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FREE BOUNDARY PROBLEM FOR QUASILINEAR
PARABOLIC EQUATION WITH FIXED
ANGLE OF CONTACT TO A BOUNDARY

Y OSHIHITO KOHSAKA

1. Introduction
We consider the following free boundary problem of form;

us = (a(uz))e, s(t) <z <0, t>0, (1.1)
uz(s(t),t) =tanfy, t >0, | (1.2)
uz(0,t) = tanfy, t>0, (1.3)
u(s(t),t) =0, t >0, (1.4)
u(z,0) = uo(z), 5(0):=s50<zx<0, (1.5)

where a € C*(R) and a/(c) > 0 for s € R (1 = —dd;), and s is a given negative
number, and ug € C?[sg,0]. We also assume a compatibility condition ug.(sy) =
tan 6o, uoz(0) = tan61,up(sp) = 0, and assume uy(z) > 0 for z € (50,0]. The
angles §; € (0, %) for ¢ = 0,1 will be measured counter-clockwise from the z-axis.

If we set a(o) = arctan o, the equation (1.1) is the curvature flow equation for
the graph of u separating two phase. The curvature flow equation is one of the
typical evolution equations which describe the motion of the phase boundary. In
this case, this problem is the curvature flow problem with prescribed angle on the
boundary of the second quadrant. (cf. Figure 1.1)
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Figure 1.1
If we set a(c) = o, the equation (1.1) is the heat equation. In this case, this
problem appears in the combustion theory.
In this note, we consider the convergence of the solution of (1.1)-(1.5) as t — oo
in the case §p < ;. Our main goal of this paper is to show that the solution
of (1.1)-(1.5) converges as ¢ — oo to the unique self-similar solution in the case

6o < 0.

Typeset by ApS-TEX
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Main Theorem.  Assume that 6y < 4;.

(I) There exists an ezpanding self-similar solution S corresponding to the prob-
lem (1.1)-(1.5) which is unique up to translation of time.

(II) Let T'y be a solution of (1.1)-(1.5). Then, for each 0 < § < 1/2, there is a
constant Cs such that :

di(Te;S:) < Cst™% for t>1

where dg denotes the Hausdorff distance.

To prove this theorem, we employ what is called similarity change of variables:

u(z,t) = VELL U, 7), s(t) = VI 1 p(r), (1.6)

where )
T
= , T= —log(2t + 1). 1.7
§= o= 7= 3 log(2t+ 1) (,)
Then, the equation (1.1) becomes
Ur = (a(Ug))¢ + Ve — U (1.8)

A stationary solution to (1.8) is called a self-similar solution.

We show in Section 2 that the self-similar solution corresponding to the problem
(1.1)-(1.5) exists uniquely. We consider the following ordinary differential equation
of form (P);

(a(Ue))e + MU = AU = 0, € € (g,0), (1.9)
Ue(q) = tan by, (1.10)
Ue(0) = tan 6, (1.11)
U(q) =0. : (1.12)

This is the stationary problem of (1.8) with the boundary conditions for )\ = 1.
For the proof, we shall employ the shooting method. That is, we first consider
the set of the parameter ) (denoted J) as the solution of the initial value prob-
lem (1.9),(1.10),(1.12)(denoted (P),) exists. Here, We define the map & : J >
A = Ug(0; \). We prove that the map & is strictly monotone so that it is injec-
tive. Moreover, we prove that ® is surjective from its domain of the definition to
[tan 8y, 00). Consequently, we obtain a unique solution of the problem (P).

We show in Section 3 that the solution of (1.1)-(1.5) converge as t — oo to the
self-similar solution. For the proof, we construct the subsolution and the superso-
lution converging to the stationary solution to (1.8) with the boundary conditions.

In this note, we do not prove the existence of the solution for the problem
(1.1)-(1.5). As for the existence, we refer to A. Fasano and M. Primicerio [1].
They proved the local time existence and uniqueness of the equation u; = A(u)uz,
with the boundary conditions us(s(t),t) = P/(1—s(t)) (P : a constant), u,(0,t) =
h(t),u(s(t),t) = 0, and the initial data u(z, 0) = g (z), where A € C?(R), A(u) > 0,
and h, ug were given. We explain their idea of the proof. For given s, they find
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the solution of the problem excluding the condition u(s(t),t) = 0. From this u,
one finds § as a solution of ds(t)/dt = —(1 — s(t))us(s(t), t)/ P, which is obtained
from u(s(t),t) = 0. They proved that the mapping s — 3 is contraction in some
topology provided that the time interval is small. The fixed point is the desired
free boundary. We note that one proves the local time existence of the solution for
our problem by the similar method. For the local time existence and uniqueness
of the free boundary problem for quasilinear parabolic equation, there is a paper
by D. Andreucci and R. Gianni [2]. In a little bit different setting they studied the
two phase problem with a jump condition for |Du| across the free boundary.

There are several references studying the asymptotic analysis. We only refer
these papers dealing with the problem with boundary conditions directly related
to ours. We refer to S. J. Altschuler and L. F. Wu [3],[4], N. Ishimura [5], D.
Hilhost and J. Hulshof [6], V. A. Galaktionov, J. Hulshof, and J. L. Vazques [7].
In [3] they studied the asymptotic behavior of the solution for the equation u; =
(a(usz))s with the boundary conditions ug(j,t) = tana;(j = 0,d) (cf. Figure
1.2). They proved that this solution converges as ¢ — 0o to a solution moving
by translation with speed (a(tanag) — a(tanap))/d. In [4] the same problem is
considered in two space dimension. In [5] N. Ishimura studied the evolution of
plane curves which are described by entire graphs with prescribed opening angle.
That is, he considered the asymptotic behavior of the solution for the curvature
flow equation for the graph of u with the boundary conditions u, — Kj as z — oo,
Ug — —Ky as z — 00 (0 < K; < Kz < c0). He assumed that the initial data
up is convex, and proved that this solution converges as ¢t — oo to the convex
self-similar solution corresponding to his problem. The authors of [6] considered
one-dimensional free boundary problem arising in combustion theory. They studied
the asymptotic behavior of the solution for the heat equation with the boundary
conditions uz(0,t) = 0,u({(¢),t) = 1,u(¢(¢),t) = 0. They proved that all solutions
are asymptotically equal to a self-similar shrinking solution which vanishes in a
finite time. In [7] they extended the result of [6] to the radial symmetric multi-
dimensional case.

He

oA

=0 t=to x=d =0 t=1 x=d 1=0 t=ts x=¢

Figure 1.2
In this note, we proved with respect to the case 6, < 6;. We shall discuss the
case fp = 61 and 6y > 6, in our forthcoming paper.
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2. Structure of self-similar solutions
We consider the equation of form (P):

(a(Ug)) + MU — AU = 0, £ € (,0),

(2.1

Ue(q) = tan 8y, (2.2
Ue(0) = tan 6y, (2.3)
Ulg) =0, (2.4)

where a € C%(R) and a/(¢) > 0 for 0 € R(r = £), and ¢ is negative constant.
The angles §; € (0,%) for i = 0,1 will be measured counter-clockwise from the
z-axis. Here the function U and the number ) is unknown and we shall discuss the
existence of solutions.

Theorem 2.1. (Ezistence and uniqueness)  Let q, 8y, 61 be given constants.
Assume that

q<0,0<00391<§.

Then there ezists a unique solution (\,U) € [0,00) x C%[q,0] to (P). Moreover,
A =0 s if and only if 6y = 6.

For given A € [0, 00), let (P) be the initial-value problem (2.1), (2.2), (2.4). We
define the set J as

J:={A € [0,00) | there exists a U € C?[q, 0] satisfying (P)a
for the interval [g,0]}.

Remark 2.1.  We first observe that 0 € J. Indeed, if A = 0, (2.1)is (a(Ug))e =0
for £ € [g,0]. Hence, a/(Ug)Uge = 0 for ¢ € [g,0]. Recalling a’ > 0, we get

Uge =0 for ¢¢lg,0]. ~ (2.5)
Then, by means of (2.2), (2.4), and (2.5),
- U(Q) =(tanfp)(§ —¢g) for &€ g,0).
Since U € C?[q,0], J includes A = 0. Thus, J # ¢.

For the proof, we use a shooting method. It consists of several steps.

Lemma 2.1. (Openness of J) Assume that Ao € J. Then there is a small 6 > 0
so that the set (Mg — 8, Ao + 6) N [0,00) is including in the set J.

To prove this lemma we now rewrite the initial-value problem (p)a by introducing
a new dependent variable y(¢) < a(Ug(£)). We set

a(Ue(£)) = (&)

Since a’ > 0, there exists a C? inverse function a~! of the function a to get

Ue(§) = a7 (y(¢))-
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ot

The equation (2.1) becomes:
Ye + Ma"l(y) - AU = 0.

It is easy to see that (P), is rewritten in the form of a system
a y) - (—-Asa—%y) +2U
E\U) al(y)

(gm) = (57

For later notation, we set

il

F(& y, U A= (fl(f, y, U, ,\))

f2(€a Y, U7 )‘)

and denote the solution of (P)y by U(&; ).

Proof of Lemma 2.1.  For given A\g € J, since U(- ; \g) € C? [g,0], there exists a
constant M > 0 such that

[Ue(& M)l < M, |[U(& Xo)| < M for € € [q,0].
Now, we define

D:={(y, U, \) | £€g,0], a(~K) <y < a(K), |U| < K,
A€ (Ao —p, Ao+ p)N[0,00)}

where K, u are constants with K > 2M, u > 0. Then, F is Lipschitz continuous
or D with respect to y, U. Indeed,

0f1 L _3_ -1 - A¢ 9f1 -
o = et WSy

= —aqa"! = - = 0.
o~ 5t W= gy v =

Since the derivative 6f a~!(y) with respect to y is positive, we get
-K<aY(yy<K on D.

| Thus, recalling a € C2(R) and a’ > 0, there exist constants C1, Cs such that
0<Cy <ad(a (y) < Cs.

Hence, there exists a constant C > 0 (independent of a point of 5) that satisfies

%) <0, %] <o, 22
Oy -

<
<6 oU Ay

<C on D
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where C depends on g, K, Ay, 1. We thus observe that F is Lipschitz continuous
on D with respect to y,U.

Then, from Chap.1, Sec.7 of E. A. Coddington and N. Levirson [8], there exists
a constant § = 6(X) € (0, 1) such that if A € (Mg — 8, Mg+ §n [0, 00), there exists
a unique solution of (P), in [g,0]. This concludes the proof of Lemma 2.1. O

Remark 2.2. (Differentiability on the parameter) We compute the first order
partial derivatives of f, f with respect to J;

O _ - 0f2 _

Then, these are continuous on D. Thus, the solution of (P) in the proof of Lemma
2.1, which is given for A € (Mg = 6, Ao +6) N [0, 00), is

y(&; ) 1 R .
(U(f; -)) €C (M =8 X +8)N[0,00) for ¢elg,0].
(cf. [8])

Lemma 2.2. (Connectedness) Assume that Ao, A1 € Jand Mg < Ay If X <
A < A1, then X is included in the set J.

In order to prove Lemma 2.2, we study qualitative properties of solution.

Lemma 2.3.  Assume that \ € [, B], with constants o, B satisfying 0 < a < B,
and that U € C?[q,v] with constants q,~ satisfying g < v < 0 fulfills

(a(Ue))e + MU ~ AU =0, £ € [g,7], (2.6)
UE(Q) = tan 007
U(g) = 0.

Then, the following estimates are valid;
(1) Uge(€ 5 A) >0 for £€(g,7], A >0,
(1) Ue(§ 5 A) >0 for € € [g,7], A€ [a, 4],
(1) Ue(§ 5 X) >0 for £ €g,7], A >0,
U(E 5 X) >0 for £ € [g,7], A€ [, 0],

where - is the differential with respect to \.

Proof of Lemma 2.3. (3).  Since U € C%[q,~], ¢ | ¢ in (2.6),
a'(Ue(9))Use(9) + MqUe(q) — AU (q) = 0. (2.7)
This equation (2.7) with Ug(g) = tan 8y, U(q) =0, and X > 0 implies that
a'(Ue(9))Uge(g) — Agtanéy > 0.

By o’ > 0, we observe that Uge(g) > 0. Thus, there is a some constant 61 > 0 that
satisfies

Ueg(§) >0 for ¢ elg, g+ 61). (2.8)
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Here, we define

§1:=sup{&s | Uge(é) >0 for ¢ €lq,&)}
Then, by (2.8), we see & > ¢+ 6.

Assume now that £ < . We derive contradiction. We first assume & < 7.
Then,

Uee(61) =0, Uge(é) >0 for ¢ €[gq,&1).
Thus, by U¢(g) = tanfy > 0, we see

Ue(§) >0 for £ €g, &l
Moreover, since U(g) = 0, this implies
Ul) >0 for £e€(qb]
Setting ¢ = &; in (2.6) now yields
o' (U(€1))Ugs(61) + MaUe(é1) = AU (&1) = 0.
We recall a’ > 0 and A > 0 to get

MU(&) — &Ue(&)) .
&)

Uge(é1) =

This contradicts Ugg (1) = 0.
Next, we assume {; = ~. Then,

Uee(7) =0, Uge(€) >0 for ¢ €g,v).

Under the same discussion as in the case ¢; < v, we get

Ue(§) >0 for ¢ €lg,9],

and
U() >0 for ¢e (g,

Since U € C?[q, 7], letting £ to 7 in (1.5) yields,

&' (Ue(1)Use () + MU (x) = \U(7) = 0.

Since a’ > 0 and A > 0, we now obtain

UEE(’Y) — A(Ui’,?U'E'<7y§J)(7)) > 0.

This contradicts Ugs(y) = 0.
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Consequently, & > v and consequently,

Uee(€) >0 for £€g, 4], A>0. O

Proof of Lemma 2.3. (ii).  Since (i) holds and the graph of U is a straight line if
A=0,Ug(&: A) > 0for € € g, 7], A > 0. Thus, by Ue(q; A) =tanéy > 0.

Ue(€: 2) >0 for £€[gn], A>0. (2.9)
Moreover, by U(q ; M) =0,

U(§; N)>0 for £€(q7], A>0. (2.10)
We next define

Dy := {(fa y, U, A) l £ € [Q: 7]’ a(_L) <y <a(L), 'Ul <L,
)\E(Oé—/l, ,6+ﬂ)ﬂ[0,00)}

where L, ii are constants and L > 2M, 4 > 0.

Consider the initial-value problem (P)y on Dy. Since the first order partial
derivatives of fi, fo with respect to y, U are continuous on D. F is Lipschitz con-
tinuous on Dy with respect to y,U. Thus, from Chap.1, Sec.7 of E. A. Coddington
and N. Levinson (8], there exists a constant &, = 6,(a, 8) € (0, &) such that there
exists a unique solution of (P), in [g,] for \ € (@—63, B+62)N[0,00). Moreover,
since the first order derivatives of f;, fo with respect to A are continuous on Dy,

(g((ff ;; ))> € C*((a - 6, B+62)N[0,00)) for ¢ € [g,7].

Hence, we differentiable both sides of (2.6) with respect to ) to get
o' (Ug)Uge + o (Ug)Ug Uge + MU + U — AU = U = 0. (2.11)
Since Ug(g ; A) =tanfy and U(g; A) =0,
Ug(g; A) =0, U(g;\) = 0.
Sending ¢ | ¢ in (2.11),
a'(Ug(g 5 M)Uee(q; A+ qUe(g; M) =0.

Consequently, _
a/(tan89)Usge(q ; A) = —gtanfy > 0.

By o’ > 0, this implies Ugg(q ; A) > 0. By continuity, there is a constant §3 > 0
that satisfies

Uee(6; M) >0 for €€lq, g+8), A€o, A].
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Since Ug(q ; A) =0 and U(g; A) =0, this implies
Ug(€; A) >0 for £€(g, g+6], A€o, B, (2.12)
UE; \)>0 for €€ (¢ ¢+38], A€ [o, B]. (2.13)

We now define

b =swpl6 | Ueles ) >0 for ¢€(a, &), Aele, A},

Then, by (2.12), we see &3 > ¢ + 63.
Now, let us assume £3 < (< 0) and show a contradiction. By the definition of
{3, there is ) € [a, f] that satisfies

Ue(€s; M) =0, Ue(¢; X) >0 for ¢ € (g, &). (2.14)

We rewrite (2.11) if the form
(@' (Ug)U¢)¢ + XeUe + €U — AU = U = 0. (2.15)
Then, if A = ), integrating both sides of (2.15) on (g, &3) with respect to ¢ yield
§s
o Uglés; N—a'-Telg; D) +3 / Ucdc+ [ eve ae

s &
-2 Udf U d¢ =0.

Integrating by parts with Ug(&; A =0= U’E(q ; A) yields

&R UE: N+UEs; N) = 2{X /q " e+ / "y ds}. (2.16)

q
By (2.13) and (2.14), we see
U >0 for e(g, &l (2.17)

Then, by (2.10), (2.17) and ¢+ 63 < & < v < 0, we see the left side of (2.16) is
nonpositive while the right side of (2.16) is positive. This is a contradiction. Hence,

& > .
Consequently,

Ue(€5 2)>0 for €€(g 1), A€o, 8. O

Proof of Lemma 2.3. (ifi). By (2.9), Ug(é; X) > 0 for &€ € [q, 4], A > 0.
Moreover, from (ii) and U(g ; A) = 0, it follows that

U(€; N)>0 for ¢€(g 9], A€o, 6. O
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Proof of Lemma 2.2. Let [g, «(X)) denote the maximal existence interval of the
solution of (P)y for each A. If ¢(\) > 0 for any X € Ao, A1), we get X € J. Tt
suffices to prove that +(X) > 0 for any A € [, A1l ‘

We first prove that 4(A) is lower semi-continuous. Since the solution of (P)
exists in [g, «())), it exists in [q, +()\) — e] for any € > 0. Thus, from Chap.1. Sec.7
of E. A. Coddington and N. Levinson [8], there exists a constant &5 > 0 such that
there exists a unique solution of (P); in [g, u(A)—¢] for A € (A= Gq, A+64). Then,
by the definition of 4()), ~

WA)> (M) —e for Ae (A =64, X+ 64).

Consequently, +(\) is lower semi-continuous.
Here, since the lower semi-continuous function has a minimum value, we define

o :=min{s(A) | X € [Ag, A]}.

It suffices to prove that ¢, > 0. _

We assume ¢, < 0 and shall derive a contradiction. We take Ax € [Ag, M] such
that . = 4(A.), there exists a solution of (P),_ in [g, t.). Since \; > A, by Lemma
2.3 (i),

Ue(€5 M) 2 Ue(§5 M) for £€g, i),
Thus, ; .
lirér.lTsup Ue(€5 A1) > lir?Tsup Ue(€5 Ad). (2.18)
Moreover, by Lemma 2.3 (iii),
| CU(€5 M)2U(E; A) for €€lg, u)
Hence

limsup Ug(¢ ; A1) > limsup U(¢; A,). (2.19)
ETex ETew

Here, by Lemma 2.3 (i), (iii); Us and U are monotone increasing functions in [g, ¢,)
with respect to . Thus, by the definition of ¢,
limsup Ug(¢; A) =00 or limsup Ug(€; A). (2.20)
§Tem ETem
Then, (2.18), (2.19), (2.20) and ¢, < 0 contradict \; € J. Consequently, ¢y, > 0
ie. ¢(A) >0 for any A € [Ag, A\;]. O
By Lemma 2.1, J is the open set included in the interval [0,00). Moreover, we
define Ag € (0, 00] as the supremum of A such that there exists a solution of (P)
in [g,0]. Then, by Lemma 2.2, that J is an interval [0, Ag).
We now define the mapping
d: [0, N ERPY UE(O i A).
Then, Lemma 2.3 (ii) implies
0P S
[2))
Thus, @ is a monotone increasing function, which is a bijection:
®:[0, Ag) — [tanb, /\llTIII\lo B(N)).

0.

We shall prove that }1&1 ®()) = .
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Lemma 2.4.  Assume that Ay < co. Then limyra, ®()) = oo.

Proof of Lemma 2.4.  Suppose that }%11{1 ®(X) = L < oo. Since ® is a monotone
. .

increasing function, we get
[Ue(0; M) <L for Xel0, Ag). (2.21)
While, by Lemma 2.3 (i),
Uee(; A) >0 for £€lq.0], Ae[0, Ag).

Thus, U is a monotone increasing function with respect to ¢. By Ue(g; A) =tané,
and (2.21),

0<tanfo <Ue(€; A) <L for €€[g,0], A0, Ag). (2.22)

Then, by (2.22),

(tando)(§ =) SU(E; \) S L(E—q) for £€g,0], A& [0,Ao).

Thus,

Moreover, by a € C*(R), a’ > 0 and (2.22), there exist constants C;, Cy such that
0<Cy <a(Us) < Co. (2.24)
Since Uge = (=M Ug + A U)/a'(Ug), by (2.22), (2.23) and (2.24),

sup{|Use| € € [9,0], A € [0, Ag)} < oo. (2.25)

Now, we define

Uk i=U(E; Ao~ 1), keN, ke (-, o)
R Ao

Then, by (2.22), (2.23), and (2.25), there exists a constant C; = Cs(L, Ao, g, )
such that

1U*]lc2(0.0) < Cs.

Here, since C?[g,0] is compactly inbedded in C%[q,0], there exist a subsequence
{U*} c {U*} and U € C'[g, 0] such that

HUkj —ﬁllcl[q,O] — 0‘ as ]—> .

Now, we set

_- gl(fa U, U, ’\) e— Ue |
G(& U, Ug, \) = (92(& U, Ue, ,\)) = ((—AfUEHU)/a'(Ue))'
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Then, since U% is a solution of (P)py~1 Jk;> We get

Ukj 0 ¢ I k]- 1

Here, since G is continuous with respect to U, Ug, A, we get

U 0 ¢ .k . :

Thus, U satisfies (P)a,- Then, G is Lipschitz continuous on the set {(¢, U, [75, Ag)|
£ €[q,0,0 <U < —qL, tanfy < Ue < L, Ay € (0,00)} with respect to U, U‘E.
Because,

91 _, 991 _ . g : Ao
oU " aU; T 8U  a/(Ue)
9g2 _  Aoé a" (U)

00 (T | (@(0¢))? (AokTg — Ao D).

Recalling ¢ € C%(R) and tan 6, < []’5 < L, there exists a constant Cy > 0 such that
0" (Te)] < Cor | (2.27)
Thus, by (2.24) and (2.27), there exists a constant Cs > 0 such that

|?£~3 < Gy, 3_{72, <Cs

oUu oU¢
where Cs depends on g, L, ;. Then, we know that G is Lipschitz continuous on
the set {(¢, U, Ug, Ag) | ¢ € [¢,0], 0 < U < —qL, tanfy < Ue < L, Ag € (0, o0)}
with respect to U, (75.

Hence, since the solution of (P),, is unique, U = U (€ ; Ag). Consequently,
Ao € J. Then, since J is an open set by Lemma 1.1 and Ao € (0,00), there exist
a constant 65 > 0 such that [Ag, Ag + 65) C J. This contradicts that Ay is the
supremum of A such that there exists a solution of (P), in [g,0].

Consequently, ,\1#11{10 () =o00. O

Lemma 2.5.  Assume that Ag = 0co. Then limyjeo @(A) = 00.
Proof of Lemma 2.5.  Now, let us suppose ile ®()) < 0. Then, setting l{le (N
=L, by a € C?(R),

iiTm a(Ue(0 5 X)) = a(L) < . (2.28)

While, integrating both sides of (a(Ug))¢ + AéUs — AU = 0 on [¢,0] with respect to
¢ and computing,

0
o(Ue(03 ) = aianto) + 23 [ U(e; Nt

q
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Then, by Lemma 2.3 (iii),

0
(U0 X)) 2 altan o) + 27 [ Ue; 0) g
q ' -
= a(tan fy) + Ag? tan 6. (2.29)
Since ¢® tan 8y > 0, we get

lim a(Ug(0; A)) = oo,

This contradicts (2.28).
Consequently, ile ®(A\)=0c0. O

Remark 2.3. (i) If a is bounded from the above, i.e. there exists a constant M
such that a(c) < M for o € R, then

M — a(tanf))
g% tan

Ao £

Indeed from (2.29), it follows that
a(Ue(0 5 X)) > a(tanby) + X g% tanby.
Thus, for A € (0, Ag)
a(tanfo) + Ag® tanfy < a(Ue(0; A)) < M.
Then, for any € > 0

a(tanby) + (Ag — €)¢® tany < M.

Hence,
M — a(tan )
A
0 < g2 tan 6
Since ¢ is arbitrary,
Ay < M - a(tan&o).
g% tan 6

(ii) If the initial-value problem (P), is solvable for any ) € [0,00), i.e. sup d#dy-a“1 (y)
< 00, Ag = co. Because, if s&p d—‘;a"l(y) < oo, F is Lipschitz contnianuous with
respect to y, U for any A € [0, 00).

Proof of Theorem 1.1. By Lemma 2.4 or Lemma 2.5,

@([0, Ao)) = [tan s, OO)
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Moreover, since 9®/8\ > 0 by Lemma 2.3 (ii), ® is one-to-one. Thus, & is a
bijection. Consequently, for any o := tan 61 € [tanf;, oc), there exist a unique
(A, U) € [0, Ag) x C?[g,0] satisfying the initial-value problem (P)y and Ug(0) =
tan 91. O : i )

Remark 2.4. (Relation between )\ and q) Weset A = \(q). Then, A¢q) =
A(g)/¢? holds for ¢ € (0,00). Here, we set q = —1 and replace —( by q. Then,

- (2.30)

" where A(~1) is a constant satisfying A(—1) = 0if 6y = 6; and A\(=1) > 0 if 6o < 6.
In Theorem 2.1, we determined (), U) by giving q, 8, 0;. But since (2.30) holds,
we can determine (g, U) by giving X, 6y, ;.

3. Convergence of a solution for 6, < 4,
We consider the convergence of the solution of (1.1)-(1.5). Now, we employ the
similarity change of variables (1.6)-(1.7). Then equations (1.1)-(1.5) become

Ur =(a(Ue))e + €U = U, p(r)<€<0, 7> 0, (3.1)
Ue(p(7),7) = tan by, T >0, (3.2)
Ue(0,7) = tan 6, T >0, (3.3)
U(p(r),7) =0, T >0, (3.4)
U(§,0) = Up(¢), p(0) =50 <EL0. (3.5)

Here, we shall discuss the convergence of a solution for problem (3.1)-(3.5).

Theorem 3.1.  Assume that uy € C? [50,0] satisfying uoe(so) = tan 6y, upe(0) =
tan 61, uo(so) =0, and ug(€) > 0 for & (80,0]. Moreover, assume that (U, ),
p(7)) is a smooth solution for problem (3.1)-(3.5). Then (U(&,7),p(7)) converge
as T — oo to (U*(€),p*) satisfying

(a(Ug))e + U —=U"=0, p*<€<0 (3.6)
Ug (p*) = tan by (3.7)
U¢(0) = tan 6, (3.8)
U*(p*) =0 (3.9)

Moreover, this convergence is exponential;

_sup - sup [VEH(U(E ) — /€ + (U(¢0))? | < Ce~bor

€0€[p-70] E€D(£017)
for some & € (0,2) and T > 0 where
D(&o,7) 1= {£ | € — coordinate of intersection points of the
straight line {(&,7)|U*(&)¢ = &r = 0} and
the graph {(¢,r)lr = U(¢,7),p(7) < € < 0}}
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and C 1is a constant and is independent of T.

For the proof of Theorem 3.1, we construct a subsolution and a supersolution
for the problem (3.1)-(3.5), which converges as 7 — oo to U* satisfying (3.6)-(3.9),
and use the strong maximum principle. :

3.1 Structure of a subsolution
We first define vy (€) as the following. We set

K= min{tan 8, inf ( uo(¢) )}
£€(s0.0) \ & — 8¢

Here we choose a constant / satisfying

SoK
tan 01

<{<0. , (3.10)

Pd
Ss o’ z
Figure 3.1
Then, by Theorem 2.1, there exist a unique (A, vy) € (0, o0) x C2[¢, 0] satisfying
(a(voe))e + Ae €voe — Aevp =0, £<£<0, (3.11)
’Uog(z) =tan 00, (312)
UOf(O) = tan 6., ' ' (313)
v (€) = 0. (3.14)

By Remark 2.4, if necessary, we choose A¢ such that Ay > 1. Then, we get the
following relation between ug and vj.

Lemma 3.1.  Assume that vy satisfies (8.11)-(3.14). Then the following estimate
15 valid:

u(€) > w(€) for £e€e,0]

Proof of Lemma 3.1.  We set w(£) := (tan6;)(¢ — £). By (3.10), we get 0 <
—{tanf; < —soK. Thus, by K < tanf, < tan 04,

w() <K(~s0) for ¢ele,0]
Since K (& — s9) < uo(€) for £ € [sg,0] by the definition of K ,

w(l) <ug(§) for ¢ e[e,0]. (3.15)
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Next we compare w with vg. We set (¢) := w(&) — vo(€). Since tan by < vpe(€) <
tanf; for £ € [£,0] by Lemma 2.3 (i),

E%(p(f): tan 6y —vpe(£) >0 for £€L,0].

Thus, ¢ is a monotone increasing function. By o(£) = 0,0(¢) > 0 for ¢ € [£,0].
That is,

w(E) > vo(€) for e [6,0]. (3.16)
By (3.15)-(3.16), we see ug(£) > vy(€) for € € [¢,0]. O
Moreover, we get the following relation between U* and v,.

Lemma 3.2.  Assume that U* satisfies (3.6)-(3.9) and vy satisfies (3.11)- (3.14).
Then U* is represented by vy as the following;

U6 = v/ o(—f/\_—;)

Moreover, this representation is unigue.

Proof of Lemma 8.2.  We set U*(¢) = /2, vo(p) where p = £/+/A,. Then, we get

(a(z}g)) +e0; - U
3
=V1T7{a(vop>)p + e p U0y — A¢ v} = 0.

Since A, is represented by £, p* as A\, = (p*/£)? (see Remark 2.4), we get

ﬁg(P*) = 'UOp(p*/\/)‘_E) = ’Uop(f) = tan 6y,
U’g(O) = vg,(0) = tan 4,

U¢ () = V2o vo (8" /v/Xe) = /¢ wo(£) = 0.

By Theorem 2.1, the solution of (3.6)-(3.9) is unique. Consequently, we see U* =
U*. That is,

Ut(€) = Vo vo<7%>. 0

Here we describe a subsolution for the problem (3.1)-(3.5).
Proposition 3.1.  For any 6§; € (0,2], we define

Vin) = p(r)U* <-¢%5) (3.17)
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where (1) =1+ <V—1’\_c - 1) e . Then V satisfies the following;

(@a(Va))a+0Vy =V =V, >0, o(r)p* <n<0. 7>0,
Volo(T)p*,7) = tan 6y, T
Vp(0,7) = tané, T

Vip(r)p*,7) =0, 720
V(n,0) = vo(n), ¢

Proof of Proposition 3.1. By (3.17), it is a simple computation to show

(@(Va))n +0Vn =V =V,

=5 (@(U e + 0(r)E U — o(r)U" = p(r)(U* — € 1)

where ¢ is the differential of ¢ with respect to 7. Since U* satisfies equation (3.6)
we get

3

@(Va)n +0Vy =V -V,
* x 1 .
=" ~¢U) (5 - ol - 610)).
Then, by Lemma 2.3 (i) and a’ > 0, we see
U* = &U; = (a(Uf))e = o' (Ug)Ug; >0 for ¢ € [p*,0].

Moreover, by a simple computation,

1

e et = (= -1)or o - fiﬁg - 1;: b

Since Ay > 1, we see \/_177 — 1 < 0. Moreover, by 6; > 0,

2+ (L 1)6"517'

2<— L < /N +1 for 730,
1+(\/_/\=e_1)6 1T

Thus, from 6; € (0, 2],

2 + (vl—rz —1)e~%r

1+ (Fo = e b

1 <0 for 72>0.

Consequently, since 1/¢(7) — (1) — @(1) > 0 for 7 > 0, we see

@Vada +0Va =V =V, >0 for o(r)p* <n< 0, 7 >0.
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Moreover, by the definition of V' and (3.7)-(3.9),

Vale(r)p*, 7) = U¢(p*) = tan by,
Va(0,7) = UZ(0) = tan 6y,
V{e(T)p*.7) = o(T)U*(p*) = 0,

and by Lemma 3.2,

V(n,0) = p(0)U* (JO)) = —= U(VAm) = wln).

Thus, the proof of Prop. 3.1 is completed. O

3.2 Structure of a supersolution
We first define wy(€) as the following. Now, we choose a constant L satisfying
L < sy and

0< sup (ﬂ’@) < tan 6. (3.18)
£€[s0,0]

E—L

FY‘

o~ = U(Y)

> 3
L S: O,
Figure 3.2
Then, by Theorem 2.1, there exist a unique (A, wy) € (0,00) x C?[L, 0] satisfying
(a{wog))e + Aréwp =0, L < £ <0, (3.19)
’LUOE(L) = tand,, (320)
’LU()E(O) = tan 01, (321)
wo(L) = 0. (3.22)

By Remark 2.4, if necessary, we choose Ay, such that 0 < ) L < 1. Then, we get the
following relation between ug and wy.

Lemma 3.3.  Assume that wy satisfies (3.19)-(3.22). Then the following esti-
mate s valid;

uo(§) <wo(§) for & € [so,0]-

Proof of Lemma 3.3. By Lemma 2.3 (i) and wog(L) = tanby, we get woe(€) >
tan 6y for £ € (L,0]. Since wo(L) = 0,

(tanfo)(§ — L) < wo(€) for ¢ € [L,0] (3.23)
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While, we see

w@<{ o (EDe-1) tor cepmo (3.20)

Thus. by (3.18), (3.23) and (3.24),
ug(€) <wo(é) for ¢¢ [s0,0]. O

Moreover, we get the following relation between U* and wy.

Lemma 3.4.  Assume that U* satisfies (3.6)-(3.9) and wy satisfies (3.19)-(8.22).
Then U* is represented by wg as the following;

Ue) =z wo(%).

Moreover, this representation is unique.

The proof of Lemma 3.4 is the same as that of Lemma 3.2.
Here, we describe a supersolution for the problem (3.1)-(8.5).

Proposition 3.2.  For any §; € (0,+/27 + 1), we define

W(p, ) := 9 (r)U" («Tfﬁ) (3.25)

where Y(1) =1+ (\/-%L - 1) e~%7. Then W satisfies the following;,

(@(Wp))p+ oW, =W =W, <0, %(r)p*<p<0, 7>0,

W, (¥ (7)p*, ) = tan §y, T >0,
W,(0,7) = tan 6, T >0,
W (y(r)p*,7) = 0, T >0,
W (p,0) = wo(p), L<p<o.

Proof of Proposition 3.2.  Applying the same computation as the proof of Prop.
3.1 to (3.25), we get

@(Wo))o + oW, =W — W,

=~ 0p) (55 - () - o)

where ¢ is the differential of ¢ with respect to 7. Then, by a simple computation,

gt o190 (=) fo - T )
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Since 0 < A, < 1, we see \/—f\——L ~ 1> 0. Moreover, by §, > 0,

ot

—1)e=%27
T)e=s <2 for 7>0.
— e~ 2T

=1
[

5 1<2+(
L+ =14/

5

Thus, from 6, € (0, VAL + 1),

2+ (A=~ 1)o7
b2 — (\/1}‘7 ) 5> <0 for 72>0.
I+ (7 —1)ebr

Consequently, since 1/v(7) — (1) — zﬁ(T) < 0 for 7 > 0, recalling U* — ng‘ > 0 for
§ € [p*, 0], we see

(a(Wp))p+pW, =W =W, <0 for (r)p* <p<0.7>0.
Moreover, by the definition W and (3.7)-(3.9),

Wo(4(7)p", 7) = U (p*) = tan by,
W,(0,7) = UZ(0) = tan 6y,
W((r)p*, ) =%(r)U*(p*) =0,

and by Lemma 3.4,

W (p,0) = ¢<0>U*( ¢{0)) = <= U"(/Rz #) = wol).

Thus, the proof of Prop. 3.2 is completed. [

3.3 The gradient estimate
Lemma 3.5.  Assume that U satisfies (8.1)-(3.5). Then for T >0

Ug(¢, )| < P |Ue (¢, 0).

S0,

Proof of Lemma 8.5.  Differentiating bath sides of (3.6),
Ure = a'(Ue)Usgc + a” (Ue)Ufe + €U (3.26)

Here, we set

F(&,7) 1= e (Uel6, ) = )

where v = sup Ug(£,0). Then by (3.26), f satisfies
£€[s0,0]

d(fe" +7)fec +a"(feT +v)e” fE—Efe—fr =] (3.27)
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We prove that f(£,7) < 0forp(r) <€<0, 7 > 0. Weset forany T > 0

Qr:={(7)Ip(r)<¢<0, 0<7 < T}

Assume now that max f(¢£,7) = f(&,7m0) > 0. Since
.

f(fao) = UE(&)O) -7 S O,

F(p(7),7) = €7 (Ue(p(7),7) = 7) = e~" (tan 8y — 7)
= ¢7 " (Ug(s0,0) = 7) <0,
f(0,7) = e*T(Us(O,T\)m— v) =e7 " (tanb; — )
=e""(U(0,0) - 7) <0,

we may consider that (§o,70) € {(£,7) |p(1) < €<0,0< T < T}. Then, we see

Fee(60,m0) <0, f(€)(¢0,70) =0, fr(&,70) > 0.

Since a’ > 0, the left side of (3.27) is nonpositive at (é0,70). While, by the as-
sumption, the right side of (3.27) is positive at (&, 7). This is a contradiction.
Thus, '

f(6,7) <0 in Q.
That is

Uﬁ(gaT)S'Yz sup Ug(f,O) in -Q—T-
£€[s0,0]

By replacing U with —U, we obtain the same bound for =-Ue. O

3.4. Comparison between a solution and a subsolution (supersolution) X
We now set

d(7) :=inf{[(£ - 17)2 +(U(¢,7) - V(n’,’.))z]l/z
Ip(7) € <0, o(m)p* <n <0}

Then, we get the following.

Lemma 3.6. Fort >0, d(r) > 0.

Proof of Lemma 3.6.  Since ug(€) > vo(€) for £ € [£,0] by Lemma 3.1, we get
d(0) > 0. Thus, there exists a constant yg > 0 such that d(1) > 0 for 0 < 7 < pg.
We now set

7o := sup{7 € (0,00) | d(7) >0 for 0T < 7}

Then we see 79 > pg > 0.

Assume that there exists 79 € [, 00). Then, by the definition 79, we get d(ry) =
0. Here, the fact that d(7y) = 0 is equivalent to the fact that there exists Ny €
[¢(70)p*, 0] such that

§=mno and U(& 1) = V(no,mn). (3.28)
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Thus, we consider three cases as the following and derive a contradiction for each
case;

Case I - p(70)p* <mp <0, (cf. Figure 3.3)

Case Il 79 =0, (cf Figure 3.4)

Case IIl: o = p(7)p*.  (cf. Figure 3.5)
Here. we set

IW = {(&.n)lr=U(e,r), p(r) < € <0},
I i= {(n,7)|r = V(n,7). o(r) <7 <0},

+ v r
A ,\U/
i =
IAYEY
T'T:) T’lt(:)
) @ T 0 > 1ACYR (LY o~ 3
Figure 3.3 Figure 3.4
JP r
’.E,w
o
\ A /‘f(:}
Pt o 3
Figure 3.5
Case I: We now assume ¢ = 7 for p(7)p* < ¢ < 0,0 <7< 7 and set U(n,7):=
U(n,7) — V(n,7). Then we see
¥(no,70) =0,
(m0,70) * (3.20)
U(n,7) >0 for @(r)p*<n<0,0<7< .
Moreover, ¥ satisfies
A("7> T)\P'Im + (An(na T) + 77)\1’1) -V - \I"r < 07
e(T)p* <n<0,0<7<T7
where .
A, 7) = / &' (68U, + (1 - 6)V;,)d8 > 0. (3.30)
0
We set

LIT] = A(n,7) Uy + (Ag(n,7) + )T, - T — T,,.
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Since V,, is positive for p(T)p* <7 <0, 7 > 0 by the definition of V and Lemma
2.3 (i), we see

tanfy <V, <tanf; for o(7)p* <n <0, 7>0. (3.31)
Thus, by Lemma 3.5 and (3.30),(3.31), there exist constants C;. Ca such that
0<Cy <A(n,T)<Cy for o(r)p* <7 <0, T‘ > 0. (3.32)
Consequently, £ is uniformly parabolic. We now set for ¢ > 0 i
o = {M7) [ o(r)p* <1 <0, e < <)

Since U is a smooth solution for problem (3.1)-(3.5), |U,,| is bounded in Q- .
Moreover, by Lemma 2.3 and \/— < (1) < 1, we get

£
To

0 < Vo < C3 = C3(e, U*(0),0*,61).

Moreover, by Lemma 3.5 and (3.31) and a € C?*(R), |a”] is bounded in Q . Thus,
|Ap| is bounded in Q. Since 0 < |5| < lo(T)] Ip*| < |p*|, we get

sup{|4,(n,7) +nl |[(n,7) € Qs } < 0. (3.33)

Then, we set

m = {(n,7) € 'Qf,o[(n, T) is connected with (m0,70) by a

horizontal and a vertical line segment}

By (3.29), (3.32), (3.33) and L[¥] < 0 in Q¢ . we can apply the strong minimum
principle (cf. [9]). Consequently, we obtain

¥(n,7)=0 for (n,7)€m.

This contradicts the definition of 79. Thus, we can not have mo satisfying (3.28) in
case I.

Case II: We set ¥, Q% as case I. Then we see
¥(0,70) =0, ¥(n,7) >0 for (n,7)e€ Q5

Moreover, ¥ satisfies £[¥] < 0 in Q% with (3.32),(3.33). Applying the strong
minimum pr1nc1ple, we get

%%(o,fo) <0 (3.34)
3]

where 2= is any outward directional derivative from Q5, at (0,7).
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But since ¥,(0,7) = U,(0,7) — V,,(0,7) = 0 for 7 > 0, if we choose v = (1,0),

which is a outward vector from Q5,, We get

ov
-8_1/(0’7-0) = \Iln(OaWO) = 0.

This contradicts (3.34). Thus, ng = 0 does not satisfy (3.28).

Case IIL: Since Ug(p(7),7) = tanfy > 0 for any 7 € [0,79]. There exist positive
constants €9 and Cy = Cy(gg) such that

Ueg(€,7) 2Ca >0 for p(r) <€<p(r)+e0, 07 <. (3.35)
Thus, U has a inverse function for p(1) < € < p(7) + p1. We write it as o(r, 7).

Moreover, since V,, > tanfy > 0 by Lemma 2.3 (i) and Vy(o(m)p*,7) = tanby, V
has a inverse function. We write it as (7, 7). Then, o satisfies

1
—(a(—)) +ro,~0c—0,<0
ar) ),

for 0<r<U(p(r)+p1,7), 0 <7 <15,
and & satisfies
(+(5)), #7202
—la{ — +70r—0—-6,<0
og P
for 0<7<V(0,7), 0<7< 1.

Moreover, by U(p(7),7) = 0 and V(o(7)p*,7) = 0, we get

0(0,7) = p(7), 5(0,7) = p(r)p",
and by Ug(p(7), 7) = tanfy and V,(o(7)p*,7) = tan b, we get

1
tan 00' :

1 A
0',-(0,7') = m, 0',%(0,7") =

We set 79(7) := min{U(p(7) + €0,7), V(0,7)}. Moreover, we assume r = # for
0<#<ro(r), 0 <7 < 7 and set U(r,7) := o(r, T) — 6(r,7). Then, we see

\11(0, 7'0) = O,

- (3.36)
T(r,7) >0 for 0<r<ry(r), 0<7 <.

Moreover, ¥ satisfies

A(r,7) 80 + (Ar(ry7) + 1) 8, - F - 8, <0,
' 0<”'<’I‘0(T),0<TSTO
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1 —
Alr,7) = 1- / a.’(Ai + = 0)d¢9 > 0. (3.37)
0

where

Or Gp 0y o

We set o R i ) } o
' L[¥] := A(r,T)¥rr + (Ap(r,7) + 1), = T - T,

and for € > 0 (where ¢ is the same as case I)
Pro={(r,1)|0<r<r(r), M —e<T< 70}

By Lemma 3.5 and (3.35), we get

1 —
0<Cs<0, <= in P. (3.38)
Cy 0
where Cj is a constant depending only a sup |Ug(£,0)|. Moreover, by (3.31),
66[3030]
1 1 —e
<6, < i . :
0< tand, S 0r S o 5, m P, (3.39)

Thus, by (3.37)-(3.39) and a € C*(R), there exist constants Cg, C7 such that
0<Cs<A(n,m)<Cr in P (3.40)

Consequently, £ is uniformly parabolic in P . Since we see

~

O"r'r
&3’

Orr
-y =
g3 '

Unm =
and |Uyy,| and |V,,| and bounded in _Q-E (see case I), by (3.38),(3.39), we obtain
that |o,.| and |6,.| are bounded P . Moreover, by (3.38),(3.39) and a € C?(R),

|a”| is bounded in P . Thus, |A,| is bounded in P . Since 0 < 7 < ro(7) < U*(0),
we get . _
sup{|4,(r,T) + 7| |(r,7) € P} } < 0. (3.41)

Consequently, by (3.36), (3.40), (3.41) and £[¥] < 0in P7 , we can apply the strong
minimum principle. Then we obtain

A
—67(0,7'0) <0 (3.42)

where £ is any outward directional derivative from P; at (0,7).

But since ¥,.(0,7) = 0,.(0,7) — 8.(0,7) = 0 for 7 > 0 if we choose v = (—1,0),
which is a outward vector from P?, we get

v -
-37(0,70) =~¥.(0,7) =0,
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This contradicts (3.42). Thus, ng = (7y)p* does not satisfy (3.28).

Consequently, by case I, II, and III, we can not have Mo € [¢(70)p*, 7o) satisfying
(3.28). This contradicts d(7p) = 0. Thus, we can not have 7 € [ug, 00). That is,
d(r) >0 forr>0. O

‘Consequently, by Lemma 3.1 and Léinma. 3.6, we get
p(r) <@(r)p*, U(n,7) > V(n,7) for o(r)p® <n<0, 7>0.
In the same way, we get
b(r)p* <p(7); W(p,7) > U(p,7) for p(r)<p<0, 7> 0.
3.5 Proof of Theorem 3.1
We now assume &y € [p*, 0]. Then, by the definition of V and W, the intersection

points of the straight line {(¢,7) | U*(&)é— & r = 0} and the graphs {(¢,7) | r =

V(E,T), o(T)p* < €& <0}, {(¢, r) | r=W(ET), v(r)p* <€< 0} are represented
as the following;

(0()0, ©(T)U*(&0)), (w(T)éo, Y(T)U*(&)).
v*——T_T"G) Fw

J&Dr= Ve,
fGolr= Wy, torsso} eP*s3so}

i
t >
|
[}

N’

Wy P P wr 5 | g 3

Figure 3.6
We set

D(&, ) := {€ | £ — coordinate of intersection points of the
straight line {(¢,7) | U*(&)¢ — &r = 0} and
the graph {({,r) | r =U(¢,7), p(7) <€ <0}

[Go | r=003), b s¥sof tr

~— =T

|

|

|

| .

| | >
K 1/ E o 3
D(?,,'D)

Figure 3.7
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Since U(¢,T) is a smooth function in the set {(¢,7)] p(r) < £ <0, 7 > 0}, we

get D(&Oa T) # 0.
Then, from section 3.4, we obtain for ¢ € D(é,7)

(0(m)60)* + (p(T)U*(&))* < €2 + (U (€, 7))
< (@(N&)* + WU (&) (3.43)
Here, we see

[(P(T)60)? + (P(T)U* ()22 = [€2 + (U (&) 22

T (7% B 1) e~ T[E] + (U™ (%)), (3.44)
[($(7)0)* + ($(T)U*(&0))}]M/? — [€8 + (U™(&0))?]1/2
1 Syt ed .
B <sz “1)6 27[65 + (U* (&), (3.45)

Thus, by (3.43)-(3.45) and A\, > 1 and 0 < AL <1, we get for £ € D(&,7)
C(% - 1) TN < (€ + U )M - (& + (U (60))H?
1 87
<c(7m-1)-

where C'= sup [&f + (U*(&))?]/2.
506[?‘ 10]
Consequently, if we choose §, € (0,v/Ar + 1), we obtain for 7 > 0

sup sup [ [¢" + (U(&, )12 — (€] + (U*(&0))] V2 | < € e~
€o€[P",0] €ED(EO ’T)
where C = ma.x{—C (# - 1), C(ﬁ - 1) } Thus, the proof of Theorem 3.1
is completed.

3.6 Proof of Main Theorem
We define

dg(Ts, Sp) == Sup sup | d(0,Xo) - d(0,Y) |

where

Q= {Y €T} | the intersection points between T'; and the straight line passing
the origin O and Xy(€ S;)}.

Then, we note that dy is equivalent to the Hausdorff distance dg.
Consequently, if we choose & € (1,2), by Theorem 3.1,

JH(I‘bSt) <C2t+ 1)‘(50‘1)/2 < Cy—(80-1)/2
Thus, the proof of Main Theorem is completed.

Acknowledgments. We wish to thank Y.Giga for useful discussion.
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