t, x) ∈ [0, T ]× Ω. Therefore, observing that
∫ t

0

∣∣∣div vk(s, Uk(s, t, x))− div vl(s, U l(s, t, x))
∣∣∣ ds

≤
∫ T

0

(
|div vk(s)− div v(s)|L∞ + |div vl(s)− div v(s)|L∞

)
ds

+
∫ T

0

∣∣∣div v(s, Uk(s, t, x))− div v(s, U l(s, t, x))
∣∣∣ ds,

we easily deduce from (2.12) that

sup
t∈[0,T ]

|ρk(t)− ρl(t)|C0 → 0 as k, l →∞.

This proves the existence of a limit ρ in ρ∞ + C([0, T ];C0) such that

(2.15) ρk − ρ∞ → ρ− ρ∞ in C([0, T ];C0).

It is easy to show that ρ is a weak solution to the original problem (2.1), (2.4)
and (2.6). Then the uniqueness of solutions in the class ρ∞ + C([0, T ]; C0)
follows immediately from a result by R. J. DiPerna and P. L. Lions in [9].

To prove a higher regularity result, we will derive an uniform estimate for
σk = ρk − ρ∞ in W 1, r assuming that ρ0 − ρ∞ ∈ W 1, r for some r ∈ [2, q].
From (2.11), it follows that

(2.16) σk
t + vk · ∇σk + σkdiv vk = −ρ∞div vk in Ω.

Then multiplying (2.16) by |σk|r−2σk and integrating (by parts) over Ω, we
obtain

d

dt

∫
|σk|r dx ≤ C

∫ (
|∇vk||σk|r + ρ∞|∇vk||σk|r−1

)
dx

and

(2.17)
d

dt
|σk|rLr ≤ C|∇vk|W 1, q |σk|rLr + Cρ∞|∇vk|Lr |σ|r−1

Lr .
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Similarly, taking the operator ∇ to (2.16), multiplying by |∇σk|r−2∇σk and
integrating over Ω, we obtain

d

dt
|∇σk|rLr ≤ C|∇vk|W 1, q |∇σk|rLr + C|∇2vk|Lq |σk|

L
qr

q−r
|∇σk|r−1

Lr

+ Cρ∞|∇2vk|Lr |∇σk|r−1
Lr .

(2.18)

But since r < qr
q−r < 3r

3−r if 2 ≤ r ≤ 3 and r < qr
q−r ≤ ∞ if 3 < r ≤ q, it

follows from the well-known embedding results (see Chapter II in [11] for
instance) that |σk|

L
qr

q−r
≤ C|σk|W 1,r . Hence combining (2.15), (2.17) and

(2.18), we have

d

dt
|σk|rW 1,r ≤ C|∇vk|W 1, q |σk|rW 1,r + Cρ∞|∇vk|W 1,r |σk|r−1

W 1,r

and in view of Gronwall’s inequality, we thus obtain

|ρk(t)− ρ∞|W 1,r ≤
(
|ρk

0 − ρ∞|W 1,r + Cρ∞
∫ t

0
|∇vk(s)|W 1,r ds

)

× exp
(

C

∫ t

0
|∇vk(s)|W 1, q ds

)(2.19)

for each t ∈ [0, T ]. As a consequence of (2.15) and (2.19), we deduce that

ρk − ρ∞ ∗
⇀ ρ− ρ∞ in L∞(0, T ; W 1, r).

Moreover since ρt = −div (ρv) ∈ L∞(0, T ; Lr), it follows from the classi-
cal embedding result (see [30] for instance) that ρ − ρ∞ ∈ C([0, T ]; Lr) ∩
C([0, T ]; W 1, r − weak). To prove the strong time-continuity of ρ − ρ∞ in
W 1, r, we observe that for each fixed t ∈ [0, T ], ρk(t) − ρ∞ → ρ(t) − ρ∞

weakly in W 1, r. Hence from (2.19), it follows immediately that

|ρ(t)− ρ∞|W 1,r ≤
(
|ρ0 − ρ∞|W 1,r + Cρ∞

∫ t

0
|∇v(s)|W 1,r ds

)

× exp
(

C

∫ t

0
|∇v(s)|W 1, q ds

)(2.20)

for each t ∈ [0, T ]. In particular, we have

lim sup
t→+0

|ρ(t)− ρ∞|W 1,r ≤ |ρ0 − ρ∞|W 1,r ,

which implies that ρ − ρ∞ is right-continuous in W 1, r at t = 0. Since the
equation (2.1) is invariant under the reflections and translations in time, we
conclude that ρ− ρ∞ ∈ C([0, T ];W 1, r).

Hence in order to complete the proof of the lemma, it remains to prove
the assertions about the representation formula (2.7) for the solution ρ.
First, recalling that ∇v ∈ L2(0, T ;L∞), we can easily prove the uniqueness
of solutions to the problem (2.8). Then the existence of a solution U ∈
C([0, T ] × [0, T ] × Ω) follows immediately from (2.13) and (2.14). Finally,
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(2.7) follows from (2.12), (2.14) and (2.15). We have completed the proof of
Lemma 2.1. ¤

Throughout the section, we assume that the known data satisfy the fol-
lowing regularity

(2.21)

ρ0 ≥ 0, ρ0 − ρ∞ ∈ W 1, r ∩W 1, q, (e0, u0) ∈ D1
0 ∩D2,

(h, f) ∈ C([0, T ]; L2) ∩ L2(0, T ; Lq), (ht, ft) ∈ L2(0, T ;H−1),

v ∈ C([0, T ]; D1
0 ∩D2) ∩ L2(0, T ;D2, q) and vt ∈ L2(0, T ; D1

0)

for some constants ρ∞, q and r such that ρ∞ ≥ 0 and 2 ≤ r ≤ 3 < q ≤
6. Then the global existence of a unique strong solution (ρ, e, u) to the
linearized problem (2.1)–(2.6) can be proved by standard methods at least
for the case that ρ0 is bounded away from zero.

Lemma 2.2. Assume in addition to (2.21) that ρ0 ≥ δ in Ω for some
constant δ > 0. Then there exists a unique strong solution (ρ, e, u) to the
initial boundary value problem (2.1)–(2.6) such that

(2.22)

ρ− ρ∞ ∈ C([0, T ]; W 1, r ∩W 1, q), ρt ∈ C([0, T ];Lr ∩ Lq),

(e, u) ∈ C([0, T ];D1
0 ∩D2) ∩ L2(0, T ; D2, q),

(et, ut) ∈ C([0, T ]; L2) ∩ L2(0, T ; H1
0 ), (ett, utt) ∈ L2(0, T ;H−1)

and ρ ≥ δ on [0, T ]× Ω for some constant δ > 0.

Proof. The existence and regularity of a unique solution ρ of the linear hy-
perbolic problem (2.1), (2.4) and (2.6) was proved in Lemma 2.1. Moreover,
it follows from the representation formula (2.7) that

(2.23) ρ(t, x) ≥
(

inf
Ω

ρ0

)
exp

(
−C

∫ t

0
|∇v(s)|W 1, q ds

)
≥ δ > 0

for (t, x) ∈ [0, T ]×Ω. Hence we can rewrite the equations (2.2) and (2.3) as
a linear parabolic equation

et + v · ∇e + (γ − 1)ediv v − κρ−1∆e = ρ−1Q(∇v) + h

and a linear parabolic system

ut + v · ∇u + ρ−1Lu = f − (γ − 1)ρ−1∇(ρe).

The existence and regularity of solutions e and then u to the corresponding
linear parabolic problems have been well-known and in fact can be easily
proved by classical methods. For instance, in case of bounded domains, we
may apply a semi-discrete Galerkin method (as in [2]) or the method of
continuity (as in [31]). Then the case of unbounded domains can be easily
treated by means of the usual domain expansion technique (see [1] or [4]).
Finally, for a proof of the uniqueness, see the proof of Lemma 2.4 below. ¤
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The purpose of the section is to derive local (in time) a priori estimates for
strong solutions to the linearized problem (2.1)–(2.6), which are independent
of the lower bound δ of the initial density ρ0. Let (ρ0, e0, u0) be a given initial
data satisfying the hypotheses of Lemma 2.2, and let us choose any fixed c0

so that

c0 ≥ 1 + ρ∞ + |ρ0 − ρ∞|W 1, r∩W 1, q + |(e0, u0)|D1
0∩D2 + |(g1, g2)|2L2 ,

where 2 ≤ r ≤ 3 < q ≤ 6, g1 = ρ
− 1

2
0 (−κ∆e0 − Q(∇u0)), g2 = ρ

− 1
2

0 (Lu0 +
∇p0) and p0 = (γ − 1)ρ0 e0. Moreover let v be a vector field satisfying the
regularity stated in Lemma 2.2, and assume that v(0) = u0 and

sup
0≤t≤T∗

(
|v(t)|D1

0
+ β−1|v(t)|D2

)

+
∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D2, q

)
dt ≤ c1

(2.24)

for some fixed constants c1, β and time T∗ such that

1 < c0 < c1 < c2 = βc1 and 0 < T∗ ≤ T.

Then we will derive some a priori estimates for the solution (ρ, e, u) which
are independent of δ. It should be emphasized again that throughout the
paper, we denote by C a generic positive constant depending only on the
fixed constants µ, λ, κ, γ, q, T and the norms of h and f .

2.1. Estimates for the density. To estimate the density ρ, we first recall
from (2.20) that

|ρ(t)− ρ∞|W 1,r∩W 1, q ≤ Cc0 exp
(

C

∫ t

0
|∇v|H1∩W 1,q ds

)

for 0 ≤ t ≤ T∗. Then using the estimate

∫ t

0
|∇v|H1∩W 1, q ds ≤ t

1
2

[∫ t

0
|∇v|2H1∩W 1, q ds

] 1
2

≤ C
(
c2t + (c2t)

1
2

)

together with the equation (2.1), we conclude that

(2.25) |ρ(t)− ρ∞|W 1,r∩W 1, q ≤ Cc0 and |ρt(t)|Lr∩Lq ≤ Cc2
2

for 0 ≤ t ≤ min(T∗, T1), where T1 = c−1
2 < 1. Moreover it follows from

(2.23) and (2.25) that

(2.26) C−1δ ≤ ρ(t, x) ≤ Cc0 for 0 ≤ t ≤ min(T∗, T1), x ∈ Ω.
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2.2. Estimates for the internal energy and pressure. We first derive
estimates for the internal energy e. Then estimates for the pressure p follow
immediately from the equation of state p = (γ − 1)ρe. To derive estimates
for e, we differentiate the equation (2.2) with respect to t and obtain

ρett + ρv · ∇et − κ∆et + (p div v)t

= Q(∇v)t + (ρh)t − ρtv · ∇e− ρvt · ∇e− ρtet.

Then multiplying this by et, integrating over Ω and using (2.1), we have

1
2

d

dt

∫
ρe2

t dx + κ

∫
|∇et|2 dx +

∫
(pdivv)tet dx

=
∫

(−ρtv · ∇e− ρvt · ∇e + div (ρv)et + Q(∇v)t + (ρh)t) et dx

(2.27)

and
1
2

d

dt

∫
ρe2

t dx + κ

∫
|∇et|2 dx

≤ C

∫
( |ρt||v||∇e||et|+ ρ|vt||∇e||et|+ ρ|v||∇et||et|

+|pt||∇v||et|+ ρ|e||∇vt||et|+ |∇v||∇vt||et|+ |ρt||h||et| ) dx

+ < ht, ρet > ≡
8∑

j=1

Ij .

(2.28)

Making use of (2.24), (2.25) and (2.26), we can estimate each term Ij = Ij(t)
for 0 ≤ t ≤ min(T∗, T1) as follows:

I1 ≤ C|ρt|L3 |v|L∞ |∇e|L2 |∇et|L2 ≤ Cc6
2|∇e|2L2 +

κ

14
|∇et|2L2 ,

I2, I5 ≤ C|ρ|
1
2
L∞ |∇vt|L2 |∇e|L2 |√ρet|L3 ≤ C|ρ|

3
4
L∞ |∇vt|L2 |∇e|L2 |√ρet|

1
2

L2 |∇et|
1
2

L2

≤ Cc3
0|∇e|4L2 |√ρet|2L2 +

κ

14
|∇et|2L2 + |∇vt|2L2 ,

I3 ≤ C|ρ|
1
2
L∞ |v|L∞ |∇et|L2 |√ρet|L2 ≤ Cc3

2|
√

ρet|2L2 +
κ

14
|∇et|2L2 ,

I4 ≤ |pt|L2 |∇v|L3 |et|L6 ≤ C(|ρ|
1
2
L∞ |

√
ρet|L2 + |ρt|L3 |∇e|L2)|∇v|L3 |∇et|L2

≤ Cc3
2|
√

ρet|2L2 + Cc6
2|∇e|2L2 +

κ

14
|∇et|2L2 ,

I6 ≤ C|∇v|
1
2

L2 |∇v|
1
2

H1 |∇vt|L2 |∇et|L2 ≤ Cc1c2|∇vt|2L2 +
κ

14
|∇et|2L2 ,

and

I7 + I8 ≤ Cc2
0|ht|2H−1 + Cc4

2|h|2L2 + |√ρet|2L2 +
κ

14
|∇et|2L2 .
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Substituting these estimates into (2.28), we have

d

dt
|√ρet|2L2 + κ|∇et|2L2

≤ Cc6
2

(
1 + |∇e|4L2

) (
1 + |√ρet|2L2

)
+ C(c1c2|∇vt|2L2 + c2

0|ht|2H−1 + c4
2|h|2L2)

and then integrating this over (τ, t), we also have

|√ρet(t)|2L2 + κ

∫ t

τ
|∇et|2L2 ds ≤ |√ρet(τ)|2L2 + Cc2

1c2 + Cc4
2t

+Cc6
2

∫ t

τ

(
1 + |∇e|4L2

) (
1 + |√ρet|2L2

)
ds

(2.29)

for 0 < τ < t ≤ min(T∗, T1). To estimate lim supτ→0 |
√

ρet(τ)|2L2 , we observe
from the equation (2.2) that
∫

ρe2
t dx ≤ C

∫ (
ρ|h|2 + ρ|v|2|∇e|2 + ρ|e|2|∇v|2 + ρ−1 |κ∆e + Q(∇v)|2

)
dx

and thus

lim sup
τ→0

|√ρet(τ)|2L2 ≤ C
(|ρ0|L∞ |h(0)|2L2 + |ρ0|L∞ |∇u0|2H1 |∇e0|2L2 + |g1|2L2

)

≤ Cc5
0.

Hence, letting τ → 0 in (2.29), we deduce that

|√ρet(t)|2L2 +
∫ t

0
|∇et|2L2 ds

≤ Cc4
1c2 + Cc6

2

∫ t

0

(
1 + |∇e|4L2

) (
1 + |√ρet|2L2

)
ds

(2.30)

for 0 ≤ t ≤ min(T∗, T2), where T2 = c−4
2 < T1. On the other hand, since

d

dt
|∇e|2L2 = 2

∫
∇e · ∇et dx ≤ 2|∇e|L2 |∇et|L2 ,

it follows that

|∇e(t)|2L2 ≤ C|∇e0|2L2 + C

∫ t

0
|∇et|2L2 ds for 0 ≤ t ≤ min(T∗, T2).

Combining this and (2.30), we deduce that

|∇e(t)|2L2 + |√ρet(t)|2L2 +
∫ t

0
|∇et|2L2 ds

≤ Cc4
1c2 + Cc6

2

∫ t

0

(
1 + |∇e|4L2

) (
1 + |√ρet|2L2

)
ds

(2.31)

for 0 ≤ t ≤ min(T∗, T2). Now we define a function Γ(t) by

Γ(t) = 1 + |e(t)|2D1
0

+ |√ρet(t)|2L2 .
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Then it follows from (2.31) that

Γ(t) ≤ Cc4
1c2 + Cc6

2

∫ t

0
Γ(s)3 ds for 0 ≤ t ≤ min(T∗, T2).

Solving this integral inequality, we easily derive

Γ(t) ≤ Cc4
1c2(1− Cc16

2 t)−
1
2 for all small t ≥ 0.

Therefore, taking T3 = (2Cc16
2 )−1 with a large C > 1, we conclude that

|e(t)|2D1
0

+ |√ρet(t)|2L2 +
∫ t

0
|et(s)|2D1

0
ds ≤ Cc4

1c2(2.32)

for 0 ≤ t ≤ min(T∗, T3).
To obtain further estimates, we recall the following elliptic regularity re-

sult: if (c, w) ∈ D1
0 ∩D1, r is a solution of the elliptic system

−κ∆c = F and Lw = G in Ω

with (F, G) ∈ Lr for some r ∈ (1,∞), then (c, w) ∈ D2, r,

|c|D2, r ≤ C(|F |Lr + |c|D1, r) and |w|D2, r ≤ C(|G|Lr + |w|D1, r).(2.33)

For a detailed proof, one may refer to [1]. It should be noted that the
estimate (2.33) holds for both bounded and unbounded domains. Applying
the elliptic regularity result (2.33) to the equation −κ∆e = F in Ω, where
F = ρ(h− et − v · ∇e)− p div v + Q(∇v), we have

|∇e|H1

≤ C(|ρh|L2 + |ρet|L2 + |ρv · ∇e|L2 + |ρediv v|L2 + |Q(∇v)|L2 + |∇e|L2)

≤ Cc2
2 (1 + |√ρet|L2 + |∇e|L2)

and

C−1

∫ t

0
|∇e|2W 1, q ds

≤
∫ t

0
(|ρh|2Lq + |ρet|2Lq + |ρv · ∇e|2Lq + |ρediv v|2Lq + |Q(∇v)|2Lq + |∇e|2Lq)ds

≤
∫ t

0
(c2

0|h|2Lq + c2
0(|
√

ρet|2L2 + |∇et|2L2) + c2
0c

2
2|∇e|2H1 + c2

2|∇v|2W 1, q)ds

for 0 ≤ t ≤ min(T∗, T1). Hence by virtue of (2.32), we deduce that

(2.34) |e(t)|D2 ≤ Cc5
2 and

∫ t

0
|e(s)|2D2, q ds ≤ Cc7

2

for 0 ≤ t ≤ min(T∗, T3). Finally, recalling that p = (γ−1)ρe, we also deduce
from (2.32) and (2.34) that

|∇p(t)|L2 ≤ Cc3
1c

1
2
2 , |∇p(t)|Lq ≤ Cc6

2 and |pt(t)|L2 ≤ Cc5
2

(2.35)

for 0 ≤ t ≤ min(T∗, T3).
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Remark 2.3. We emphasize that |∇p(t)|L2 depends on a half power of c2 for
all sufficiently small time t. This is the key observation to proving Theorem
3.1, the main result in this paper.

2.3. Estimates for the velocity. To derive estimates for the velocity u,
we differentiate the equation (2.3) with respect to t, multiply by ut and
integrate over Ω. Then using the equation (2.1), we derive

(2.36)

1
2

d

dt

∫
ρ|ut|2 dx +

∫ (
µ|∇ut|2 + (λ + µ)(divut)2

)
dx

=
∫

(−∇pt + (ρf)t − ρtv · ∇u− ρ(2v · ∇ut + vt · ∇u) ) · ut dx.

Making repeated use of Hölder, Young’s and Sobolev inequalities, we easily
deduce that

d

dt
|√ρut|2L2 + µ|∇ut|2L2

≤ C
( |pt|2L2 + |ρ|L∞ |√ρut|2L2 +

(|ρ|2L∞ + |∇ρ|2L3

) |ft|2H−1

+ |ρt|2L3 |f |2L2 + |ρt|2L3 |v|2L∞ |∇u|2L2 + |ρ|L∞ |v|2L∞ |
√

ρut|2L2

)

+ η−1C|ρ|L∞ |∇u|L2 |∇u|H1 + η|∇vt|2L2 |√ρut|2L2 .

Then it follows from the estimates (2.25), (2.26) and (2.35) that

d

dt
|√ρut|2L2 + µ|∇ut|2L2 ≤ Cc10

2 + Cc2
0|ft|2H−1 + C

(
c3
2 + η|∇vt|2L2

) |√ρut|2L2

+ C
(
c6
2 + η−2c2

0

) |∇u|2L2 + |∇u|2H1

for 0 ≤ t ≤ min(T∗, T3). Hence taking η = c−1
1 and using the facts that

ρ(τ)−
1
2 (Lu(τ) +∇p (τ)) → g2 in L2 as τ → 0

and

|∇u(t)|2L2 ≤ C|∇u0|2L2 + C

∫ t

0
|∇ut|2L2 ds for 0 ≤ t ≤ min(T∗, T3),

we easily obtain

|∇u(t)|2L2 + |√ρut(t)|2L2 +
∫ t

0
|∇ut|2L2 ds

≤ Cc5
0 + C

∫ t

0

(
c6
2 + c−1

1 |∇vt|2L2

) (|∇u|2L2 + |√ρut|2L2

)
ds + C

∫ t

0
|∇u|2H1 ds

for 0 ≤ t ≤ min(T∗, T3). In view of Gronwall’s inequality, we thus have

(2.37) |∇u(t)|2L2 + |√ρut(t)|2L2 +
∫ t

0
|∇ut|2L2 ds ≤ Cc5

0 + C

∫ t

0
|∇u|2H1 ds

for 0 ≤ t ≤ min(T∗, T3).
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To estimate |∇u|H1 , we apply the elliptic regularity result (2.33) to the
equation (2.3). Then it follows from (2.25), (2.26) and (2.35) that

|∇u|H1 ≤ C ( |ρf |L2 + |ρut|L2 + |ρv · ∇u|L2 + |∇p|L2 + |∇u|L2 )

≤ C(c1 + c
1
2
1 |
√

ρut|L2 + c2
1|∇u|

1
2

L2 |∇u|
1
2

H1 + c3
1c

1
2
2 + |∇u|L2)

≤ Cc3
1c

1
2
2 + Cc4

1 (|√ρut|L2 + |∇u|L2) +
1
2
|∇u(t)|H1

and thus

|∇u(t)|H1 ≤ Cc3
1c

1
2
2 + Cc4

1 (|∇u|L2 + |√ρut|L2)

for 0 ≤ t ≤ min(T∗, T3). Therefore, substituting this into (2.37) and using
Gronwall’s inequality again, we conclude that

(2.38)
|u(t)|2D1

0
+ |√ρut(t)|2L2 +

∫ t

0
|ut(s)|2D1

0
ds ≤ Cc5

0

and |u(t)|D2 ≤ Cc6
1c

1
2
2 for 0 ≤ t ≤ min(T∗, T3).

Moreover, it follows from (2.33) with r = q that if 0 ≤ t ≤ min(T∗, T3), then

|∇u|W 1, q ≤ C
(
c0|f |Lq + c0(|√ρut|L2 + |∇ut|L2) + c0c2|∇u|H1 + c7

2

)

and thus

(2.39)
∫ t

0
|∇u(s)|2W 1, q ds ≤ Cc7

0 for 0 ≤ t ≤ min(T∗, T3).

Combining (2.38) and (2.39), we finally conclude that

(2.40)
|u(t)|D1

0
+ c7

0c
−6
1 c

− 1
2

2 |u(t)|D2 + |√ρut(t)|L2

+
∫ t

0

(
|ut(s)|2D1

0
+ |u(s)|2D2, q

)
ds ≤ Cc7

0

for 0 ≤ t ≤ min(T∗, T3). Note that the constant C > 1 in (2.40) is indepen-
dent of any one of c0, c1 and c2.

2.4. Conclusion. Let us define c1, β and c2 by

(2.41) c1 = Cc7
0, β = c−14

0 c13
1 and c2 = βc1 = (c−1

0 c1)14,

where C > 1 is the constant in the estimate (2.40). Then choosing any T∗
such that 0 < T∗ ≤ T∗∗ ≡ min(T, T3(c2)), we conclude from (2.25), (2.32),
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(2.34) and (2.40) that

(2.42)

sup
0≤t≤T∗

(
|ρ(t)− ρ∞|W 1,r∩W 1,q + |ρt(t)|Lr∩Lq + |e(t)|D1

0∩D2

)
≤ Cc7

2,

ess sup
0≤t≤T∗

|(√ρet,
√

ρut)(t)|L2 +
∫ T∗

0
(|et(t)|2D1

0
+ |e(t)|2D2, q) dt ≤ Cc7

2,

sup
0≤t≤T∗

(
|u(t)|D1

0
+ β−1 |u(t)|D2

)

+
∫ T∗

0

(
|ut(t)|2D1

0
+ |u(t)|2D2, q

)
dt ≤ c1.

Here it deserves to emphasize that the constants c1, β, c2 and T∗ (or T∗∗)
depend only on c0 and the parameters of C, but not on the lower bound δ

of the initial density ρ0.
Now we can prove the key lemma to prove our main result.

Lemma 2.4. Assume in addition to (2.21) that the initial data (ρ0, e0, u0)
satisfies the compatibility condition

(2.43) −κ∆e0 −Q(∇u0) = ρ
1
2
0 g1 and Lu0 +∇p0 = ρ

1
2
0 g2 in Ω

for some (g1, g2) ∈ L2, where p0 = (γ − 1)ρ0e0. Assume further that

sup
0≤t≤T∗

(
|v(t)|D1

0
+ β−1|v(t)|D2

)
+

∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D2, q

)
dt ≤ c1

for the positive constants c1, β, c2 = βc1 and T∗, chosen as before and
dependent only on c0 (and of course on the parameters of C), where

c0 = 2 + ρ∞ + |ρ0 − ρ∞|W 1,r∩W 1, q + |(e0, u0)|D1
0∩D2 + |(g1, g2)|2L2 .

Then there exists a unique strong solution (ρ, e, u) to the linearized problem
(2.1)–(2.6) in [0, T∗] satisfying the estimate (2.42) as well as the regularity

ρ− ρ∞ ∈ C([0, T∗]; W 1, r ∩W 1, q), ρt ∈ C([0, T∗];Lr ∩ Lq),

(e, u) ∈ C([0, T∗];D1
0 ∩D2) ∩ L2(0, T∗;D2, q),

(et, ut) ∈ L2(0, T∗; D1
0) and (

√
ρet,

√
ρut) ∈ L∞(0, T∗;L2).

Remark 2.5. It follows from Lemma 2.1 that the solution ρ of the linear
transport equation (2.1) indeed exists for the whole interval [0, T ]. Then
following the arguments in [1], we can also prove the global existence of the
solution (e, u).

Proof. We define ρδ
0 = ρ0+δ for each δ ∈ (0, 1). Then from the compatibility

condition (2.43), we derive

−κ∆e0 −Q(∇u0) = (ρδ
0)

1
2 gδ

1 and Lu0 + (γ − 1)∇ (ρδ
0e0) = (ρδ

0)
1
2 gδ

2,
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where

gδ
1 =

(
ρ0

ρδ
0

) 1
2

g1 and gδ
2 =

(
ρ0

ρδ
0

) 1
2

g2 + (γ − 1)
δ

(ρδ
0)

1
2

∇e0.

Moreover we observe that for all small δ > 0,

c0 ≥ 1 + (ρ∞ + δ) + |ρδ
0 − (ρ∞ + δ)|W 1,r∩W 1, q + |(e0, u0)|D1

0∩D2 + |(gδ
1, g

δ
2)|2L2 .

Hence from the previous results for positive initial densities, we deduce that
corresponding to the initial data (ρδ

0, e0, u0) with small δ > 0, there exists
a unique strong solution (ρδ, eδ, uδ) of the linearized equations (2.1)–(2.3)
satisfying the local estimate (2.42). From this uniform estimate on δ, we
conclude that a subsequence of solutions (ρδ, eδ, uδ) converges to a limit
(ρ, e, u) in an obvious weak or weak-* sense. It is then easy to show that
(ρ, e, u) is a weak solution to the linearized problem (2.1)–(2.6) in [0, T∗].
Finally, thanks to the lower semi-continuity of various norms, we find that
(ρ, e, u) also satisfies the estimate (2.42). This proves the existence of a
strong solution (ρ, e, u) with the regularity

(2.44)

ρ− ρ∞ ∈ L∞(0, T∗; W 1, r ∩W 1, q), ρt ∈ L∞(0, T∗; Lr ∩ Lq),

(e, u) ∈ L∞(0, T∗; D1
0 ∩D2) ∩ L2(0, T∗; D2, q),

(et, ut) ∈ L2(0, T∗; D1
0) and (

√
ρet,

√
ρut) ∈ L∞(0, T∗; L2).

Now we prove the uniqueness of solutions in this regularity class. Let
(ρ1, e1, u1) and (ρ2, e2, u2) be two solutions to the problem (2.1)–(2.6) sat-
isfying the regularity (2.44), and we denote

ρ = ρ1 − ρ2, e = e1 − e2 and u = u1 − u2.

First, since ρ ∈ L∞(0, T∗; Lq) is a solution of the linear transport equation
ρt + div (ρv) = 0, it follows from a uniqueness result by R. J. DiPerna and
P. L. Lions in [9] that ρ = 0, that is, ρ1 = ρ2 in [0, T∗] × Ω. Next, to show
that e = 0 in [0, T∗]× Ω, we multiply the both sides of

(2.45) ρ1et + ρ1v · ∇e− κ∆e + (γ − 1)ρ1ediv v = 0.

by e and integrate over (0, t) × Ω. Then since (ρ1)t + div (ρ1v) = 0 and
e(0) = 0 in Ω, we deduce at least formally that

(2.46)

1
2

∫
ρ1|e|2(t) dx + κ

∫ t

0

∫
|∇e|2 dxds

= −(γ − 1)
∫ t

0

∫
ρ1|e|2|div v| dxds

and applying Gronwall’s inequality, we also conclude that e = 0 in (0, T )×Ω.
But this argument is somewhat formal since it is not obvious that

√
ρ
1
e ∈

L∞(0, T∗; L2) and e ∈ L2(0, T∗; H1
0 ) for the case of unbounded domains.

Hence we have to justify this formal argument by deriving the identity (2.46)
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rigorously. For this purpose, we assume that Ω is an unbounded domain and
define eR ∈ L∞(0, T∗;H1

0 (ΩR)) by

eR(t, x) = e(t, x) ϕR(x) for (t, x) ∈ [0, T∗]× Ω,

where ϕR is the same cut-off function as in the proof of Lemma 2.1. Then
from (2.45), we derive

ρ1 (eR)t + ρ1v · ∇eR − κϕR∆e + (γ − 1)ρ1eR div v = ρ1e v · ∇ϕR.

Hence multiplying this by eR and integrating over [0, t]×Ω, we deduce that

(2.47)

1
2

∫
ρ1|eR|2(t) dx + κ

∫ t

0

∫
ϕ2

R|∇e|2 dxds

= −(γ − 1)
∫ t

0

∫
ρ1|eR|2div v dxds + IR(t),

where the remainder term IR(t) satisfies

|IR(t)| ≤ C

∫ t

0

∫
( |eR||∇e|+ ρ1|e||eR||v| ) |∇ϕR| dxds.

Since ρ1 ∈ L∞(0, T∗;L∞) and (e, v) ∈ L∞(0, T∗; D1
0), it follows that

|IR(t)| ≤ C

∫ t

0

∫
ρ1|eR|2 dxds +

C

R

∫ t

0

∫

ΩR

(|e||∇e|+ ρ1|e|2|v|2
)

dx

≤ C

∫ t

0

∫
ρ1|eR|2 dxds + C̃

for some constant C̃ independent of R. Therefore, substituting this estimate
into (2.47) and applying Gronwall’s inequality, we conclude that

sup
0≤t≤T∗

|√ρ1e(t)|2L2(ΩR/2) +
∫ T∗

0
|∇e(t)|2L2(ΩR/2) dt ≤ C̃.

It follows that
√

ρ
1
e ∈ L∞(0, T∗; L2). As a consequence, we can estimate

IR(t) again to deduce that

|IR(t)| ≤ C

∫ T∗

0

(
|∇e|L2 + |ρ1|

1
2
L∞ |

√
ρ1e|L2 |v|L∞

)
|∇e|L2(Ω\BR/2) ds

≤ C̃

(∫ T∗

0
|∇e|2L2(Ω\BR/2) ds

) 1
2

→ 0 as R →∞.

Hence letting R → ∞ in (2.47), we derive the identity (2.46). From this
identity, it follows that e = 0 in (0, T )× Ω. A similar argument also shows
that u = 0. This completes the proof of the uniqueness.

Finally, we prove the time-continuity of the solution (ρ, e, u) with the
regularity (2.44). The continuity of ρ follows immediately from Lemma 2.1
since the solutions in L∞(0, T∗; Lq) of the linear transport equation (2.1) are
unique. To show the time-continuity of (e, u), we first observe that (e, u) ∈
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C([0, T∗];D1
0)∩C([0, T∗]; D2−weak). From the equations (2.2) and (2.3), we

also observe that ( (ρet)t, (ρut)t ) ∈ L2(0, T∗; H−1). Then since (ρet, ρut) ∈
L2(0, T∗;H1

0 ), it follows immediately that (ρet, ρut) ∈ C([0, T∗]; L2). Hence
we conclude that for each t ∈ [0, T∗], (e, u) = (e(t), u(t)) ∈ D1

0 ∩ D2 is
a solution of the elliptic system −κ∆e = F and Lu = G in Ω for some
(F, G) ∈ C([0, T∗]; L2). Using the elliptic regularity estimate (2.33), we
easily show that (e, u) ∈ C([0, T∗]; D2). We have completed the proof of
Lemma 2.4. ¤

3. An existence result for polytropic fluids with κ > 0

In this section, we consider the following initial boundary value problem
for a viscous polytropic fluid with κ > 0:

ρt + div (ρu) = 0(3.1)

(ρe)t + div (ρeu)− κ∆e + pdivu = Q(∇u) + ρh in (0, T )× Ω,(3.2)

(ρu)t + div (ρu⊗ u) + Lu +∇p = ρf(3.3)

(ρ, ρe, ρu)|t=0 = (ρ0, ρ0e0, ρ0u0) in Ω,(3.4)

(e, u) = (0, 0) on (0, T )× ∂Ω,(3.5)

(ρ, e, u)(t, x) → (ρ∞, 0, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω.(3.6)

Here we used the familiar notations: Q(∇u) = µ
2

∣∣∇u +∇uT
∣∣2 + λ(divu)2,

Lu = −µ∆u− (λ + µ)∇div u and p = (γ − 1)ρe.
This section is devoted to proving the existence of a unique local solution

with minimal regularity, which is the main result in the paper.

Theorem 3.1. Let ρ∞ ≥ 0 and q > 3 be fixed constants, and let us define
r by

r = 2 if ρ∞ = 0 and r = 2 or 3 if ρ∞ > 0.

Assume that the data (ρ0, e0, u0, h, f) satisfies the regularity condition

ρ0 ≥ 0, ρ0 − ρ∞ ∈ W 1,r ∩W 1, q, (e0, u0) ∈ D1
0 ∩D2,

(h, f) ∈ C([0, T ]; L2) ∩ L2(0, T ; Lq) and (ht, ft) ∈ L2(0, T ; H−1)

and the compatibility condition

(3.7) −κ∆e0 −Q(∇u0) = ρ
1
2
0 g1 and Lu0 +∇p0 = ρ

1
2
0 g2 in Ω

for some (g1, g2) ∈ L2, where p0 = (γ − 1)ρ0e0. Then there exist a small
time T∗ > 0 and a unique strong solution (ρ, e, u) to the initial boundary
value problem (3.1)–(3.6) such that

(3.8)

ρ− ρ∞ ∈ C([0, T∗];W 1,r ∩W 1, q0), ρt ∈ C([0, T∗]; Lr ∩ Lq0),

(e, u) ∈ C([0, T∗]; D1
0 ∩D2) ∩ L2(0, T∗; D2, q0),

(et, ut) ∈ L2(0, T∗; D1
0) and (

√
ρet,

√
ρut) ∈ L∞(0, T∗; L2),
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where q0 = min(6, q).

Before providing a proof, we make a few remarks on this theorem.

Remark 3.2. The proof of the uniqueness part of Theorem 3.1 also shows
that the solution depends continuously in some weaker norms on the initial
data. We refer the readers to [3] for a detailed result for the isentropic fluids.

Remark 3.3. Using a standard technique (see Section 7.6 in [17] for in-
stance), we can obtain a similar result to Theorem 3.1 even though we impose
an inhomogeneous boundary condition on the internal energy e.

Proof of Theorem 3.1. It suffices to consider the case 3 < q ≤ 6. Our
proof will be based on the usual iteration argument and on the results (in
particular, Lemma 2.4) in the last section.

Let us denote

c0 = 2 + ρ∞ + |ρ0 − ρ∞|W 1,r∩W 1, q + |(e0, u0)|D1
0∩D2 + |(g1, g2)|2L2 ,

and we choose the positive constants c1, β, c2 and T∗∗ as in Section 2.4,
dependently only on c0. Next, let u0 ∈ C([0,∞);D1

0 ∩ D2) ∩ L2(0,∞; D3)
be the solution to the linear parabolic problem

wt −∆w = 0 in (0,∞)× Ω and w(0) = u0 in Ω.

Then taking a small time T1 ∈ (0, T∗∗], we have

sup
0≤t≤T1

(
|u0(t)|D1

0
+ β−1 |u0(t)|D2

)
+

∫ T1

0

(
|u0

t (t)|2D1
0

+ |u0(t)|2D2, q

)
dt ≤ c1.

Hence it follows from Lemma 2.4 that there exists a unique strong solution
(ρ1, e1, u1) to the linearized problem (2.1)–(2.6) with v replaced by u0, which
satisfies the regularity estimate (2.42) with T∗ replaced by T1. Similarly, we
construct approximate solutions (ρk, ek, uk), inductively, as follows: assum-
ing that uk−1 was defined for k ≥ 1, let (ρk, ek, uk) be the unique solution to
the problem (2.1)–(2.6) with v replaced by uk−1. Then it also follows from
Lemma 2.4 that there exists a constant C̃ > 1 such that

sup
0≤t≤T1

(
|ρk(t)− ρ∞|W 1,r∩W 1, q + |ρk

t (t)|Lr∩Lq

)

+ sup
0≤t≤T1

|(ek, uk)(t)|D1
0∩D2 + ess sup

0≤t≤T1

|(
√

ρkek
t ,

√
ρkuk

t )(t)|L2

+
∫ T1

0

(
|(ek

t , u
k
t )(t)|2D1

0
+ |(ek, uk)(t)|2D2, q

)
dt ≤ C̃

(3.9)

for all k ≥ 1. Throughout the proof, we denote by C̃ a generic constant
depending only on c0 and the parameters of the constant C, but independent
of k.
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From now on, we show that the full sequence (ρk, ek, uk) converges to a
solution to the original nonlinear problem (3.1)–(3.6) in a strong sense. Let
us define

ρk+1 = ρk+1 − ρk, ek+1 = ek+1 − ek, uk+1 = uk+1 − uk.

Then from (3.1)–(3.3), we derive the equations for the differences

ρk+1
t + div (ρk+1uk) + div (ρkuk) = 0,(3.10)

ρk+1ek+1
t + ρk+1uk · ∇ek+1 − κ∆ek+1

= Q(∇uk)−Q(∇uk−1)− ρk+1ek
t

+ ρk+1
(

h− uk−1 · ∇ek − (γ − 1)ek divuk−1
)

− ρk+1
(

uk · ∇ek + (γ − 1)ek+1 divuk + (γ − 1)ek divuk
)

,

(3.11)

ρk+1uk+1
t + ρk+1uk · ∇uk+1 + Luk+1

= ρk+1
(
f − uk

t − uk−1 · ∇uk
)
− ρk+1uk · ∇uk

− (γ − 1)∇(ρk+1ek+1 − ρk+1ek).

(3.12)

First, we consider the case that ρ∞ > 0. Multiplying (3.10) by ρk+1 and
integrating over Ω, we obtain

d

dt

∫
|ρk+1|2 dx

≤ C

∫ (
|∇uk||ρk+1|2 + |∇ρk||uk||ρk+1|+ ρk|∇uk||ρk+1|

)
dx

≤ C
(
|∇uk|W 1, q |ρk+1|2L2 + (|∇ρk|L3 + |ρk|L∞)|∇uk|L2 |ρk+1|L2

)
.

Hence, by virtue of Young’s inequality, we have

d

dt
|ρk+1|2L2 ≤ Ak

η(t)|ρk+1|2L2 + η|∇uk|2L2 ,(3.13)

where Ak
η(t) = C|∇uk(t)|W 1, q + η−1C

(|∇ρk(t)|2L3 + |ρk(t)|2L∞
)
. Notice from

the estimate (3.9) that Ak
η(t) ∈ L1(0, T1) and

∫ t
0 Ak

η(s) dt ≤ C̃ + C̃ηt for all
k ≥ 1 and t ∈ [0, T1]. Here we denote by C̃η a generic positive constant
depending only on η−1 and the parameters of C̃, where η ∈ (0, 1) is a small
number.

Next, multiplying (3.11) by ek+1, integrating over Ω and recalling that

(3.14) (ρk+1)t + div (ρk+1uk) = 0 in Ω,



VISCOUS POLYTROPIC FLUIDS WITH VACUUM 25

we obtain
1
2

d

dt

∫
ρk+1|ek+1|2 dx + κ

∫
|∇ek+1|2 dx

≤ C

∫ [(
|∇uk|+ |∇uk−1|

)
|∇uk||ek+1|+ |ρk+1||ek

t ||ek+1|

+|ρk+1|
(
|h|+ |uk−1 · ∇ek|+ |ek divuk−1|

)
|ek+1|

+ ρk+1
(
|uk||∇ek|+ |ek+1||div uk|+ |ek||divuk|

)
|ek+1|

]
dx.

By virtue of Hölder and Sobolev inequalities, we also have

1
2

d

dt

∫
ρk+1|ek+1|2 dx + κ

∫
|∇ek+1|2 dx

≤ C
(
|∇uk|L3 + |∇uk−1|L3

)
|∇uk|L2 |∇ek+1|L2 + C

∫
|ρk+1||ek

t ||ek+1| dx

+ C|ρk+1|L2 |h|L3 |∇ek+1|L2 + C|ρk+1|L2 |∇uk−1|H1 |∇ek|H1 |∇ek+1|L2

+ C|∇uk|L∞ |
√

ρk+1ek+1|2L2 + C|ρk+1|
1
2
L∞ |∇uk|L2 |∇ek|H1 |

√
ρk+1ek+1|L2 .

Hence it follows from (3.9) that

d

dt
|
√

ρk+1ek+1|2L2 + κ|∇ek+1|2L2

≤ Bk(t)
(
|ρk+1|2L2 + |

√
ρk+1ek+1|2L2

)

+ C̃|∇uk|2L2 + C

∫
|ρk+1||ek

t ||ek+1| dx

(3.15)

for some Bk(t) ∈ L1(0, T1) such that
∫ t
0 Bk(s) ds ≤ C̃ for 0 ≤ t ≤ T1 and

k ≥ 1.
Finally, multiplying (3.12) by uk+1 and integrating over Ω, we have

1
2

d

dt

∫
ρk+1|uk+1|2 dx + µ

∫
|∇uk+1|2 dx

≤ C

∫ [
|ρk+1|

(
|f |+ |uk

t |+ |uk−1 · ∇uk|
)
|uk+1|+ |ρk+1||uk||∇uk||uk+1|

+
(
|ρk+1||ek+1|+ |ρk+1||ek|

)
|∇uk+1|

]
dx.

Then it also follows from (3.9) that

d

dt
|
√

ρk+1uk+1|2L2 + µ|∇uk+1|2L2

≤ Dk
η(t)

(
|ρk+1|2L2 + |

√
ρk+1uk+1|2L2

)
+ C̃|

√
ρk+1ek+1|2L2

+ η|∇uk|2L2 + C

∫
|ρk+1||uk

t ||uk+1| dx

(3.16)
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for some Dk
η(t) ∈ L1(0, T1) such that

∫ t
0 Dk

η(s) ds ≤ C̃ + C̃ηt for 0 ≤ t ≤ T1

and k ≥ 1.
Therefore, combining (3.13), (3.15) and (3.16) and defining

ψk+1(t) = |ρk+1|2L2 +
η

κ
|
√

ρk+1ek+1|2L2 + |
√

ρk+1uk+1|2L2 ,

we deduce that
d

dt
ψk+1 + η|∇ek+1|2L2 + µ|∇uk+1|2L2

≤ Ek
η (t)ψk+1 + 3ηC̃|∇uk|2L2

+ C

∫
|ρk+1|

(
η|ek

t ||ek+1|+ |uk
t ||uk+1|

)
dx

(3.17)

for some Ek
η (t) ∈ L1(0, T1) such that

∫ t
0 Ek

η (s) ds ≤ C̃ + C̃ηt for 0 ≤ t ≤ T1

and k ≥ 1.
To estimate the last integral term in (3.17), we assume for the time being

that Ω is an unbounded domain in R3. Then since ρ0 − ρ∞ ∈ W 1, q and
W 1, q ↪→ C0, where C0 consists of continuous functions on Ω vanishing at
infinity, we can choose a large radius R > 1 (of course, independent of k) so
that

(3.18)
3
4
ρ∞ ≤ ρ0(x) ≤ 5

4
ρ∞ for x ∈ Ω \BR/2,

where BR/2 is the open ball of radius R/2 centered at the origin, and since

|ρk+1(t)− ρ0|L∞ → 0 as t → 0,

there exists a small time T2 ∈ (0, T1) such that

(3.19)
3
8
ρ∞ ≤ ρk+1(t, x) ≤ 5

2
ρ∞ for (t, x) ∈ [0, T2]× (Ω \BR).

It is easy to show that T2 can be chosen independently of k. For this purpose,
we first observe that

(3.20)
ρk+1(t, x)

= ρ0(Uk+1(0, t, x)) exp
[
−

∫ t

0
divuk(s, Uk+1(s, t, x) ) ds

]
,

where Uk+1 = Uk+1(t, s, x) is the solution to the initial value problem




∂

∂t
Uk+1(t, s, x) = uk(t, Uk+1(t, s, x) ), 0 ≤ t ≤ T1

Uk+1(s, s, x) = x, 0 ≤ s ≤ T1, x ∈ Ω.

Moreover, in view of (3.9), we deduce that
∫ t

0

∣∣∣divuk(s, Uk+1(s, t, x) )
∣∣∣ ds ≤

∫ t

0
|∇uk|L∞ ds ≤ C̃t

1
2 ≤ ln 2
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and ∣∣∣Uk+1(0, t, x)− x
∣∣∣ =

∣∣∣Uk+1(0, t, x)− Uk+1(t, t, x)
∣∣∣

≤
∫ t

0

∣∣∣uk(τ, Uk+1(τ, t, x))
∣∣∣ dτ ≤ C̃t ≤ R

2

for all (t, x) in [0, T2]×Ω, where T2 is a small positive time depending only
on T1 and the parameters of C̃. In particular, it follows that if 0 ≤ t ≤ T2

and x ∈ Ω \ BR, then Uk+1(0, t, x) ∈ Ω \ BR/2. Hence the desired result
(3.19) follows immediately from (3.18) and (3.20).

Remark 3.4. The proof of (3.19) requires only that ρ0 − ρ∞ ∈ C0. This
fact will be used later to prove Theorem 4.1.

We are ready to estimate the integral term in (3.17) as follows: for 0 ≤
t ≤ T2,

C

∫

Ω∩BR

|ρk+1|
(
η|ek

t ||ek+1|+ |uk
t ||uk+1|

)
dx

≤ C̃
(
|∇ek

t |2L2 + |∇uk
t |2L2

)
|ρk+1|2L2 +

1
4

(
η|∇ek+1|2L2 + µ|∇uk+1|2L2

)

and

C

∫

Ω\BR

|ρk+1|
(
η|ek

t ||ek+1|+ |uk
t ||uk+1|

)
dx

≤ C√
ρ∞

∫
|ρk+1|

(
η|ek

t ||
√

ρk+1ek+1|+ |uk
t ||

√
ρk+1uk+1|

)
dx

≤ C̃(ρ∞)
(
|∇ek

t |2L2 + |∇uk
t |2L2 + 1

)
ψk+1

+
1
4

(
η|∇ek+1|2L2 + µ|∇uk+1|2L2

)

for some constant C̃(ρ∞) depending also on ρ∞. Therefore, substituting
these estimates into (3.17), we obtain

(3.21) d

dt
ψk+1 +

η

2
|∇ek+1|2L2 +

µ

2
|∇uk+1|2L2 ≤ F k

η (t)ψk+1 + 3ηC̃|∇uk|2L2

for some F k
η (t) ∈ L1(0, T2) such that

∫ t
0 F k

η (t) ds ≤ C̃(ρ∞) + C̃ηt for k ≥ 1
and 0 ≤ t ≤ T2. Note that this estimate holds also for a bounded domain Ω
since we can choose a sufficiently large R so that Ω ⊂ BR.

Now recalling that ψk+1(0) = 0 and using Gronwall’s inequality, we de-
duce from (3.21) that

ψk+1(t) +
∫ t

0

(
η|∇ek+1|2L2 + µ|∇uk+1|2L2

)
ds

≤
(

6ηC̃

∫ t

0
|∇uk|2L2 ds

)
exp

(
C̃(ρ∞) + C̃ηt

)
.



28 YONGGEUN CHO AND HYUNSEOK KIM

Hence choosing small constants η > 0 and T3 > 0 so that

6ηC̃ exp
(
C̃(ρ∞)

)
=

1
2

and exp(C̃ηT3) = µ,

we easily deduce that

∞∑

k=1

sup
0≤t≤T∗

ψk+1(t) +
∞∑

k=1

∫ T∗

0

(
η|∇ek+1|2L2 + µ|∇uk+1|2L2

)
dt ≤ C̃ < ∞,

where T∗ = min(T2, T3).
Therefore, we conclude that the full sequence (ρk, ek, uk) converges to a

limit (ρ, e, u) in the following strong sense:

(3.22)

{
ρk − ρ1 → ρ− ρ1 in L∞(0, T∗; L2),

(ek, uk) → (e, u) in L2(0, T∗; D1
0).

It is easy to show that the limit (ρ, e, u) is a weak solution to the origi-
nal nonlinear problem (3.1)–(3.6). Furthermore, it follows from (3.9) that
(ρ, e, u) satisfies the following regularity estimate:

ess sup
0≤t≤T∗

|(√ρet,
√

ρut)(t)|L2 +
∫ T∗

0

(
|(et, ut)(t)|2D1

0
+ |(e, u)(t)|2D2, q

)
dt

+ sup
0≤t≤T∗

(
|ρ(t)− ρ∞|W 1,r∩W 1, q + |ρt(t)|Lr∩Lq + |(e, u)(t)|D1

0∩D2

)
≤ C̃.

This proves the existence of a strong solution. Then adapting the arguments
in the proof of Lemma 2.4, we can easily prove the time-continuity of the so-
lution (ρ, e, u). One may also refer to [1] for a detailed proof. Now it remains
to prove the uniqueness of the strong solutions. To prove the uniqueness,
let (ρ1, e1, u1) and (ρ2, e2, u2) be two strong solutions to the problem (3.1)–
(3.6) with the regularity (3.8) and we denote by (ρ, e, u) their difference.
Then following the same arguments as in the derivations of (3.13), (3.15)
and (3.16), we can show that

d

dt

(|ρ|2L2 + |√ρ1e|2L2

)
+ κ|∇e|2L2

≤ A(t)
( |ρ|2L2 + |√ρ1e|2L2

)
+ C̃|∇u|2L2 + C

∫
|ρ||(e2)t||e| dx

and

d

dt
|√ρ1u|2L2 + µ|∇u|2L2

≤ B(t)
(|ρ|2L2 + |√ρ1e|2L2 + |√ρ1u|2L2

)
+ C

∫
|ρ||(u2)t||u| dx
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for some A(t), B(t) ∈ L1(0, T∗). Then from these results, it follows that

d

dt

(
|ρ|2L2 + |√ρ1e|2L2 + C̃|√ρ1u|2L2

)
+

(
κ|e|D1

0
+ C̃|u|2D1

0

)

≤ D(t)
(
|ρ|2L2 + |√ρ1e|2L2 + C̃|√ρ1u|2L2

)
+ C̃

∫
|ρ| (|(e2)t||e|+ |(u2)t||u|) dx

for some D(t) ∈ L1(0, T∗). We observe that

sup
0≤t≤T∗

|ρ1(t)− ρ∞|L∞(Ω\BR) ≤ C sup
0≤t≤T∗

|ρ1(t)− ρ∞|W 1, q(Ω\BR) → 0

as R →∞. Hence, following the arguments used to derive (3.21), we easily
deduce that

d

dt

(
|ρ|2L2 + |√ρ1e|2L2 + C̃|√ρ1u|2L2

)
+

κ

2
|e|D1

0
+ C̃|u|2D1

0

≤ E(t)
(
|ρ|2L2 + |√ρ1e|2L2 + C̃|√ρ1u|2L2

)

for some E(t) ∈ L1(0, T∗). Therefore, in view of Gronwall’s inequality, we
conclude that ρ = e = 0 and u = 0 in (0, T∗)×Ω. This completes the proof
of the theorem for the case that ρ∞ > 0.

Now we consider the case that ρ∞ = 0. To prove the convergence in this
case, we need to modify slightly the previous arguments. First, multiplying
(3.10) by sgn(ρ k+1)|ρ k+1| 12 and integrating over Ω, we obtain

d

dt

∫
|ρ k+1| 32 dx ≤ C

∫
|∇uk||ρ k+1| 32 + ( |∇ρk||u k|+ ρk|∇u k| )|ρ k+1| 12 dx

≤ C|∇uk|W 1, q |ρ k+1|
3
2

L
3
2

+ C|ρk|H1 |∇u k|L2 |ρ k+1|
1
2

L
3
2
.

Hence, multiplying this by |ρ k+1|
1
2

L
3
2
, we have

d

dt
|ρ k+1|2

L
3
2
≤ Ak

η(t)|ρ k+1|2
L

3
2

+ η|∇u k|2L2 ,(3.23)

where Ak
η(t) = C|∇uk(t)|W 1, q + η−1C|ρk(t)|2H1∩W 1, q . Notice from the uni-

form bound (3.9) that
∫ t
0 Ak

η(s) dt ≤ C̃ + C̃ηt for all k ≥ 1 and t ∈ [0, T1]. In
a similar manner, we can also show that

d

dt
|ρ k+1|2L2 ≤ Bk

η (t)|ρ k+1|2L2 + η|∇u k|2L2(3.24)

for some Bk
η (t) ∈ L1(0, T1) such that

∫ t
0 Bk

η (s) dt ≤ C̃ + C̃ηt for 0 ≤ t ≤ T1

and k ≥ 1.
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Next, multiplying (3.11) by ek+1 and integrating over Ω, we also deduce
formally that

1
2

d

dt

∫
ρk+1|ek+1|2 dx + κ

∫
|∇ek+1|2 dx

≤ C
(
|∇uk|L3 + |∇uk−1|L3

)
|∇uk|L2 |∇ek+1|L2

+ C|ρk+1|
L

3
2∩L2

(
|ek

t |D1
0

+ |h|L3 + |∇uk−1|H1 |∇ek|H1

)
|∇ek+1|L2

+ C|∇uk|L∞ |
√

ρk+1ek+1|2L2 + C|ρk+1|
1
2
L∞ |∇uk|L2 |∇ek|H1 |

√
ρk+1ek+1|L2

and thus

d

dt
|
√

ρk+1ek+1|2L2 + κ|∇ek+1|2L2

≤ Dk(t)
(
|ρk+1|2

L
3
2∩L2

+ |
√

ρk+1ek+1|2L2

)
+ C̃|∇uk|2L2

(3.25)

for some Dk(t) ∈ L1(0, T1) such that
∫ T1

0 Dk(t) dt ≤ C̃ for k ≥ 1.
Finally, from (3.12), we easily deduce that

d

dt
|
√

ρk+1uk+1|2L2 + µ|∇uk+1|2L2

≤ Ek
η (t)

(
|ρk+1|2

L
3
2∩L2

+ |
√

ρk+1uk+1|2L2

)

+ C̃|
√

ρk+1ek+1|2L2 + η|∇uk|2L2

(3.26)

for some Ek
η (t) ∈ L1(0, T1) such that

∫ t
0 Ek

η (s) ds ≤ C̃ + C̃ηt for 0 ≤ t ≤ T1

and k ≥ 1.
Using the estimates (3.23)–(3.26) and following the same arguments as

in the proof of (3.22), we can show that the full sequence (ρk, ek, uk) also
converges to a limit (ρ, e, u) in the sense of (3.22). Then adapting the pre-
vious arguments for the case ρ∞ > 0, we can easily prove that (ρ, e, u) is a
unique solution to the problem (3.1)–(3.6) with the regularity (3.8). This
completes the proof of Theorem 3.1. ¤

Remark 3.5. Our proof is somewhat formal because it was not proved that
ρk+1 ∈ L∞(0, T∗; L

3
2 ∩ L2) and (ek+1, uk+1) ∈ L2(0, T∗; H1

0 ) for unbounded
domains. But this can be easily remedied by means of the cut-off function
ϕR(x) defined in the proof of Lemma 2.1.

Adapting the proof of Theorem 3.1, we can also prove the following exis-
tence result for strong solutions with higher regularity. We omit a detailed
proof and refer the readers to [1] for the proof of a similar result on the
barotropic fluid models.
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Theorem 3.6. Let (ρ0, e0, u0, h, f) be a given data satisfying the hypotheses
of Theorem 3.1. Assume in addition that

ρ0 − ρ∞ ∈ H2 and (h, f) ∈ L2(0, T ; H1).

Then there exist a small time T∗ > 0 and a unique strong solution (ρ, e, u)
satisfying the regularity

ρ− ρ∞ ∈ C([0, T∗]; H2), ρt ∈ C([0, T∗]; H1) and (e, u) ∈ L2(0, T∗; D3)

as well as (3.8).

4. Results for polytropic fluids with κ = 0

In this final section, we consider the initial boundary value problem for a
viscous polytropic fluid with κ = 0:

ρt + div (ρu) = 0(4.1)

pt + u · ∇p + γp divu = (γ − 1) (Q(∇u) + ρh) in (0, T )× Ω;(4.2)

(ρu)t + div (ρu⊗ u) + Lu +∇p = ρf(4.3)

(ρ, p, ρu)|t=0 = (ρ0, p0, ρ0u0) in Ω; u = 0 on (0, T )× ∂Ω,(4.4)

(ρ, p, u)(t, x) → (ρ∞, p∞, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω.(4.5)

Recall again that Q(∇u) = µ
2

∣∣∇u +∇uT
∣∣2 + λ(divu)2 and Lu = −µ∆u −

(λ + µ)∇divu.
We prove the following existence result for local strong solutions.

Theorem 4.1. Assume that the data (ρ0, p0, u0, h, f) satisfies the regularity
condition

ρ0 ≥ 0, ρ0 − ρ∞ ∈ C0 ∩H1 ∩W 1, 3,

p0 − p∞ ∈ H1 ∩W 1, q, u0 ∈ D1
0 ∩D2, h = 0,

f ∈ C([0, T ]; L2) ∩ L2(0, T ; Lq) and ft ∈ L2(0, T ; H−1)

for some constants ρ∞, p∞ and q > 3, and the compatibility condition

Lu0 +∇p0 = ρ
1
2
0 g in Ω for some g ∈ L2.

Then there exists a small time T∗ > 0 and a unique strong solution (ρ, p, u)
to the initial boundary value problem (4.1)–(4.5) such that

ρ− ρ∞ ∈ C([0, T∗]; C0 ∩H1 ∩W 1, 3), p− p∞ ∈ C([0, T∗]; H1 ∩W 1, q0),

ρt ∈ C([0, T∗];L2 ∩ L3), pt ∈ C([0, T∗]; L2 ∩ L3) ∩ L2(0, T∗; Lq0),

u ∈ C([0, T∗];D1
0 ∩D2) ∩ L2(0, T∗;D2, q0),

ut ∈ L2(0, T∗; D1
0) and

√
ρut ∈ L∞(0, T∗;L2),

where q0 = min(6, q).
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Remark 4.2. In case that ρ∞ > 0, the regularity C0∩H1∩W 1, 3 of ρ0−ρ∞

can be replaced by C0 ∩W 1, 3. We can also prove a higher regularity result
similar to Theorem 3.6.

Remark 4.3. Assuming that h ∈ C([0, T ];L2 ∩ L3) ∩ L2(0, T ;H1 ∩W 1, q)
and ρ0 − ρ∞ ∈ H1 ∩W 1, q, we can prove a similar result to Theorem 4.1.

Proof. To establish the existence of local strong solutions, we follow the
same strategy as in the previous sections. Hence we consider the following
linearized problem:

ρt + div (ρv) = 0(4.6)

pt + v · ∇p + γp div v = (γ − 1)Q(∇v) in (0, T )× Ω;(4.7)

(ρu)t + div (ρv ⊗ u) + Lu +∇p = ρf(4.8)

(ρ, p, ρu)|t=0 = (ρ0, p0, ρ0u0) in Ω; u = 0 on (0, T )× ∂Ω,(4.9)

(ρ, p, u)(t, x) → (ρ∞, p∞, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω.(4.10)

where the known data (ρ0, p0, u0, v) satisfies the following properties

c0 ≥ 1 + ρ∞ + p∞ + |ρ0 − ρ∞|C0∩H1∩W 1, 3 + |p0 − p∞|H1∩W 1, q

+ |u0|D1
0∩D2 + |g|2L2

3 < q ≤ 6, ρ0 ≥ δ > 0, g = ρ
− 1

2
0 (Lu0 +∇p0) , v(0) = u0,

sup
0≤t≤T∗

(
|v(t)|D1

0
+ β−1|v(t)|D2

)
+

∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D2, q

)
dt ≤ c1

for some fixed constants c0, c1, β and time T∗ such that

1 < c0 < c1 < c2 = βc1 and 0 < T∗ ≤ T.

Then we derive local a priori estimates for the strong solution (ρ, p, u) to
the problem (4.6)–(4.10), which are analogous to the estimates (2.25), (2.34)
and (2.40) in Section 2.

First, using (2.7) and (2.20), we easily deduce that

(4.11) |ρ(t)− ρ∞|C0∩H1∩W 1, 3 ≤ Cc0 exp
(∫ t

0
|∇v(s)|H1∩W 1, q ds

)

and thus

(4.12) |ρ(t)− ρ∞|C0∩H1∩W 1, 3 ≤ Cc0 and |ρt(t)|L2∩L3 ≤ Cc2
2

for 0 ≤ t ≤ min(T∗, T1), where T1 = c−1
2 . To estimate the pressure p, we

observe that π = p− p∞ is a solution of the linear transport equation

πt + v · ∇π + γπ div v = (γ − 1)Q(∇v)− γp∞div v(4.13)
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in (0, T ) × Ω. Hence following the same arguments as in the derivation of
(2.20), we can also show that

(4.14)
|π(t)|H1∩W 1, q ≤ Cc0

(
1 +

∫ t

0
|Q(∇v)|H1∩W 1, q ds

)

× exp
(

C

∫ t

0
|∇v|H1∩W 1, q ds

)

for 0 ≤ t ≤ min(T∗, T1). On the other hand, from the interpolation inequal-
ity

|∇v|L∞ ≤ C|∇v|θH1 |∇v|1−θ
W 1, q for some θ = θ(q) ∈ (0, 1),

it follows easily that

(4.15)
|Q(∇v)|H1∩Lq ≤ C|∇v|1+θ

H1 |∇v|1−θ
W 1, q ,

|Q(∇v)|L2∩L3 ≤ C|∇v|2H1 , |Q(∇v)|W 1, q ≤ C|∇v|θH1 |∇v|2−θ
W 1, q .

Therefore, using (4.14), (4.15) and the estimates

∫ t

0
|∇v|H1∩W 1, q ds ≤ t

1
2

[∫ t

0
|∇v|2H1∩W 1, q ds

] 1
2

≤ 2(c2t)
1
2 ,

∫ t

0
|Q(∇v)|H1 ds ≤ Cc2t

1+θ
2 and

∫ t

0
|Q(∇v)|W 1 q ds ≤ Cc2t

θ
2

together with the equation (4.7), we conclude that

(4.16)
|p(t)− p∞|H1∩W 1, q ≤ Cc0,

|pt(t)|L2∩L3 ≤ Cc2
2 and

∫ t

0
|pt(s)|2Lq ds ≤ Cc3

2

for 0 ≤ t ≤ min(T∗, T2), where T2 = c
− 2

θ
2 < T1. Note that the estimate for

|∇p|L2 do not depend on c2 contrary to (2.35) for the case that κ > 0. To
estimate the velocity u, we observe that the estimate (2.40) relies only on
the estimates (2.25) and (2.35) for the density ρ and pressure p, not on the
internal energy e. Hence adapting the arguments used to derive (2.40), we
can easily show that

(4.17)
|u(t)|D1

0
+ c7

0c
−13
1 |u(t)|D2 + |√ρut(t)|L2

+
∫ t

0

(
|ut(s)|2D1

0
+ |u(s)|2D2, q

)
ds ≤ Cc7

0

for 0 ≤ t ≤ min(T∗, T3), where T3 = min(c−8
2 , T2).

Therefore, if we define

c1 = Cc7
0, β = c−7

0 c13
1 and c2 = βc1 = (c−1

0 c2
1)

7
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and choose any T∗ such that 0 < T∗ ≤ T∗∗ = min(T, T3(c2)), then we
conclude from (4.12), (4.16) and (4.17) that

sup
0≤t≤T∗

(|ρ(t)− ρ∞|C0∩H1∩W 1, 3 + |p(t)− p∞|H1∩W 1, q + |ρt(t)|L2∩L3

)

+ ess sup
0≤t≤T∗

|√ρut(t)|L2 + sup
0≤t≤T∗

|pt(t)|L2∩L3 + c−1
2

∫ T∗

0
|pt(t)|2Lq dt ≤ Cc2

2

and

sup
0≤t≤T∗

(
|u(t)|D1

0
+ β−1|u(t)|D2

)
+

∫ T∗

0
(|ut(t)|2D1

0
+ |u(t)|2D2, q) dt ≤ c1.

Based on these a priori estimates, we can prove the existence and regular-
ity of a unique local solution (ρ, p, u) to the original nonlinear problem by
following exactly the same arguments as in the proof of Theorem 3.1. This
completes the proof of Theorem 4.1. ¤
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[22] R. Salvi and I. Straškraba, Global existece for viscous compressible fluids and their

behavior as t →∞, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40 (1993), 17-51.

[23] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech.

Anal. 3 (1959), 271-288.

[24] J. Simon, Ecoulement d’un fluide non-homogène avec une densitè initiale s’annulant,
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Paris 309 (1983), 447-452.

[26] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. 146 (1987),

65-96.

[27] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, den-

sity, and pressure, SIAM J. Math. Anal. 21 (1990), 1093-1117.

[28] V. A. Solonnikov, Solvability of the initial boundary value problem for the equation

of a viscous compressible fluid, J. Sov. Math. 14 (1980), 1120-1133.

[29] A. Tani, On the first initial-boundary value problem of compressible viscous fluid

motion, Publ. Res. Inst. Math. Sci. Kyoto Univ. 13 (1971), 193-253.

[30] R. Temam, Navier-Stokes equations: Theory and Numerical analysis, North-Holland,

Amsterdam, 1984.

[31] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations

via a statiblity method, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 10 (1983), 607-647.

[32] A. Valli and W.M. Zajaczkowski, Navier-Stokes equations for compressible fluids:

global existence and qualitative properties of the solutions in the general case, Com-

mun. Math. Phys. 103 (1986), 259-296.

Department of Mathematics, Hokkaido University, Kita 8 Nishi 5, Sapporo
060-0808, Japan

E-mail address: ygcho@math.sci.hokudai.ac.jp

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
E-mail address: h-kim@math.tohoku.ac.jp


