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Abstract. In this paper, we study an operator A on a Hilbert space H which
satisfies one of the following inequalities :
For some A with 0 <A <1

(Ay,9)l < Mlyll* + (1 = DIl Awl* (v € H)

AlAyl? + 1 = V(4. v)] < lvll* (v € H).

- These two inequalities can be regarded as special cases of generalized numerical ranges.
If A has a p-dilation with p > 0, then it satisfies one of them. We show that the operator
- radii w,(A) of A are calculated using |(Ay,y)| and ||Ay||. Several applications are given.



§1. Introduction

According to Sz.-Nagy and Foias [7], a bounded linear operator A on a complex
Hilbert space H is said to be of class C, with p > 0 if there exists a unitary operator U
on some Hilbert space K such that K contains H as a subspace and such that

A" = pPyU™H forn=1,2,---,

where Pﬁ is the orthogonal projection of K onto H. For p = 2 it is known (see [7, Chapter
‘I, Proposition 11.2]) that A is of class C, if and only if its numerical radius of A :

w(T) = sup{|(Ay,y)| : [yl <1}

is not greater than one. Of course, A is of class C; if and only if the usual norm || A|| of A
is not greater than one. Holbrook [3] introduced the operator radii w,(A) of an operator
A, relative to C,, by the formula :

w,(A) =inf{y; v>0,y"'A€C,}).
Then wi(A) = ||A||, w2(A) = w(A), and lim, o w,(A) = r(A) : the spectral radius of A.
Let S be a positive bounded operator on H. We define V(A) and vs(A) as

Vs*(A)‘= {(Ay,y) ; y € H,(Sy,y) = 1}.

and
vs(A) = sup{|(Ay,y)| ; y € H,(Sy,y) = 1}.
V& (A) is defined and studied in [4] for a self-adjoint S. If S is the identity operator I

on H, then VF(A) is the numerical range of A and vs(A) = w(A). In Section 2, when
0 < p £2and p # 1, we show that A is of class C, if and only if

p P=2 2
S = I+-+—2 4
2lp—1] 2|p—1|l |

is nonnegative and vs(A) < 1. As results, several corollaries are given. In Section 3, when
0 < p <2and p # 1, we give two formulae for w,(A) using |(Ay,y)| and ||Ay|]. In Section
4, we try to generalize results in Sections 2 and 3 for 2 < p < oo.

A result in this paper is the following : For 0 < p <2 and p =2/(A + 1),

sup {All4y|[* + 1 = A| - [(Ay,y)[} <1

llvll=1

if and only if w,(A) < 1 (see Corollay 2). This shows the following as A/w,(A). If
w,(A) <1, then '
sup {A[|Ay[I* + 1 = Al - [(Ay, )} < w,(4)

flyil=1



and if w,(A) > 1, then
sup {Al|Ayll* + 11 = Al - [(Ay, )|} < w,(A).

[lvli=1

w,(A) is calculated using |(Ay,y)| and ||Ay|| (see (1) of Theorem 2). This shows the
following general inequality (see Corollary 3). For any w,(A),

w,(4) < sup (VX yll + 11 = M- [(Ay, )1}

§2. p-dilation for 0 < p < 2 and generalized numerical radius

In this section, we are interested in operators with vs(A) < 1 when S is a special
positive operator. If S = |A| and vs(A) < 1, then A is normal (¢f. [2],(8]). We consider
A when S = AI + p|A|%, A + g = %1 and vs(A) < 1 where A > 0 and u are constants.

For0 <pu<oo

wu(A) = sup{pllAy|* + |1 — ul - (Ay,v)l ; llyll = 1}.
Then wo(A) = w(A) and wy(A) = ||A])%

Theorem 1. Suppose 0 < p <2 and p # 1. Then A is of class C, if and only if
S >0 and vs(A) < 1 where S = (pI + (p — 2)|A|?)/2]p — 1].
Proof. It is known that A is of class C, if and only if

Iyl + (1 . %) CPllAylE -2 (1 — %) ReC(Ay,y) 2 0

for ( € D and y € H where D = {z € C : |z| < 1}. This inequality is equivalent to

Re((Ay,y) < 2| I lyll* + | | I Agll®
for ( € D and y € H, and

C|(Ay,y ? Ayll®

[CI(Ay,y)| < ’ STl lyll® + ‘ 1| IC1% 1| Ayl

for ( € D and y € H. Since 0 < p <2, the last inequality is equivalent to

[(Ay,y)| < 2 Ayl?
(Ay,y) T 1!” yl* + | 1|H I



fory € H.

Corollary 1. Suppose 0 < p < 2 and p # 1. A is of class C, if and only if
A admits a factorization : A = SY2BSY? where S = (pI + (p — 2)|A|*)/2]p — 1| and
w(B) < 1.

Proof. Suppose A is of class C,. If there exists y € H such that Sy = 0, then
|4y = py/(2 = p). Since pu,(A) > JlAl [1],

Al 1
12> w,(A) > > .
“ P y/p(2=p)

and hence p = 1. This contradiction implies that ker S = {0}. Since ker S = {0},vs(A4) <

1 if and only if ‘
|(S~Y2ASY2g,2)| < (z,2) (z € H).

Let B = S~Y/2AS5-1/2, then this inequality is equivalent to that
A= SY?BSY? and w(B) < 1.

Now Theorem 1 implies the corollary.

Corollary 2. Let A be a bounded linear operator on H and 0 < p = -—i—I <2
w
Then the following conditions are mutually equivalent :
(1) wy(A) < 1.
(2) wu(A) <1
and .
(8) w(plAl® + |1 — ple?A) <1
for any @ € R.
Proof. By Theorem 1,w,(A) < 1 if and only if
2— p

P 2
| Ay||" + [(Ay,y)| <

for y € H. The last inequality is equivalent to
pllAyl® + 11— ul - [(Ay, )] < llyll?

where pu = (2 — p)/p. This implies the equivalence of (1) and (2). The equivalence of (2)
and (3) is trivial.

lyli®

(1),(2) of Corollary 2 implies that if w,(A) < 1 then w,(A) < w,(A) and if
w,(A) > 1 then w,(A4)Y? < w,(A). By (1),(3) of Corollary 2, if u||A]|?+ |1 — u|lw(A4) <1

5



0

then w,(A) < 1. However the converse is not true. For if A = 0

p,w(A) = p/2 and w,(A) = 1. Hence u = (2 — p)/p and

7 | then a1 =

2 — 2ip—1
WA +11 = ol d) =2 BT 2,

§3. Operator radii for 0 < p £ 2

In this section, we give two exact formulae and useful estimates for w,(A) when
0<p<2andp#1.Put

D = DA, p) = (AP - L=y P

for a bounded linear operator A,p > 0 and y in H.

Theorem 2. Let A be a bounded linear operator on H.
(1) If0 < p <2 and p # 1, then

w(4) = 2=l

sup {|(Ay,y)| + vD}.
P =

(2) If0 < p <2, and p#1 then

wo(A) = > sup sup {1/p(2 — Pl AyllVH(I = 1) + o — 1] |(Ay, ¥)It}.

P |lyll=1 0<t<1

Proof. (1) By Theorem 1, if ¢ > w,(A) then A||y||*t®—|(Ay, y)[t+(1—X)||Ay||>* > 0
for y € H where A = p/2|p — 1|. Hence

((Ay,y)| — VD

VA S T

or

(Ay, )| + VD
2

Put
o = sup AL+ VD

wo  2Myl]?




If ¢ Z to, then
Myll** = [(Ay, )t + (1 = V]| Ay|* = 0.

for y € H and so by Theorem 1 w,(A) < to. When 0 < p < 2,|(Ay,y)| — /D < 0 and so
w,(A) > to. Thus w,,(A)

(2) Put g(¢,y) \/ (2 —p)|Ay|ly/t(L = t) + |p — 1] - |(Ay,y)|t for each y with

lyll = 1. Then

2(2 (ty)) 1= 1)
Vo2 = o)l Ayll(L — 2¢) + 2|p — 1| - [(Ay, »)|1 /2 (1 — 1).

4 :
Hence E-t-g(t’y)lt:“ =0 and 0 < ¢ < 1if and only if

_ 1 |(Ay,y)l
and so
\/——— VP2 = p)|| Ayl
1—1
2p-1vD
Therefore
~sup sup {1/p(2 — p)I|Ayll\/t(1 —t) + |p — 1] - |(Ay, y)|t}
Pllyl|=10<t<1
\/ 2 - o)l Ayl (1 |(Ay,y)|
=—sup (2 - p)||Ay p—=1-|(Ay,y)| x | = + —F=
~ sup {\/ 1% Go i o= Ul < (5 + 15

~lp—1 |sup{|(Ay,y)l+\/_} o

P Jlyll=1

Corollary 3. If0 < p < 2, then

2 — 1
wsd) < sup (7= 2yl + 2]t - 2 1),
llyll=1 P P
" Proof. Since va +56 < Va+vb,(a,b>0)for p#1
p(2—p)
lp — 1]

This inequality and (1) of Theorem 2 imply the corollary.

VD < |(Ay,y)| + Il Ay]l-

7



Corollary 4. If0 < p <2, then

ma,x{ \1——' \/ ”A“} <wp ) <2 1—" \/ ||A||

Proof. Since —p(p — 2) ||AyH /(p—1)>> 0. by (1) of Theorem 2

o= 4y, )], —3(2——)||A l

w4) 2 max ]1——| F 4.

| We can get the upper estimate of w,(A) using Corollary 3.

for y € H. Hence

Corollary 5. If0 < p <2, and p # 1 then

wy(4) < = sup (/o2 — PIIAINAT =0 + 1o = 1] w(A)t)

P 0<t<

lp —1] plp —2)

= w(A) + | w(A)2 — —=||A|]2
2wty + |l - =D
and for any |ly|| =1and 0 <t <1

4) 2 %{\/P@ — o)l Ayllye(L —¢) + |p — 1] - I(Ay‘,y)lt}-

Corollary 6. [5] If0 < p £ 2, then
pwp(A)=2w<[ 0 yr(2=p) A )
0 (1-p) A
Proof. For 0 < p £ 2,

wll0 Ve2—0p) A
’ <[o (t—) AD
= 2 sup |y/p(2=p)(Az,z) + (1 - p)(Az,2)]

ll=l?+[l=]?=1

= 2 sup {Vp(2—p)(Az,z)| + |1 —p|-|(Az,2)|}

[l=lf2+1}=12=1

= 2 sup sup {y/p(2-p)lA2[[V1 - A+ |1 - p|-|(Az,2)[}

0L |2)1= =X

= 2 sup sup {y/p(2 — p)| Ayl A1 = A) + |1 —p|- (Ay,y)|VA}

0<A<1 [Jy]|=1

= p wy(4).



We used (2) of Theorem 2 to show the last eqnality. O

§4. The case of 2 < p< @

In this section, we consider Theorems 1 and 2 for 2 < p < co. Unfortunately the
‘results for 2 < p < oo are more complicated than those for 0 < p < 2.
For 0 <A <1, put

wi(4) = sup{|(Ay, »)| ; Myll* + (1 - V]| Ay]* < 1}
Then wi(A) = w(A), and wj(A) = w(A™!) if A is invertible.

Proposition 3. Suppose 2 < p < o0 and for0 <t <1

1 _9
P+t L7% 4P

S=1_2 _
T 21 T 1]

A s of class C, if and only if Sy > 0 and vs,(A) <1 for0 <t < 1.
Proof is almost same to that of Theorem 1.

Using Proposition 3 we can show a version of Corollary 1 for 2 < p < oo. For
0 < A < 1 and arbitrary bounded operator A on H,

wh(A4) < 1/y/A1 = ).

In fact, for any constant ¢ > 0
| 1 1
< (Vt —||Ay||) < 2+ —||Ayl*
I(Ay,y)l_(\/-llyll)(\/zll yll) < 2tllyll” + 5l Ayl

Assuming A # 0,1,if £ > 1/3/A(1 — A) then kA > 1/k(1 — A). Hence if kA = 2¢ then
k(1 — X) > 1/2t. Therefore if £ > 1/4/A(1 — X), then

|(Ay, )| < E(AlYII* + (1 = Al Ay]?)

and so wy < 1/4/A(1 = A).
wy(A) < oo if and only if there exists a bounded operator B such that BA = P
| An Ap

1s the matrix
A Az ]

where P is an orthogonal projection to (ker A)L. For if A = [

9



(ker A)* @ ker A, then A;; = Agy = 0. If

of A with respect to the decomposition H
k = wi(A) < oo, then for z = (z,y) € (ker A)* @ ker A

[(Anz,z) + (Anz,y)| < k(|Anz]® + || Anz|?).

L and |(A11(L',CE)| k”A11$||2. If

B;; & O sat-

I IA

This implies Ay = 0,A;; is one to one on (ker A)
Bi1Ajiz = z, then by the inequality above Bj; is bounded and so B

isfies BA = P. The proof is reversible.

Corollary 7. Let A be a bounded linear operator and let 0 < A <1
1
(1) Suppose = < A <1 and p = 2X/(2A — 1) > 2. Then wi(tA) < 1 for any
. Then

0<t<1 and if and only if w,(A) <1
1
(2) Suppose 0 < A < 3P = 200 = 1)/(2A = 1) > 2 and A is invertible

(tA) <1 for anyt > 1 if and only if w,(A™1) <1
Proof. It is clear by Proposition 3. O

Proposition 4. Let A be a bounded linear operator on H

(1) If 2 < p < o0, then

wa(A) = ”;1 sup {I(Ay,)| + VD ; D 20},

Hlyll=1

(2) If 2 < p < o0, then
)(Ay,y)lt ; D > 0}.

—/p(o = 2)llAyll/tE— 1)

wy(A) = = sup gr;g{

P llvli=1
Proof. (1) The proof is almost same to that of (1) of Theorem 2.
(2) Put f(t,y) = —/p(p — 2)||Ay||\/t(t = 1) + (p — 1)|(Ay, y)|t for each y with
lly]| = 1. Then .

2 (7)) =)
—olp ~2)Ayll 2t = 1) + 2(p — 1)I(Ay, )l 1.

Hence %f(t,y)h t, = 0 and t5 > 1 if and only if




and so

\/—_t_oT_ \/ P 2HAyl|

1)vD
Therefore
s g BV DA + 6Dty
) ,/ p 2)|| Ay]| 1 |(Ay,y)|
_;"s;ﬁpl{_,/ p—2)||Ay| x WD +(p l)l(Ay,y)IX<§+‘W)}
= sup{I(Ay, )|+ vD}
P lly-

p(p—2)

Corollary 8. Suppose p > 2 and w(A) > ||A}l. Then

2(1 - %)w(A) - ﬂ:—2||An

1 2 (P 2) 2 M2
< (1—;>{w(A> ( (a7 - =D n) }
< wp(A) : '

l plp —2) 2 V2
< (1—p>{w<A>+(w(A> +(p i n) }
< 201t M43 24,
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