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G2-GEOMETRY OF OVERDETERMINED
SYSTEMS OF SECOND ORDER

KEIZO YAMAGUCHI

Introduction

The main theme of this paper is “Contact Geometry of Second Order”.
This topic has its origin in the following paper of E. Cartan.

[C1] Les systémes de Pfaff & cing variables et les équations auz derivées
partielles du second ordre, Ann. Ec. Normale, 27 (1910), 109-192

In this paper, following the tradition of geometric theory of partial dif-
ferential equations of 19th century, E.Cartan dealt with the equivalence
problem of two classes of second order partial differential equations in two
independent variables under “contact transformations”. One class con-
sists of overdetermined systems, which are involutive, and the other class
consists of single equations of Goursat type, i.e., single equations of para-
bolic type whose Monge characteristic systems are completely integrable.
Especially in the course of the investigation, he found out the following
facts: the symmetry algebras (i.e., the Lie algebra of infinitesimal contact
transformations) of the following overdetermined system (involutive sys-
tem) (A) and the single Goursat type equation (B) are both isomorphic
with the 14-dimensional exceptional simple Lie algebra Gs.

(A) &z _1 9%z ’ 6% _1(%% i
dz2  3\8y2) ' 08zdy 2\8y2)
(B) 9r% + 12t*(rt — s?) + 325° — 36rst = 0,
where
8%z 8%z - 0%z

| T = %5’ s = 29;5:;, t= ‘é‘y—z
are the classical terminology.
Our aim in this paper is to clarify the contents of “Contact Geometry
of Second Order” in the course of showing how to recognize the above
facts.

§1. Second Order Contact Manifolds



We will here recall the basic facts about the geometry of second order
Jet spaces ([Y1], [Y3]).

1.1. Space of Contact Elements (Grassmannian Bundles). The
notion of contact manifolds originates from the following space J(M, n) of
contact elements: Let M be a C*°- manifold of dimension m + n. We put

JMn)=J Ly  Jo=Gr(To(M),n),

TeEM

where Gr(T;(M),n) denotes the Grassmann manifold consisting of n-
dimensional subspaces in T.(M) (ie. n-dimensional contact elements
to M at z). J(M,n) is endowed with the canonical subbundle C of
T(J(M,n)) as follows: Let 7 be the projection of J(M,n) onto M. Each
element v € J(M,n) is a linear subspace of T,(M) of codimension m,
where z = 7(u). Hence we have a subspace C(u) of codimension m in
T.(J(M,n)) by putting

C(u) = 77 (u) C Tu(J(M,n)).

C is called the canonical system on J(M,n). We have an inhomoge-
neous Grassmann coordinate system of J(M,n) as follows: Let us fix

u, € J(M,n) and take a coordinate system U’ : (T, Zny 2,00, 2™)
of M around z, = m(u,) such that dz; A --- A dz, |o,# 0. Then we have
the coordinate system (z1,--+,2,,2,---, 2™, p},--- ,p") on the neigh-

borhood U = {u € m™'(U") [w(u) =z € U’ and dzy A--- Adzy, | 0}
of u, by

dz® |,= pr‘(u) dz; |, (a=1,---,m).
i=1 '

Clearly the canonical system C is given in this coordinate system by
C:{wl :::wm:O},

where w® = dz* — 37 pfdz; (a=1,--- ,m).

(J(M,n), C) is the (geometric) 1-jet space and especially, in case m =
1, is the so-called contact manifold. Let M, M be manifolds (of dimension
m+mn)and o : M — M be a diffeomorphism between them. Then
¢ induces the isomorphism ¢, : (J(M,n),C) — (J(M, n),C), ie., the
differential map . : J(M,n) — J(M, n) is a diffeomorphism sending C
onto C. The reason why the case m = 1 is special is explained by the
following theorem of Bécklund (cf. Theorem 1.4 [Y3]).

Theorem 1.1 (Bécklund). Let M and M be manifolds of dimension

m+ n. Assume m 2 2. Then, for an isomorphism ®: (J(M,n),C) —

(J(M,n),C), there ezists a diffeomorphism ¢ : M — M such that ® = Dy
2



In case m =1, it is a well known fact that the group of isomorphisms
of (J(M,n),C), i.e., the group of contact transformations, is really larger
than the group of diffeomorphisms of M. Therefore, when we consider
the geometric 2-jet spaces, the situation differs according to whether the
number m of unknown functions is 1 or greater. In case m = 1, we
should start from a contact manifold (J, C) of dimension 2n + 1, which
can be regarded locally as a space of 1-jets for one unknown function by
Darboux’s theorem. Then we can construct the geometric second order jet
space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle
L(J) over J consisting of all n-dimensional integral elements of (J, C);

L(J) = (] L,

ucJ

where L, is the Grassmann manifolds of all lagrangian (or legendrian)
subspaces of the symplectic vector space (C(u),dw). Here w is a local
contact form on J. Let 7 be the projection of L(J) onto J. Then the
canonical system E on L(J) is defined by

E(v) = (v) C T,(L(J)) at v e L(J).

Starting from a canonical coordinate system (z1,---,Zn, 2,01, ,Pn)
of the contact manifold (J,C), we can introduce a coordinate system
(zi,2,pi, pij) (1 £ 4 S 7 £ n) of L(J) such that p;; = pj; and E is
defined by
E:{w-—-wl:---zwnzo},

where @ = dz — } ) pidzi, w; = dp; — Y5 pijdz; (i = 1,--+ ,n). Let
(J,C), (J,C) be contact manifolds of dimension 2n + 1 and v:(J,C)—
(J,C) be a contact diffeomorphism between them. Then ¢ induces an iso-
morphism ¢, : (L(J), E) — (L(J), E). Conversely we have (cf. Theorem
3.2 [Y1])

Theorem 1.2. Let (J,C) and (J,C) be contact manifolds of dimension
2n + 1. Then, for an isomorphism @ : (L(J), E) — (L(J), E),there exists
a contact diffeomorphism ¢ : (J,C) — (J,C) such that ® = ¢,.

Our first aim is to formulate the submanifold theory for (L(J), E),
which will be given in §4.

1.2. Realization Lemma. We here recall the following Realization
Lemma for the Grassmannian construction, which plays the basic role in
the discussions of §4 and §5.

Lemma 1.3 (Realization Lemma). Let R and M be manifolds. Assume
that the quadruple (R, D,p, M) satisfies the following conditions :

(1) p is a map of R into M of constant rank.
3



(2) D is a differential system on R such that F = Ker p, is a subbundle
of D of codimension r.

Then there ezists a unique map v of R into J(M,r) satisfying p = 7 -
and D = ¢;1(C), where C is the canonical differential system on J(M,r)
and 7 : J(M,r) — M is the projection. Furthermore, let v be any point
of R. Then 1 is in fact defined by

Y(v) =p.(D(v))  as a point of Gr (Tpw)(M)),
and satisfies :
Ker () = F(v) N Ch(D)(v).
where Ch(D) is the Cauchy characteristic system of D (see §2.1 below).

For the proof, see Lemma 1.5 [Y1].

§2. Geometry of Linear Differential Systems (Tanaka Theory)

We will recall here the Tanaka theory for linear differential systems
following [T1] and [T2].

2.1. Derived Systems and Characteristic Systems. By a differential
system (M, D), we mean a subbundle D of the tangent bundle T(M) of a
manifold M of dimension d. Locally D is defined by 1-forms wy, ... , wy_r
such that w; A-+- Awy_r # 0 at each point, where r is the rank of D;

D={w=-=wz,=0}
For two djfferential systems (M, D) and (M , 15), a diffeOIAnogphism ©
of M onto M is called an isomorphism of (M, D) onto (M, D) if the
differential map ¢, of ¢ sends D onto D.

By the Frobenius theorem, we know that D is completely integrable if
and only if

dw; =0 (mod wy,... ,w,) fori=1,...,s,
or equivalently, if and only if
' [D,D] CcD.

where s = d —r and D = I'(D) denotes the space of sections of D.
Thus, for a non-integrable differential system D, we are led to consider
the derived system 8D of D, which is defined, in terms of sections, by

8D =D +[D,D).
4



Furthermore the Cauchy characteristic system Ch(D) of (M, D) is
defined at each point z € M by

Ch(D)(z) ={X € D(z) |
X]dw;=0 (modwy,... ,ws) fori=1,...,s},

When Ch (D) is a differential system (i.e., has constant rank), it is always
completely integrable (cf. [Y1]).

Moreover higher derived systems 9*D are usually defined successively
(cf. [BCGs)) by

D = 8(8*~' D),

where we put 8°D = D for convention.

On the other hand we define the k-th weak derived system 8® D of D
inductively by

8®D = 3%~V 4 [D, s*-D],

where 8D = D and 8%D denotes the space of sections of ) D. This
notion is one of the key point in the Tanaka theory ([T1]).

A differential system (M, D) is called regular, if D~*+1) = 9*) D are
subbundles of T'(M) for every integer k¥ = 1. For a regular differential
system (M, D), we have ( [T2], Proposition 1.1)

(S1) There exists a unique integer p > 0 such that, for all k = p,
-k __ - _ 9 -1 _
D¥=...=D#* 2D 2...2D 2D'=D,
(S2) [DP, DY CDP*®  forall p,g<O.
where DP denotes the space of sections of DP. (52) can be checked easily
by induction on gq.

Thus D™* is the smallest completely integrable différential system,
which contains D = D!, ‘

2.2. Symbol Algebras. Let (M, D) be a regular differential system such
that T(M) = D™*. As a first invariant for non-integrable differential sys-
tems, we now define the graded algebra m(z) associated with a differential
system (M, D) at z € M, which was introduced by N. Tanaka [T2].

We put g_i(z) = DX(z), go(z) = DP(z)/D**(z) (p < —1) and

m(z) = @ sy(a).

p=-1 _
Let w, be the projection of D?(z) onto g,(z). Then, for X € g,(z) and
Y € gy(z), the bracket product [X,Y] € g,y ,(z) is defined by

(X, Y] = wp5+q([X, ?]1‘)1



where X and Y are any element of DP and D? respectively such that
wp(Xz) = X and w,(Yz) =Y.
Endowed with this bracket operation, by (S2) above, m(x) becomes a

nilpotent graded Lie algebra such that dimm(z) = dim M and satisfies

8(7) = [Bp+1(2),9-1(z)] forp<—1.

We call m(z) the symbol algebra of (M, D) at = € M for short.
Furthermore, let m be a FGLA (fundamental graded Lie algebra) of

p-th kind, that is,
—H
m=P s

p=-1
is a nilpotent graded Lie algebra such that

9p = [8p+1,9-1] for p < —1.

Then (M, D) is called of type m if the symbol algebra m(z) is isomorphic
with m at each z € M.

Conversely, given a FGLA m = ;‘_1 gp, We can construct a model
differential system of type m as follows: Let M(m) be the simply con-
nected Lie group with Lie algebra m. Identifying m with the Lie algebra
of left invariant vector fields on M(m), g_; defines a left invariant sub-
bundle D of T(M(m)). By definition of symbol algebras, it is easy to see
that (M(m), D) is a regular differential system of type m. (M(m), Dy,)
is called the standard differential system of type m. The Lie algebra g(m)
of all infinitesimal automorphisms of (M(m), D) can be calculated alge-
braically as the prolongation of m ([T1], cf. [Y5]). We will discuss in §3
when does g(m) become finite dimensional and simple ?

As an example to calculate symbol algebras, let us show that (L(J), E)
is a regular differential system of type ¢?(n):

*(n) =c_3Dcy Dy,

where c_3 =R, c.o = V* and ¢_; = V@ S?(V*). Here V is a vector space
of dimension n and the bracket product of ¢3(n) is defined accordingly
through the pairing between V' and V* such that V and S?(V*) are both
abelian subspaces of c_;. This fact can be checked as follows: Let us take a
canonical coordinate system U; (zs, 2, ps, pi;) (1 £ 4 < j < n) of (L(J), E).
Then we have a coframe {w@, w;, dz;, dp;;} (1 £ i < 7 £ n) at each point
in U, where w =dz - -, p; dz;, w; = dp; — e Piidzy (=1, n).

Now take the dual frame {Z, 5%, = a%j}, of this coframe, where

3

d 0 0 < 0
dz 5+P¢g+;m%
6



is the classical notation. Notice that { %, %} (i=1,---,n) forms a free

basis of I'(E). Then an easy calculation shows the above fact. Moreover
we see that the derived system OF of E satisfies the following :

OF = {w =0} = n]1C, Ch(OFE) = Ker ..

These are the key facts to Theorem 1.2 (cf. Theorem 3.2 [Y1]).

Similarly we see that (J(M,n),C) is a regular differential system of
type c!(n, m):
¢t(n,m)=c2@cy,

where c.; = W and ¢, = VO W ® V* for vector spaces V and W of
dimension n and m respectively, and the bracket product of ¢t(n,m) is
defined accordingly through the pairing between V and V* such that V
and W ® V* are both abelian subspaces of c_;.

2.3. Classification of Symbol Algebras of Lower Dimensions.
In this paragraph, following a short passage from Cartan’s paper [C1], let
us classify FGLAs m = @_*_, g, such that dimm < 5, which gives us
the first invariants towards the classification of regular differential system
(M, D) such that dim M < 5.

In the case dimm = 1 or 2, m = g_; should be abelian. To discuss
the case dimm 2 3, we further assume that g_; is nondegenerate, i.e.,
[X,g-1] = 0implies X = 0 for X € g_,. This condition is equivalent to say
Ch (D) = {0} for regular differential system (M, D) of type m. When g_;
is degenerate, Ch (D) is non-trivial, hence at least locally, (M, D) induces
a regular differential system (X, D*) on the lower dimensional space X,
where X = M/Ch (D) is the leaf space of the foliation on M defined by
Ch(D) and D~ is the differential system on X such that D = p_ 1(D*).
Here p : M — X = M/Ch(D) is the projection. Moreover, for the
following discussion, we first observe that the dimension of g-2 does not
exceed (%), where m = dimg_;.

In the case dimm = 3, we have p £ 2. When p=2, m =g_, @ g_; is
the contact gradation, i.e., dimg_» =1 and g_; is nondegenerate. In the
case dimm = 4, we see that g_; is degenerate when x < 2. When u=3,
we have dimg_3 = dimg_, = 1 and dim g_; = 2. Moreover it follows that
m is isomorphic with ¢(1) in this case. In the case dimm = 5, we have
dimg_; =4, 3or 2. When dimg_;, = 4, m = g_, ® g_; is the contact
gradation. When dimg_; = 3, g_; is degenerate if dimg_, = 1, which
implies that 4 = 2 and dimg_, = 2 in this case. Moreover, when u =2,
it follows that m is isomorphic with ¢!(1,2). When dimg_; = 2, we have
dimg_» = 1 and u = 3 or 4. Moreover, when u = 4, it follows that m is
isomorphic with ¢3(1), where ¢3(1) is the symbol algebra of the canonical

system on the third order jet spaces for 1 unknown function (cf. §3 [Y1]).
7



Summarizing the above discussion, we obtain the following classifi-
cation of the FGLAs m = €_* | g, such that dimm < 5 and g_; is
nondegenerate.

(1) dmm =3=> u=2
- m=g_2® g1 =c!(1): contact gradation
(2) dmm=4=p=3
m=g3Sg2Dg_1 (1)
(3) dimm =5, then u £ 4

(a) p=4 Mm=g4® g3 g-2® g1 = (1)
(b) p=3 m=g3Dg 2D g
such that dim g_3 =dim g3 =2 and dim g, =1
(c) p=2 m=g &gy =cl(l,2)
(d) p=2 m=g_5®g-1 = c(2): contact gradation

A notable and rather misleading fact is that, once the dimensions of
gp are fixed, the Lie algebra structure of m = @;‘_1 gp is unique in
the above classification list. Moreover, except for the cases (b) and (c),
every regular differential system (M, D) of type m in the above list is
isomorphic with the standard differential system (M (m), Dy, )of type m by
Darboux’s theorem (cf. Corollary 6.6 [Y1]). The first non-trivial situation
that cannot be analyzed on the basis of Darboux’s theorem occurs in the
cases (b) and (c) (see [C1], [St]). Regular differential systems of type (b)
and (c) are mutually closely related to each other (cf. §6.3 and [C1]). We
shall encounter with the type (b) fundamental graded Lie algebra in §6.2
in connection with the root space decomposition of the exceptional simple
Lie algebra Gs.

§3. Differential Systems associated with SGLAs

We will classify here the Standard differential systems (M(m), Dy,) for
which the prolongation g(m) becomes finite dimensional and simple ([Y5]).
In this section we will solely consider Lie algebras over C for the sake of
simplicity.

3.1. Classification of Gradation of Simple Lie Algebras by Root
Systems. Let g be a finite dimensional simple Lie algebra over C. Let
us fix a Cartan subalgebra § of g and choose a simple root system A =

{au, ..., az} of the root system @ of g relative to b. Then every a € ® is an
8



(all non-negative or all non-positive) integer coefficient linear combination
of elements of A and we have the root space decomposition of g;

g= @ga@be@g—m

acdt acd+
where go = {X € g | [, X] = a(h)X for h € b} is (1-dimensional) root
space (corresponding to o € ®) and ®* denotes the set of positive roots.

Now let us take a nonempty subset A; of A. Then A; defines the
partition of ®* as in the following and induces the gradation of g =

D,z 8y as follows:

OF = Upnod?, ={a= Zn,ozz | > nmi=p},

a; €A

8p = @ ga; G0 — @ ga®b® @ g—ay 8B-p= @ f-a)

acd} acd? acd} acdF

[gpa gq] - gp+q fOI' b, q € Z.
Moreover the negative part m = @p <o Bp satisfies the following generating
condition :

9p = [8p+1,8-1] for p< -1
We denote the SGLA (simple graded Lie algebra) g = . 8p Obtained
from A; in this manner by (X, A;), when g is a simple Lie algebra of
type X,. Here X, stands for the Dynkin diagram of g representing A and
A, is a subset of vertices of X,;. Moreover we have

u= Z n‘i(e)y
a; €A1
where 0 = Zle n;(0) o; is the highest root of ®.
Conversely we have (Theorem 3.12 [Y5])

Theorem 3.1. Let g = @pEZ gp be a simple graded Lie algebra over C
satisfying the generating condition. Let X, be the Dynkin diagram of g.
Then g = D,cz 8p is isomorphic with a graded Lie algebra (X, A;) for
some Ay C A. Moreover (Xy, A1) and (Xq, A}) are isomorphic if and only
if there ezists a diagram automorphism ¢ of X, such that ¢(A;) = A},

In the real case, we can utilize the Satake diagram of g to describe
gradations of g (Theorem 3.12 [Y5]).

3.2. Differential Systems associated with SGLAs. By Theorem

3.1, the classification of gradations g = €D, g, of simple Lie algebras g

sat1sfy1ng the generating condition c01nc1des with that of parabolic sub-

algebras g’ = P, 8, of g. Accordingly, to each SGLA (X, A1), there
9



corresponds a unique R-space My = G/G’ (compact simply connected
homogeneous complex manifold). Furthermore, when © 2 2, there ex-
ists the G-invariant differential system D, on Mj, which is induced from
g-1, and (M(m), Dy,) (Standard differential system of type m) becomes
an open submanifold of (Mj, Dy). For the Lie algebras of all infinitesimal
automorphisms of (Mj, D), hence of (M (m), Dy,), we have the following
theorem (Theorem 5.2 [Y5]).

Theorem 3.2. Let g = @pez gp be a simple graded Lie algebra over C
satisfying the generating condition. Then g = D,z 9p s the prolongation
of m = @p <0 8p except for the following three cases.

(1) 8=9-1®g0® g1 is of depth 1 (i.e., u=1).

(2) g= @§=_2 8p 18 a (complez) contact gradation.

(3) g = @pezgp' is 1somorphic with (A {c1,0:}) (1 < i < £) or
(Ce, {a1, ar}).

Here R-spaces corresponding to the above exceptions (1), (2) and (3)
are as follows: (1) correspond to compact irreducible hermitian symmetric
spaces. (2) correspond to contact manifolds of Boothby type (Standard
contact manifolds), which exist uniquely for each simple Lie algebra other
than s[(2, C)(see §5.1 below). In case of (3), (J(P¢,14),C) corresponds to
(Ag, {a1, i}) and (L(P**71), E) corresponds to (Ce, {a, ar}) (1 < i < £),
where P¢ denotes the ¢-dimensional complex projective space and P2¢-! is
the Standard contact manifold of type C,. Here we note that R-spaces

corresponding to (2) and (3) are all Jet spaces of the first or second order.
' For the real version of this theorem, we refer the reader to Theorem
5.3 [Y5].

84. Geometry of PD-manifolds

We will here formulate the submanifold theory for (L(J), E) as the
geometry of PD-manifolds ([Y1]).
4.1. PD-manifolds. Let R be a submanifold of L(J) satisfying the
following condition:

(R.O) p:R— J;submersion,
where p = 7 |g and 7 : L(J) — J is the projection. There are two
differential systems C' = OE and C? = E on L(J). We denote by D*
and D? those differential systems on R obtained by restricting these dif-

ferential systems to R. Moreover we denote by the same symbols those
10



1-forms obtained by restricting the defining 1-forms {w,w;,--- ,@,} of
the canonical system E to R. Then it follows from (R.0) that these 1-forms
are independent at each point on R and that

D' = {w =0}, DP={w=w = =w, =0}
In fact (R; D', D?) further satisfies the following conditions:

(R.1) D! and D? are differential systems of codimension 1 and n+ 1
respectively.

(R2) 8D?c D

(R.3) Ch(D?) is a subbundle of D? of codimension n.

(R4) Ch(D')(v)NCh(D?*)(v) ={0} ateachveR.

Conversely these four conditions characterize submanifolds in L(J)
satisfying (R.0). In fact we call the triplet (R; D!, D?) of a manifold and
two differential systems on it a PD-manifold if these satisfy the above
four conditions (R.1) to (R.4). We have the (local) Realization Theorem
for PD-manifolds as follows: From conditions (R.1) and (R.3), it follows
that the codimension of the foliation defined by the completely integrable
system Ch(D') is 2n + 1. Assume that R is regular with respect to
Ch(D'), i.e., the space J = R/Ch (D) of leaves of this foliation is a
manifold of dimension 2n 4 1. Then D! drops down to J. Namely there
exists a differential system C on J of codimension 1 such that D! =
p;}(C), where p : R — J = R/Ch(D?) is the projection. Obviously
(4, C) becomes a contact manifold of dimension 2n + 1. Conditions (R.1)
and (R.2) guarantees that the image of the following map ¢ is a legendrian
subspace of (J, C):

Yv) =pu(D*(v)) € Clu),  w=p(v).

Finally the condition (R.4) shows that ¢ : R — L(J) is an immersion
by Realization Lemma for (R, D?,p, J) (see §1.2). Furthermore we have
(Corollary 5.4 [Y1])

Theorem 4.1. Let (R; D', D?) and (R; D', D?) be PD-manifolds. As-
sume that R and R are regular with respect to Ch(D') and Ch(DY) re-
spectively. Let (J,C) and (J,C) be the associated contact manifolds. Then
an isomorphism @ : (R; D!, D?) — (R; D', D?) induces a contact diffeo-
morphism @ : (J,C) — (J, ) such that the following commutes;

R —— L(J)



By this theorem, the submanifold theory for (L(J), E) is reformulated
as the geometry of P D-manifolds.

When D' = 8D holds for a PD-manifold (R; D', D?), the geometry of
(R; D', D?) reduces to that of (R, D?) and the Tanaka theory is directly
applicable to this case. Concerning about this situation, the following
theorem is known under the compatibility condition (C) below:

(€©)  pM:RY - R s onto.
where R®) is the first prolongation of (R; D', D?) (cf. Proposition 5.11
[Y1]).

Theorem 4.2. Let (R; D', D?) be a PD-manifold satisfying the condition
(C) above. Then the following equality holds at each point v of R:

dim D*(v) — dim 8D?(v) = dim Ch(D?)(v).
In particular D' = 8D? holds if and only if Ch(D?) = {0}.

4.2. First Reduction Theorem. When PD-manifold (R; D!, D?) ad-
mits a non-trivial Cauchy characteristics, i.e.,when rank Ch (D?) > 0, the
geometry of (R; D!, D?) is further reducible to the geometry of single dif-
ferential systems. Here we will be concerned with the local equivalence
of (R; D!, D?), hence we may assume that R is regular with respect to
Ch(D?), i.e., the leaf space X = R/Ch(D?) is a manifold such that the
projection p : R — X is a submersion and there exists a differential system
D on X satisfying D* = p(D). Then the local equivalence of (R; D!, D?)
is further reducible to that of (X, D) as in the following : We assume that
(R; D', D?) satisfies the condition (C) above and Ch (D?) is a subbundle
of rank 7 (0 < 7 < n). Then, by Theorem 4.2, 8D? is a subbundle of
D! of codimension 7. From (X, D), at least locally, we can construct a
PD-manifold (R(X); D, D%) as follows. R(X) is the collection of hyper-
planes v in each tangent space T,(X) at £ € X which contains the fibre
0D(z) of the derived system 8D of D.

R(X)=|J R: c J(X,m —1),
zeX

| Ry ={v € Gr(To(X),m — 1) | v D 8D(z)},
where m = dim X. Moreover D is the canonical system obtained by the
Grassmaniann construction and D% is the lift of D. Precisely, D} and
D% are given by
Dx(v) = v;(v) D D (v) = v;}(D(x)),
for each v € R(X) and z = v(v), where v : R(X) — X is the projection.
Then we have a map « of R into R(X) given by

£(v) = pu(D'(v)) C To(X),
12



for each v € R and z = p(v). By Realization Lemma for (R, D, p, X ), K
is a map of constant rank such that

Ker k.= Ch(D')NKerp, = Ch(D')N Ch(D? = {0}.

Thus « is an immersion and, by a dimension count, in fact, a local diffeo-
morphism of R into R(X) such that

k.(D') = D% and  k.(D?) = D%.
Namely « : (R,D',D?) — (R(X),D%,D%) is a local isomorphism of
PD-manifolds. (Precisely, in general, (R(X), D%, D%) becomes a PD-
manifold on an open subset.)

Summarizing the above consideration, we obtain the following Reduc-

tion Theorem for PD-manifolds admitting non-trivial Cauchy character-
istics.
Theorem 4.3. Let (R,D',D?) and (R; D*, D?) be PD-manifolds satis-
fying the condition (C) such that Ch(D?) and Ch(D?) are subbundles
of rank r (0 < r < n). Assume that R and R are reqular with respect
to Ch(D?) and Ch(D?) respectively. Let (X,D) and (X,D) be the leaf
spaces, where X = R/Ch(D?) and X = R/Ch(D?). Let us fir points
Yo € R and 9, € R and put 2, = p(vo) and £, = p(?,). Then a local
isomorphism v : (R; D', D*) — (R; DY, D?) such that Y(v,) = 0, induces
a local isomorphism ¢ : (X,D) — (X,D) such that o(z,) = %, and
O« (K(z0)) = K(&,), and vice versa.

The involutive system (A) in Introduction is the example of this situ-
ation and we have dim X = 5 and rank D = 2.

§5. Contact Geometry of Single Equations of Goursat Type

In order to discuss the generalization of the equation (B) in the intro-
duction, we will define single equations of Goursat type and formulate the
Reduction Theorems for the contact equivalence of this type of equations.

5.1. Single Equations of Goursat Type. By a single equation (of
second order), we mean a hypersurface R of L(J) satisfying the condition
(R.0) in §4. Then, by the Cauchy-Kowalevsky theorem, we see that R
also satisfies the compatibility condition (C) and the symbol algebra 5(v)
of (R, D?) at v € R is a subalgebra of ¢2(n) such that

5(v) = 5_3(v) ®5_2(v) B5_1(v)

where 5_3(v) = R, 5_3(v) = V*, 5_1(v) = V&f(v) and f(v) is a subspace of
S*(V*) of codimension 1. Let (f(v))* be the annihilator of f(v) in SE(V)
13



under the pairing between S*(V) and S?*(V*). Then dim (f(v))* = 1.
We say that R is of (weak) parabolic type at v if (f(v))! is generated
by a symmetric two form of rank 1. When R is defined in a canonical
coordinate (z;, 2, pi, pij) (1Si< 5 S n) by

F(zi, 2, pi, pij) = 0,
then the above condition is equivalent to say that the symmetric matrix
(a%%(v)) has rank 1 (cf. §3.3 [Y1]). '

When R is of (weak) parabolic type at each point, (R, D?) is a regular
differential system of type s :

§=6 3PS5 2Ds_;,

where s 3 = R, 5., = V*, 5.1 = V@ fand §f C S}(V*) is given by
(f)* = (e?) ¢ S*(V) for a non-zero vector e € V.

Let A(s) be the group of graded Lie algebra automorphisms of s and
E be the 1-dimensional subspace of V spanned by e. Then the annihilator
subspace E+ of E is an A(s)-invariant subspace of V* = s_,. Starting
from the 1-dimensional subspace E = (e) of V, we can construct the first
order covariant system N(E) and the Monge characteristic system M(E)
as in the following. (For the detail see, §7.3 [Y1]): Let v be any point of
R and let s(v) be the symbol algebra at v. Take a graded Lie algebra
isomorphism ¢ of s(v) onto s. Let n(E)(v) denote the linear subspace of
5_5(v) defined by

n(E)(v) = ¢7(EY).

Then, since E+ is A(s)-invariant, it follows that n(E)(v) is well-defined.
Let k_2 be the projection of D'(v) onto s_5(v) = D'(v)/D?(v). We define
the linear subspace N(E)(v) of D!(v) by setting

N(E)(v) = (k-2) " ((E)(v)).

Then it follows that the assignment v +— N(E)(v) defines a subbundle
N(E) of D*.

Let m(E) denote the linear subspace of 5_; spanned by linear subspaces
¢(E)’ ¢ e A(5)7 i'e')

m(E) = ({$(E) Cs_1 | ¢ € As)}).
m(E) is an A(s)-invariant subspace of s_; by construction. Taking a
graded Lie algebra isomorphism ¢ of 5(v) onto s, let M(E)(v) denotes the
linear subspace of 5_1(v) = D?(v) defined by
M(E)(v) = ¢~} (m(E)).

It follows that the assignment v — M(E)(v) defines a subbundle M(E)
of D®. M(E)(v) is the linear subspace of D?(v) spanned by the Monge

characteristic elements corresponding to E.
14



We say that R is a (single) equation of Goursat type when R is of
(weak) parabolic type and its Monge characteristic system M (E) is com-
pletely integrable. '

Now let us describe the covariant systems N = N(E) and M = M(E)
of (R, D?) in terms of adapted coframes (cf. [Y4]). Let R be a single
equation of (weak) parabolic type, i.e., (R, D?) be a regular differential
system of type s. Let v be any point of R. A coframe, i.e.,a base of 1-forms
{@, Was Wa, Wi, Wap} (1 £ a S 1,2 < o< B < n)on a neighborhood U
of v in R is called an adapted coframe if it satisfies the following conditions
(5.1) and (5.2) :

(51) Dzz{wzwl:---zwn20},
dw =wiAwy ++0vvv-. + wnAw, (mod w),

(5.2) { dw, = wpAwig + - +wp Awy, (mod w,wy, -+, w,),
AW S Wi AN TWap F+orern- +wn A @Wan, (mod w, @y, - ,w@,).

where we understand that was = Wea and wia = wWey for 2 £ o, 8 £ n.
The equalities (5.2) are the structure equations of (R, D?) in the sense of
E. Cartan ([C1], [C2]) and describe the structure of the symbol algebra
$§=53P5_oDs_; of (R,D?). In terms of an adapted coframe, covariant
systems N and M are given by (cf. §3 [Y4])

N = {w = w; = 0},
M={w=w==w, =wa =w;, =0 (2L a<n)}.

Then, for the structure of IV, we obtain by Cartan’s method (cf. §2,
§3 [Y4], [Ts])

Proposition 5.1. Let R be a single equation of Goursat type and let v be
any point of R. Then there exists an adapted coframe on a neighborhood
of v such that the following equality holds : .

dwi =wa Awip+ -+ +wy Awy,  (mod w, w1).

FEspecially, Ch(N) = M on R.

5.2. Reduction Theorems. We now describe the two step reduction
procedure for the (contact) equivalence problem of single equations of
Goursat type, which explains the link between the exceptional simple Lie
algebra G2 and the equation (B) of Goursat type mentioned in Introduc-
tion.

Let R C L(J) be a single equation of Goursat type. We consider the

(involutive) Grassmann bundle I(J,1) of codimension 1 over the contact
15 :



manifold (J,C) :
(L) =JL,  L=Gr(C),2n-1),

ueJ

where C(u) C T,,(J) is the fibre of the contact distribution. Here we note
that each hyperplane in C(u) is an involutive subspace of the symplectic
vector space (C(u),dw). In this sense, I, is the collection of involutive
subspaces of codimension 1 in (C(u), dw). On I(J,1), we have two differ-
ential systems C* and N*, where N* is the canonical system obtained by
the Grassmaniann construction and C* is the lift of C. More precisely, C*
and N* are given by

C*(w) = (C(w) D> N*(w) = 77" (w),
for each w € I(J,1) and u = w(w) € J, where 7 : I(J,1) — J is the
bundle projection.
The first order covariant system N of (R, D?) induces a map pof R

into I(J,1) by

p(v) =p.(N(v)) C C(uw),
for each v € R and u = p(v), where p : R — J is the projection. By
Realization Lemma for (R, N, p, J), ¢ is a map of constant rank such that

Ker ¢. = Ch(N)NKer p, = Ch(N)NCh (D).

By Proposition 5.1, we have
rank Ker ¢, = %n(n — 1) = dim S*(E4).

In the rest of this section, we will be concerned with the local equiv--
alence problem for single equations (R, D?) of Goursat type. Hence we
may assume that the image W = Im ¢ is a submanifold of I(J,1). Thus ¢
is a submersion of R onto W such that p = q- ¢, where ¢ is the restriction
of the projection 7 : I(J,1) — J to W. Here we note that dim W = 3n.
Moreover we have two differential systems Cy and Ny on W, which are
the restrictions to W of C* and N* on I(J,1). Then we have

o7 (Nw) = N, and o7 (Cw) = D

We call (W; Cw, Nw) the associated involutive bundle of the single equa-
tion R of Goursat type.

Now the local equivalence of (R, D?) is first reducible to that of the
involutive bundle (W; Cw, Nw) as in the following: Locally W is the leaf
space of the foliation on R defined by Ch(N) N Ch(D'). Conversely,
from (W; Cw, Nw), we can construct a PD-manifold (R(W); D}, D2,) as
follows. First, by Grassmannian construction, we define

RW)= | R,
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Ry, ={v € Gr(Nw(w),2n — 1) |
vD Ch(Cw)(w) and ¢ (v) € Ly,u=q(w)},
where L, is the fibre of L(J) at u € J. D%, is the canonical system
obtained by the Grassmannian construction and D}, is the lift of Cyy.
Precisely, D}, and D%, are given by
Dy (v) = (¢w):H(Cw(w)) D Dy (v) = (ww)7 (v),
for each v € R(W) and w = pw(v), where ow : R(W) — W is the
projection. By definition, we have a map ¢ of R(W) into L(J) given by
w(v) = qu(v) € Ly,

for each v € R(W) and u = q(v) € J. Then we note that the image
R*(W) = Im tw has the following description :

RW)=|J R, BR,={velvcwcC), u=qgw)}
weWwW

Namely R*(W) is the collection of legendrian subspaces of (J, C) contained
in involutive subspaces of codimension 1 belonging to W C I(J,1).

Now we have a map «; of R into R(W) given by
k1(v) = u(D*(v)) C Nuw(w),

for each v € R and w = ¢(v). By Realization Lemma for (R, D?, ¢, W),
k1 is a map of constant rank such that

Ker k; = Ch(D*)NKer . = Ch(N)N Ch(D*)NCh(D? = {0}.

Thus k; is an immersion and, by a dimension count, in fact, a local dif-
feomorphism of R into R(W) such that

(k1)«(D') =Dy and  (k1).(D?) = D},
Namely «; : (R, D', D?) — (R(W), D}, D%) is a local isomorphism of
PD-manifolds. (Precisely (R(W), D}, D%,) becomes a PD-manifold on
an open subset.)

Summarizing, we obtain the following first Reduction Theorem for
contact equivalence of single equations of Goursat type.

Theorem 5.2. Let R and R be single equations of Goursat type. Let
(W; Cw, Nw) and (W; Cyw» Nyi,) be the associated involutive bundles of R
and R respectively. Let ky and R, be defined as above. Let us fir points
v € R and 9, € R and put w, = q(v,) and %, = §(4,). Then a local
isomorphism 1 : (R,D?) — (R, D?) such that ¥(v,) = 0, induces a local
isomorphism ¢ : (W;Cw, Nw) — (W; Cyw, Ny,) such that o(w,) = b,
and p.(k1(w,)) = R1(,), and vice versa.
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By Proposition 5.1, it follows that rank Ch (Nw) = 1. Then, similarly
as in §4.2, the geometry of (W; Cw, Ny ) is further reducible to the ge-
ometry of regular differential system of type c!(n — 1,2) as follows. We
may assume that W is regular with respect to Ch(Nw) so that the leaf
space Y = W/Ch (Nw) is a manifold such that the projection 3: W — Y
is a submersion and there exists a differential system Dy on Y satisfying
Nw = B7Y(Dn). Moreover, by Proposition 5.1, (Y, Dy) is a regular differ-
ential system of type ¢!(n — 1,2) (cf. Theorem 1.6 [Y3]). From (Y, Dy),
we can construct (W(Y); Cy, Ny) as follows. W(Y) is the collection of
hyperplanes w in each tangent space T,(Y) at y € Y which contains the
fibre Dn(y) of Dy:

W) =|J W, CJ(,3n-2),
yeY

Wy ={w € Gr(T,(Y),3n - 2) | w D Dy(y)}-

Cy is the canonical system obtained by the Grassmannian construction
and Ny is the lift of Dy. Precisely Cy and Ny are defined by

Cy(w) = pH(w) D Ny(w) = 7 (Dn(y)),
for each w € W(Y) and y = p(w), where p: W(Y) — Y is the projection.
Then we have a map k2 of W into W(Y') given by
ko(w) = B.(Cw(w)) C T,(Y),

for each w € W and y = B(w). By Realization Lemma for (W, Cy, 8, Y),
Ko 1s a map of constant rank such that

Ker Kg = Ch (Cw) N Ker ,3* =Ch (Cw) N Ch (Nw) = {O}

Thus k2 is an immersion and, by a dimension count, in fact, a local dif-
feomorphism of W into W(Y") such that

(""2)*(CW) - CY and (K,g)*(Nw)_ = Ny.
Namely &y : (W; Cw, Nw) — (W(Y); Cy, Ny) is a local isomorphism.

Summarizing, we obtain the second Reduction Theorem for contact
equivalence of single equations of Goursat type.

Theorem 5.3. Let R and R be single equations of Goursat type. Let
(W; Cw, Nw) and (W; Cy» Nyyy) be the associated involutive bundles of R
and R respectively. Assume that W and W are reqular with respect to
Ch(Nw) and Ch(Ny,) respectively. Let (Y,Dy) and (Y, Dy) be the leaf
spaces, where Y = W/Ch(Nw) and Y = W/Ch (Nyw,). Let us fix points
w, € W and b, € W and put y, = B(w,) and G, = B(o). Then a local
isomorphism ¢ : (W;Cw, Nw) — (W; Cyw, Nyiy) such that ¥(w,) = b,
18



induces a local isomorphism ¢ : (Y,Dy) — (Y, Dy) such that o(Yo) = 9o
and p.(k2(Yo)) = K2(%,), and vice versa.

Thus, finally, the local contact equivalence problem of single equations
R of Goursat type reduces to the equivalence of (Y, D), which are regular
differential systems of type ¢'(n — 1,2)(cf. [Ts], §3 [Y4]).

§6. G,-geometry

In view of discussions in §3, §4 and §5, we will here consider the gen-
eralization of (A) and (B) to other simple Lie algebras.

6.1. Standard Contact Manifolds. Each simple Lie algebra g over C
has the highest root . Let Ay denote the subset of A consisting of all
vertices which are connected to —6 in the Extended Dynkin diagram of
Xe (¢ 2 2). This subset Ag of A, by the construction in §4, defines a
gradation (or a partition of ®*), which distinguishes the highest root 4.
Then, this gradation (X¢, Ag) turns out to be a contact gradation, which
is unique up to conjugacy.

Moreover we have the adjoint (or equivalently coadjoint) representa-
tion, which has § as the highest weight. The R-space J; corresponding to
(Xe, Ag) can be obtained as the projectiviation of the (co-)adjoint orbit
of G passing through the root vector of 4. By this construction, J; has
the natural contact structure C, induced from the symplectic structure as
the coadjoint orbit, which corresponds to the contact gradation (X, Ag)
(cf. [Y5, 84]). Standard contact manifolds (J,, C,) were first found by
Boothby ([Bo]) as compact simply connected homogeneous complex con-
tact manifolds.

6.2. Gradation of G;. The Dynkin diagram of G, is given as follows:
@E@, 9=3a1+2a2.
a2

(23}

In this case, from A = {a1, a3}, we have three choices for A;:

(G1) A1 ={o1}. In this case, we have =3, dimg_3 = dimg_; =
2 and dimg-, = 1. Moreover (M, D;) coincides with (X, D) in case of
(4).

(G2) A;={az}. In this case, we have the standard contact grada-
tion.

(G3) A; = {a1,a}. In this case, we have u = 5, dimg_; = 2 and

dim g, = 1 for others.
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Let (Jy, C;) be the Standard contact manifold of type Ga.If we lift the
action of the exceptional group G; to L(J,), then we have the following
orbit decomposition:

L(Jg) = OU R, U Ry,

where O is the open orbit and R; is the orbit of codimension i. Here
Ry and R; can be considered as the global model of (B) and (A) re-
spectively. Moreover Ry is compact and is a R-space corresponding to
(Ge,{a1,a2}). From this fact, it becomes possible to describe the PD-
manifold (R; D', D?) corresponding to (A) in terms of the R-space corre-
sponding to (Ga, {1, a}).

Extended Dynkin Diagrams with the coefficient of Highest Root (cf. [Bu])

-0 -6
2 2 2
] SO—creeees 30
1 L ! 1 a2 Qg..1 Q¢
o a2 o1 oy o1
A (£>1) B, (£>2)
-8 1
2 . 2 Q1
g O 1
ag g2
a3 ag
Dy (f > 3)
2 3 4 2
O0—O0——O0—0—0
-8 a1 a2 a3 o4
Fy
2 3 4 3 2 1 3 2
0&=—0—0
-8 o1 a3 a4 as ag ar a1 az —8
«
2 E7 CTy2

6.3. Gz-geometry. In the Extended Dynkin diagram, except for A, type,
Ay consists of one simple root ap. The coefficient of ag in the highest
root § = Zle ni(6) o; is of course 2. Furthermore, for the exceptional
simple Lie algebras, there exists, without exception, a unique simple root

ag next to ap such that the coefficient of ag in the highest root is 3.
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For X, & Eg, E7, Eg, Ga, Fy, the gradation (Xe,{ac}) has the following
property;
p=3, dimg3=2 and dimg_; =2 dimg_,.

-

Moreover, ignoring the bracket product in g-1, the bracket product of
other part can be expressed in terms of pairing by

g3=W, g2=V and g =WaeV".

Namely the derived system (M, 0Dy) is a regular differential system of
type ¢!(r, 2) for suitable r, where (Mg, D) is the standard differential sys-
tem of type (X, {ag}). This fact assures us to construct the single equa-
tion of Goursat type from the differential system (Y, Dy) = (Mg, 0D,),
which is the generalization of (B).

Obviously the R-space Rg corresponding to (X, {as,ag}) is a fi-
bre space over the Standard contact manifold (Jg, Cg) corresponding to
(Xe, {s}). In fact this Rg can be realized as a compact orbit in L(Jy),
which gives the generalization of (4). Moreover, in this case, we have rank
Ch(D?) =1 as a PD-manifold and (X, D) coincides with the R-space cor-
responding to (Xg, {ag}).

Remark 6.1 (Classical cases). In the classical simple Lie algebras, there
s no simple root whose coefficient in the highest root is 3. However, in
By and D, types, there is a set {a;,as} of simple roots nezt to oy = Qo
whose sum of coefficients in the highest root is 3. In fact, (Be, {1, a3})
and (Dy, {a1, as}) have the above property;

p=3, dimg3=2 and dimg., =2dimg_,.

and the set {a1, a3} plays the role of {ag}. Hence we have the general-
izations of (A) and (B) for simple Lie algebras of type B, and type Dy.
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CORRECTION TO THE LIST OF
NON-VANISHING SECOND COHOMOLOGY

~ In our previous paper: Differential Systems Associated with Simple Graded Lie Al-
gebras, Adv. Studies in Pure Math. 22 (1993), 413-494, the list of the Non-vanishing
second Spencer cohomology (Proposition5.5) contains some misprints and omissions.
Here we would like to correct the following points:

(I) Ag-type : (11)° is missing and, (2) and (4) lack the information for £ = 3.

(II) Be-type : (7) contains a misprint (4 = 3 shuld be replaced by u = 4).

(II1)  Ce-type : (3) contains a misprint (p2; = 2 (£ = 2) should be deleted).

(IV) D,-type : (3), (5) and (7) lack the information for the case £ = 4.

Corrected version of Proposition 5.5 should be stated as follows:

Proposition 5.5. Let (X¢,A;) be a simple graded Lie algebra over C described in
§3.4. Then the following are the list of (X, A,) and pij such that p;; 2 0 holds for
the irreducible component H?5 C CP:*(m, g) of the harmonic space H? = H?(m, g)
corresponding to o;; € W°(2) in Kostant’s theorem.

(I) Ae-type (£22).

(1) {1} p2=2 ({=2),
p2=1 (£23).
(2) {2} pr=pa=1 (£=23),
p1=1, paa=0 (£24).
(3) {e} Pii-1=pii1 =0 (2<i S[H).
(4) {a1, 02} p2=pn=3 ({=2),

Pi2=1, pa1=2, pas=0 (£=3),
P12=1 pay=2 (£24).

(8) {a1, i} p2=pu=0 (2<i<t-1).
(6) {1,001} Pr2=pre-1=pr-1e=0 (£24).
(7) {e1, e} Pr2=pee-1=0, pu=1 (£23)
(8) {a2, a3} Pn=pn=pa=pu=0 ({=4),
pr=pu=pn=0 (£25)
(9) {2, o} pn=0 (3<i<f-1).
(10) {2, e-1} pun=pe-1:=0 (£25).
(11) {a;, @i41} Piiv1 =Pis1i =0 (2<iS[£).
(11)° {a1, a3, @i} P2=0, pn=1 (2<i<¥).
(12) {a1, 22, 0¢} Pra=p12=p =0, pn=piz=1 (£=3),
pu=p12=0, pn=1 (£24).
(13) {e, @i, o} pe=0 (2<ig[é).

(14) {e1,02,0;,2;} pau=0 (2<i<j< f).
(15) {1, @2, 0¢=1,0¢} P21 = pe1¢ = 0.
(II)  By-type (£2 3).
(1) {es} g=1 pa=1



(2) {ea} B=2 p2=ps=0.
(3) {as} B=2 pu=2 (£=3),
pa2=0 (£24).
(4) {ae} B=2 pr_1=0 (£24).
(5) {e1,2} =3 pu=0, pa=1
(6) {a1,a3} E=3 pu=1 (£=23).
(1) {az,a3} B=4 p=2 ({=3),
' pa2=0 (£24).

(8) {an,oz,03} p=5 p2=1 (£=3).
(III) Cy-type (£ 2 2).

(1) {ae} =1 pn=2 (£=2), pu-1=0 (£23).

(2) {au} p=2 p2=2 (€=2), pp=1 (£23)

(3) {e2} B=2 pn=1, pa=0 (£=3),
pan=1 (L24).

(4) {ae-1} B=2 pr1e=0 (£24).

(8) {a1, 0} b=3 p2=2 pn=3 (L=2),
Pu=p2=0 (£23).

(6) {asz,a¢} B=3 pu=pa=0 (£=3),

: pa=0 (£24).

() {ae-r,0e} p=3 peore=0 (£24).

(8) {e1, a2} b=4 p12=0, pn=2 (£23).

(9) {ali a2, al} p=35 pn=1

(10) {en 2,05} p=6 pn=0 (2<i<y¥).
(IV) D,-type (£ 2 4).

(1) {1} p=1 pa=1.

(2) {ae} B=1 pu-2=0 (£25).

(3) {az} B=2 pun=pa=pu=0 ({=4),
Par=pa3a=0 (£25).

(4) {es} B=2 p3=0 (£25).

(3) {e1, e} B=2 pr2=ps=0 ({£=4),
pi2=0 (£25).

(6) {01,02}

3 P12 = 1, D21 =0.
4 pr2=paa=0 (£=4),
ri2=0 (£25).
(8) {ez,as}  p=4 pa=0 (£25)
(V) Exceptional types.
(1) (Es,{1}), (Er,{a7}) m=1 p;j =0, where {ai} = Ay and (e, ;) #0.
(2) (EG’ {02})’ (E7’ {01}), (ES’ {08})v (F4: {al}) and (Gz, {02})-
Contact gradations: B=2 pij =0, where {a;} = Ay and (o,a;) #0.

;‘:
() {an,az,0¢} p=

(3) (G2, {en}) p=3 p2=3.
(4) (Gz2,{e1,22}) B=5 p2=3.
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