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RIEMANN-HURWITZ FORMULA FOR
MORITA-MUMFORD CLASSES AND
SURFACE SYMMETRIES

NARIYA KAWAZUMI AND TAKESHI UEMURA

ABSTRACT. Let a finite group G act on a compact Riemann surface C in a faith-
ful and orientation preserving way. Then we describe the Morita-Mumford classes
en(Cg) € H?™(G;Z) of the homotopy quotient (or the Borel construction) Cg of
the action in terms of fixed-point data. This fixed-point formula is deduced from a

higher analogue of the classical Riemann-Hurwitz formula based on computations of
Miller [Mi] and Morita [Mo].

INTRODUCTION.

The last two decades have witnessed a remarkable progress of cohomological
study of the mapping class group for a surface. D. Mumford [Mu] and S. Morita
[Mol] independently defined a series of cohomology classes of the mapping class
group, whose zeroth term is equal to the Euler number of the surface up to sign. J.
Harer has been obtaining various significant results including the homology stability
of the mapping class groups [H1]. The Morita-Mumford classes play an important
role in the stable cohomology ring of the mapping class groups. It has been revealed
by Arbarello, Cornalba, Harer, Miller, Morita and others [AC] [H2-3] [Mi] [Mol-
4] [KM]. The torsion part of the cohomology of the mapping class groups has
been highly studied by homotopy theorists including Benson, Charney, Cohen, Lee,
Tillmann and Xia [BC] [CC] [CL] [T] [X1,2]. It is notable that Glover and Mislin
[GM] have proved there exists a nontrivial torsion class in the 4n-dimensional stable
cohomology group for each n > 1 by evaluating the even Chern classes of GL(Z)
on torsion elements of the mapping class groups.

In the context of surface bundles the Morita-Mumford classes are defined as
follows. Let 7 : X — B be an oriented fiber bundle whose fiber is a 2-dimensional
connected closed oriented smooth manifold. We call such a bundle briefly a surface
bundle. The relative tangent bundle Ty /B is the oriented real 2-dimensional vector
bundle over the total space X consisting of all the tangent vectors along the fibers.
The n-th Morita-Mumford class e, is, by definition, the Gysin image of the n+1-th
power of its Euler class e := e(Tx,5) € H*(X;Z)

en = €n(X) := m(e"t) € H*™(B; Z),
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2 NARIYA KAWAZUMI AND TAKESHI>UEMURA

which is equal to the pull-back of e, by the holonomy homomorphism of m;(B)
into the mapping class group. Here and throughout this paper we denote the Euler
class of an oriented real vector bundle n by e(n). If n = 0, €5 is equal to the Euler
number of the fibers. -

The purpose of the present paper is to study Morita-Mumford classes on finite
subgroups of the mapping class groups. We give an explicit formula for the Morita-
Mumford classes evaluated on an arbitrary finite subgroup of the mapping class
groups in terms of fixed-point data (Theorem B). The authors hope their explicit
formula would be widely used to study the torsion part of the cohomology of the
mapping class groups.

Our fixed-point formula is deduced from a general formula of Morita-Mumford
classes for fiberwise branched coverings of surface bundles. Miller [Mi] and Morita
[Mo1], inspired by Atiyah [A], Hirzebruch [Hi] and Kodaira [Ko], computed Morita-
Mumford classes of iterated cyclic coverings to prove the stable algebraic indepen-
dence of e,’s. Following their computations, we prove it under a certain transver-
sality condition (Theorem A) in §1.

Let 7x : X — B and my : Y — B be two surface bundles, and h: X - Y a
continuous map compatible with the projections. Suppose the map h restricted to
each fiber is an orientation preserving branched covering. Denote by R the subset
of X consisting of all the ramification points of the map h. Now we assume a
transversality condition that the restriction of mx to R is a locally trivial fibration,
and that there exists a fiber preserving homeomorphism ¢ : D(T'x /B|R) — X onto
an open neighborhood of R such that #(0,) = z for all z € R. We call it «
fiberwise tubular neighborhood of R. Here we denote by D(n) the open unit disk
bundle associated with a vector bundle 5 with respect to a suitable metric. Let

Ry, Ry,..., Ry be the connected components of R, and b; the ramification degree
along R;. Then

Theorem A. In the situation stated above we have

m .

en(X>_: (degh)en(Y) + Z (1 - bin+1) (7x R: ) (G(TX/Ble)n> € Hzn(B5 Z).

=1

for any n > 1, where deg h € Z is the fiberwise mapping degree of h, and (7x|g,), :
H*(R;;Z) — H*(X;Z) is the Gysin map associated with the fibration Tx|g,.

It also holds for the case n = 0. In fact, since ey is the Euler number of the
fibers, the formula

eo(X) = (degh)eo(Y) + Y (1 —1b;) - f(the fiber of mx|z,).

=1

is exactly the classical Riemann-Hurwitz formula. This is the reason why we regard
Theorem A as a higher analogue of the Riemann-Hurwitz formula.

If the surface bundles 7x and 7y are C*-surface bundles, % is a C* map, and
the ramification locus R is a C'°°-submanifold of X transverse to the fibers, then
the transversality condition stated above is satisfied.
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As another typical example satisfying the transversality condition we have
Morita-Mumford classes on finite subgroups of the mapping class groups. In view
of the affirmative solution of the Nielsen realization problem by Kerckhoff [Ke]
any finite subgroup of the mapping class group is realized as a holomorphic au-
tomorphism group of a suitable Riemann surface. Therefore we may consider the
following situation.

Let G be a finite group and C' a closed oriented connected 2-dimensional smooth
manifold. Suppose G acts on C in a faithful and orientation preserving way. Then
we may regard G as a subgroup of the mapping class group. The universal principal
G-bundle Eg — Bg induces the homotopy quotient (or the Borel construction) of
the action 7 : C¢ — Bg. The space Cg is, by definition, the quotient of Eq x C
by the diagonal action of G. The map 7 induced by the first projection provides
an oriented fiber bundle with fiber C

C— CG L'B(;v.

Its Morita-Mumford class e,(Cq) € H*(Bg;Z) = H*(G;Z) is equal to the restric-
tion of e, to the subgroup G.

If mx is the surface bundle 7 : Cg — Bg, my the product bundle Bg x (C/G) —
Bg, and h : Cg — Bg x (C/G) the canonical projection, then the transversal-
ity condition is satisfied. Therefore Theorem A implies the following fixed-point
formula as is shown in §2. o

Denote the isotropy group at a point p € C by G,. The fixed-point set

F:={peC;G, # {1}}

is a G-stable finite subset of C, since the action is faithful and orientation preserving.
Let &, be the oriented real 2-dimensional vector bundle over Bg, associated with
the action of G, on the tangent space T,C and e(€,) € H*(Bg,;Z) = H*(G,; Z)

its Euler class. Since the transfer map corgp : H*(Gp; Z) — H*(G; Z) is invariant

under conjugation, the cohomology class corgp (e(ép)™) € H*™(G; Z) is constant on
each G-orbit.

Theorem B. In the situation stated above we have
en(Cq) = Z corgp (e(¢,)™) € H*(Bg; Z) = HZ"(G‘; Z)
PEF/G
for any n > 1.

The right-hand side depends only on the isotropy groups and their actions on
the tangent spaces at the fixed-points. Our formula may be regarded as a certain
kind of fized-point formulas of characteristic classes. Especially if the action is free,
the Morita-Mumford classes e,(C¢) vanish for all n > 1.
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1. Riemann-Hurwitz Formula for Morita-Mumford Classes.

In this section we shall prove Theorem A following Miller [Mi] and Morita [Mo].
Let 7x : X > B, ny : Y — B, h: X - Y, R and R; be as in Introduction.
We abbreviate as ex := e(Tx/B), ey := e¢(Ty/g) and n; := Tx/p|r,. From the
transversality condition we have a fiberwise tubular neighborhood t; : D(n;) — X.
Since {X — R, t;(D(n;));1 < ¢ < m} is an open covering of X, we obtain an
excision isomorphism

t*: H(X,X — R) 5 @ H*(E(m:), Eo(m:)).
=1 .

Here E(n;) is the total space of the bundle n; and Ey(n;) = E(n;) — (zero section).

Let ¢; : H*"%(R;) — H*(E(n:), Eo(n:)) be the Thom isomorphism associated
with n;, and U; € H*(X,X — R) such as t*(U;) = ¢;(1). H*(X,X — R) is Z-free
with free basis {Uy,Us,...,Un}. Clearly we have

di(e(n;)), ife=y
0, ifi # 7.
' Since T'x/p is isomorphic to h*Ty,p on X — R, the difference ex — h*ey is in
the image of the inclusion homomorphims j* : H*(X,X — R) — H?*(X), i.e., we

have ex — h*ey = j* (3.0, a;U;) € H%(X) for some a; € Z. Restricting it to each
R;, we obtain

(1.2) e(n:) - bie(mi) = aie(m:) € H(Ry),

where b; is the ramification degree along R;. From (1.1) and (1.2)

(1.1) v t*(Uin) = {

m n-+1

' 1 nt1-
6Xn+1 — h*eyn+1 +]* Z Z (n—]l_ ) (h*eYlRi) ! kaiklrik)

=1 k=1
m n+l

. 1 - n
=h*eyn+1 +]* ZZ (n']: )bin-{-l kaike(m) Uz)

=1 k=1

3

=1

— h*eyn—l-l __1_]* Z (1 _ bin+1) 6(77i)nUi>

for any n > 1. Hence we obtain

m

(13) 6Xn+1 — h*eYn-H +j*(t*)—1 (Z (1 . bin+1) ¢z (e(ni)n))

i=1

forn > 1.

We denote the fibers of the bundles 7x : X — B, mx|(x-r) : X —R — B and
Tx|r; : Ri — B over a point sg € B by C, C° and R;|sq respectively. The Serre
spectral sequence of the pair of fiber bundles (X, X — R) induces an isomorphism

mxs: H*(X,X —R) S H*"%(B; H*(C,C")).
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As a m((B)-module, H*(C, C°) decomposes itself into P, H°(R;|so). The coho-
mology group H*~ 2(B H°(R;ls)) is naturally isomorphic to H*~2(R;), and the
integration map H°(R;|sq) — Z induces the Gysin map (7x]|r, ), H*%(R;) —
H*~2(B). Therefore we obtain a commutative diagram o

H*(X,X - R) X H**(B;H*(C,C°)) —— @I, H*(R))
(1.4) | a2 o(rxlx), |

HYX) —— H=B;HYC) 9 mgyp).

The composite of the lower arrows is equal to the Gysin map 7x; in the definition
of the Morita-Mumford classes, and that of the upper ones equal to (6} ¢,-_1) ot*.
Consequently, from (1.3), we obtain

en(X) =mx) (ex™) = mx, (h*ey”+1 + ()™ (Z 5" i (e(mi)” )))

m

=(deg h)en(Y) + (& (mx|r: ) mxa(t") ™ (Z (1-8"") 6 (6(%)"))

=1

=(degh)ea(Y) + Y (1= 6"*) (mx|r.), (e(m)").

i=1
This completes the proof of Theorem A.

2. Fixed-point Formula for Surface Symmetries.

In order to prove Theorem B, fix a complete system of representatives {py, ps, ...,
Pm} C F with respect to the action of G. We abbreviate as G; = G, and &; = ¢,,.
The quotient Eg/G; can serve as the classifying space Bg,. :

Consider the canonical projection

h:Cg=(Eg x C)/G — Bg x (C/Q), (v,7)modG > (zmod G, zmod G).

The homotopy quotient F¢ := (Eg X F')/G may be regarded as a closed subset of
Cg, and coincides with the ramification locus R of the branched covering h. Clearly
7|Fs : Fg — Bg is a locally trivial fibration.

Each representative p; corresponds to a connected component of R. We intro-
duce a map f; : Bg, — Cg (“multi-valued section of 7”) by fi(zmodG;) :=
(z,p;) mod G. From a G-stable decomposition F' = [[;~, G - p; we find Fg =
I, fi(Bg,). Choose a sufficiently small G;-stable open disk D; C C centered
at each p;. The map defined by

ti: (Eqg x D;)/G; —» Cq, (z,2)modG; — (z,2)mod G

can be regarded as a tubular neighborhood of the connected component fi(Bg,).
Thus the branched covering h satisfies the transversality condition in Theorem A.
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The relative tangent bundle T, /g, is equal to the homotopy quotient of the
tangent bundle TC, Tg,/B; = (Eg x TC)/G. Hence the disk bundle (Eg x
D;)/G; is isomorphic to the unit disk bundle of ¢; = (Eg x T,,C)/G;. Clearly
e(Tps x(c/6)/Bs)" ! = 0for n > 1. Since b; = §G;, we have bje(¢;) = 0 € H*(Bg,).
Therefore Theorem A implies

m

n(Ca) = Y (7lpcmoy ), (el6)")

i=1

forn > 1.

Conceptually a transfer map results from a Gysin map. In this section, however,

we replace the Gysin map (7r| fi Bci))' with the transfer map corgi in an explicit

manner. For we believe it will be good for future actual computations.
Consider the relative cohomology H?(C,C°), where C° = C — F. Let v; €
H;(C,C") be the image of the positive generator of Ha(D;, D; — {p;}). The evalu-

ation at v; induces a G-isomorphism
v, : H2(C,C°) 5 @Homz[g‘.](Z[G],Z)
i=1
by the universal mapping property of coinduced modules, and an isomorphism
m N
ve: H*"*(Bg; H*(C,C°)) = (D H**(Ba,; Z)
v i=1

by Shapiro’s Lemma. (cf. e.g., Brown [B].) Therefore we have a commutative diagram

H*_Z(BG; HZ(C, CO)) . @:’;1 H*—Z(BGi)

j*l @corg‘_l

H*%(Bg; HA(C)) =% me—(pg)

from the definition of the transfer map corgi. Comparing it with the commutative
diagram (1.4), we obtain

en(C6) = Y (Tlsimap), (e(6)™) = Y cord, (e(€)")

=1 =1

for n > 1. This completes the proof of Theorem B.
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3. Applications.

Let G be a perfect finite subgroup of the mapping class group of genus g, and
C a compact Riemann surface on which G acts as a holomorphic automorphism
group. Then, for any element v € G, we have

e1(Cyy) = 0 € H*((7); Z),

since H?(G;Z) = Extz(H1(G;Z),Z) = 0. Here we denote by (y) the subgroup of
the mapping class group generated by ~. Therefore we obtain

Lemma. Ife;(C(,)) # 0 € H*((y);Z), there is no perfect finite subgroup contain-
ing < in the mapping class group.

As an example, consider two complex plane curves
w? =1-—229% 2 = (2129+1 — 1)

for g > 1. Glueing them each other by the map z; = 2™, w; = 2791w, we obtain

a hyperelliptic curve C' of genus g. ¢ := exp (ﬁﬁ;) defines an automorphism

of the curve by 2z + (z and w — w. It induces an element v of order 2¢g + 1
of the mapping class group of genus g. Let ug € H?({y);Z) be the Euler class
assocmted with the complex 1-dimensional G-module given by multlphcatlon by (.

" generates the group H?"((y);Z) = Z/(2g + 1) for each n. Then Theorem B

implies
en(Ciy)) = 0™ +uo™ + (=g — Duo)" = (24 ¢™)uo™ € H*™((7); Z).

for any n > 1. Especially e1(C¢yy) # 0 if ¢ > 2. Hence the element ~ is not
contained in any perfect finite subgroup of the mapping class group of genus g > 2
from the lemma stated above. Moreover we obtain e;™ # 0 for any n > 1 as a
torsion element of the cohomology group of the mapping class group of genus g,
provided that 2¢ + 1 is not a power of 3.

The second author has found some finite cyclic subgroups satisfying e,aq = 0
and ez # 0. The details will be appear elsewhere. It would be interesting that there
would exist a finite subgroup satisfying e; = e; = 0 and e3 # 0.
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