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1 Introduction

We consider the existence of global solutions for nonlinear wave equations of the

form
3?u(t,x) = Au(t, z) = f(u(t, z))

u(07 ) =¢€ Hn/2(R'n), atu(o’ ) =9 e Hn/Z—l(R’n)’
where u is a complex-valued function of (t,z) € R x R®, 8; = §/8t, A denotes
the Laplacian of spatial variables, f is a complex function, and

(1.1)

HH(R™) = (—8) ™ IX(R")

is the homogeneous Sobolev space of order u. We prove the global solvability
of (1.1) in the critical Sobolev space H™/2 with nonlinearity f of exponential
type, a typical example of which is given by uZeMul® with A > 0.

There is a large literature on the Cauchy problem for the equation (1.1),
see for instance (2,5,7,9,10,12,13,16,17,21,22]. It is well-known that the Cauchy
problem (1.1) is locally well-posed in the usual Sobolev space H*(R") if u > n/2
and f is any smooth function with f(0) = 0 [16}, orif 1/2 < p < n/2 and f is
given as a single power nonlinearity A|u|P~!u with A € C and p < 1+4/(n—2u)
[9, 13, 17, 22]. Moreover if p = 1+ 4/(n — 2x) and 1/2 < p < n/2, then
we have global H*-solutions with the Cauchy data sufficiently small (13, 17].
The same situation happens for the nonlinear Schrédinger equations as well
3,4, 11, 15, 23]. The critical power p = 1+4/(n—2u) at the level of H* naturally
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arises by the standard scaling argument and is consistent with the Sobolev
embedding H* «— L™P~1/2 for 4 = n/2 — 2/(p — 1). The last embedding,
however, breaks down for ¢ = n/2. In view of the circumstantial evidence
above, it seems natural to call n/2 another critical exponent and accordingly, in
this paper we are interested in the existence of solutions of (1.1) when y = n/2
and especially in the admissible class of nonlinearities in that theory. Hn/2
solutions are of particular interest as finite energy and strong solutions when
n = 2 and 4, respectively.

To state our theorem, first we clarify the class of nonlinear terms.

Definition Let n > 2. We define a class of functions G as follows. We say
that f € G if f satisfies f € CI*/2/(R2,C) and f(0) = 0, and there exists some
positive number A such that the following estimates hold for all z € C: :

Clz]*eX=*  for n=2;
! < 3
AT { Clz2e*=*  for n=3;

I7'(2)| < Clz2eM=F, |£"(2)| < ClefeM*" for n=4; (1.2)
If(z)| < C|z]e’\|z|2, sup |f®(2)| < ceM*® for n> 5;
2<k<n /2]

where f is regarded as a function of z and z, f/'(z) = (8f/02,0f/0%), for k > 2
f*®) denotes any of the derivatives of f of k-th order with respect to 2 and zZ,
and [s] denotes the integer part of s € R.

To show the existence of the global solutions of (1.1) with f in G, we use
the standard fixed point argument on the corresponding integral equation. Let
1/go = (n —1)/2(n + 1). We introduce the following complete metric space

X(R)

= {ueL®®R,HY)NL®R,BIV2nBY) | (1.3)
max{||u; L% (R, H™?)||, [lu; L* (R, B~ V/2)|), llu; L@ (R, BY, )|} < R},

endowed with the metric
d(u,v) = |lu — v; L®(R, BY ), | (14)
where B [resp.Bg] denotes the [resp.homogeneous| Besov space and we made
abbreviation such as B = B2 ,(R"), BS = B2 ,(R"), H*? = H*4(R"), H*9 =
H#*4(R™). For the definitions and its properties of Sobolev and Besov spaces,

we refer to [1, 6, 27]. For convenience of description, we define the following
space of the Cauchy data by

Y (Hn/Z };’In/2—1) N (H1/2 x H—I/Z) (1.5)
(@, ¥)lly max{||g; B2\, 1 A2l |lwps A2, l; HY/2|1} (1.6)



Now we state our theorem. In the following, we use the operators
K(t) = (sintvV=A)/vV=A, K(t)=costv—A.

Theorem 1.1 Letn > 2. Let f € G. Let (¢,9) € Y be sufficiently small.
Then there ezists R > 0 such that (1.1) has a unigue global solution in X (R).
Moreover the solution u belongs to (C N L®)(R, H™? N HY/?) and depends on
the initial data continuously. In addition, there exists a pair (¢+,1v4) €Y such
that

|(u(t) — K)o+ — K (), B (ult) — K(t)ops — K(t)¢+))||y — 0 as t— oo.

Conversely, for sufficiently small (p_,9_) € Y, there exists a solution u_ of
(1.1} in X(R) such that

(u—(t)—K(t)p-—K(t)—, 0(u_(t)—K)p-—K()y-))|ly — 0 as ¢t — —oo.

Moreover the scattering operator (¢—,¥—) = ($+,94) is continuous with respect -
to the H/2 x H=1/2.norm.

Remark 1. We now comment on the relation between the dimension and the
vanishing order of the functions of (1.2) at the origin. As we mentioned above,
for the existence of the global solutions it is natural to require the vanishing order
at least the conformal power 1+4/(n—1) which is identical to the requirement in
(1.2) when n = 2,3, 5. As we see below, we need to differentiate the nonlinearity
f at least (n — 1)/2-times and as far as f is supposed to behave as a power u?
at the origin, we must impose p > (n —1)/2 except p is an integer. Therefore, if
p is not an integer, then we are restricted to the case n < 5. We keep ourselves
away from the resulting technical difficulty and assume sufficient smoothness of
f at the origin.

Remark 2. An analogous result has been proved by the same authors for the
nonlinear Schrédinger equations in the critical Sobolev space H™/2 [18].
Remark 3. In (1.4), the exponent qg of the auxiliary function space is that of
the Strichartz space-time estimate in the diagonal case [25]. In Theorem 1.1,
as for the local well-posedness, the smallness assumption on the Cauchy data
may be removed if f satisfies

sup  |f®(2)| < ClzfmeM* ", 0<ex<2.
0<k<[n/2]

for m sufficiently large (see [16] for details).

We prove Theorem 1.1 in the next section. The proof depends on the
Strichartz estimate [8, 13, 25] and on the estimates on the nonlinear terms in
the form of the power series expansion given by the RHS of (1.2). To ensure
the convergence of the corresponding series of norms on L? or Bg with ¢ — oo,



we use the sharp Gagliardo-Nirenberg inequalities [18, 19]. Those inequalities
are closely related to Trudinger’s inequality [14, 19, 20, 24, 26, 28] and in this
sense the power 2 in the exponential functions on the RHS of (1.2) also seems
critical.

2 Proof of Theorem 1.1

In this section we prove Theorem 1. 1. For (¢,%) € Y and u € X(R) with R to
be determined later, we define the operator ® by :

®(u)(t) = K)o+ K@)y + /0 K(t - ) f(u(r))dr. 2.7

For the existence of the solutions of (1.1), it suffices to show that & is a con-
traction map on X (R) for some R. By the Strichartz estimate and the standard
duality argument, we have the following linear estimates

max{||®(u); L= (R, H™?)]|, ||@(u); L* (R, BG™V/%)|1}

< C(lgs B2 + [l A2 + [ £ (w); L' (R, B3, (2.8)
1@ (u); L% (R, BY)|
< C(llg; HY2|| + s H7Y2)) + |1 £ (w); L (R, B2 I, (2.9)

where 1/¢gy = 1 — 1/qo, and C is independent of ¢, ¥, f and u (see also [§]).
In (2.9), we may replace BS, and Bfl’o, with L% ard L%’ respectively using the
embedding B? < L™ for 2 < r < co. Regarding the norms of f(u) on RHS in
(2.8) and (2.9), we have the following lemma.

Lemma 2.1 Let f € G. Then there exists a monotone increasing function p
on R such that for any u and v in X(R)

[ (w); L (R, L) | < Co(R)RE, (2.10)
1 (); L% (R, BY V/%)|| < Cp(R)R?, (2.11)
|1f(w) — £(v); L% (R, L%")|| < Cp(R)Rlu — v; L® (R, LP)|, (2.12)

where C is independent of u and v.

Proof of Lemma 2. 1
We prove Lemma 2.1 for n > 5, since the lemma for n = 2,3, 4 could be
shown quite analogously. First we prove (2.10). We recall the inequalities

s L) < CV/2+ =212 /2wl Er/e, (2.13)
s BN < CqM/2+=2/2 s 2 1=/l BOY, (2.14)



for any 1 < r £ ¢ < 00, where C is independent of q and u (see [18, 19]). By
expanding the RHS of (1.2) and estimating the resulting power series by the
Hélder inequality in space and (2.13), we have

I1f (); L' |
= N *n2i+1
< 0y Sl LI s 2| (2.15)
j=0 »
<

o i
CZ _)‘j_:r*(1/2+(qo—2)/2r‘)(2j+1)HU; I'{n/zll(l-qo/r‘)(2j+1)
=0 ¢

||u; L]+ @i+ Dao/7* (2.16)

“where r* = (n+1)(2j + 1)/2 and C is independent of u. Therefore we have by
the Holder inequality in time

0. :
’ ' AJ _ - . .
153 1% (R, L#)]| < €Y Zae (/@D DRI (217)
21

Since the series in (2.17) converges for sufficiently small R, we shall regard it
as p(R)R2. This completes the proof of (2.10). The inequality (2.12) follows
analogously if we use the equality

1
fw) = f(v) = /0 f'(v+6(u — v))(u —v)db.

Next we show (2.11) for n > 5 odd. By the embedding Hé‘:‘,_l)/ 24 B;:,_l)/ 2,
we have

(n—1)/2

k
If@;BE < S0 Y PRI | A
i=1

k=1 J|a|=(n~1)/2 A1+ +Bg=a
le}=(r~1)/ P

(2.18)
Fork>2and 1<i<k,let 1/r* and 1/r} be

/r*=2/(n+1)(25+ k1), 1/r]=(1-26l/(n—-1))/r* +2|Bi|/(n - 1)q.
Then we have by the interpolation of the Besov space

||3"3"u; L"'"” < Cllu; B(TJ_HI—ZIﬂiI/(n—l)”u; 353—1)/2”2119.-1/(1:-1) for 1<i<k,

. (2.19)

where C is independent of j and u (see [6, Lemma A.1]). Therefore we have for
k>2

k 0o ;
_ N ¥
17O @) [[0%0 L)l < €3 Zrlhus B lus B2, (2:20)
i=1 j=0 " '

(@2



which corresponds to (2.15), and by the same argument as above the inequality
(2.11) follows, where the estimate on the terms with k = 1 is similar and simpler.

For n > 6 even, we use the following equivalent norm on the homogeneous
Besov space

o0
s BEY2 / =2 sup [|6%u — 8°7,u; LA2de}Y2,  (2.21)

lal=(n-2)/2 70 i<t '
where T, is the shift function by y € R*. By (2.21), we have

I1f(u); BEV2
(n—2)/2

<cy ¥ % {/ tzsupllf‘k’(u)ﬂaﬁ'u

k=1 lal=(n=1)/2 M1+ +p=e

— 8 (ryu) H 8Pt u; L' ||2di} 12, (2.22)
i=1 :

Here we estimate (2.22) as follows. Let 1/7*, 1/#, 1/r} be

r*=2/(n+1)(2j +k), 1/f=Q1-1/(n—-1))/r"+1/(n—1)g,
1ri=(1-24]/(n-1))/r* +2|Bi]/(n - 1)go for 1<i<k.

Then we have by the Holder inequality and an estimate similar to (2.19)

k
I(F® ) = £ (ryu)) TT 0% u; L)

i=1

SN = ,
< CY Sl — ryu) [ 0%u; L))
- J=0 J: i=1
XN . " .
< CZ —'-”‘ll,, B?*||21+ -—(n—2)/(n—1)”u; Bég—l)/2”(n-2)/(n—l)

i=0
Jlu = myu; L7 (2.23)

Therefore we have

{ ] £72 sup [|(F®) (u) — f(k)(ryu»IIaf’w L' |2}/
0

lyi<t i=1

< CZ—-]Iu BL. [P +kju; BnD72)), (2.24)
Jj= 0



Fork>2let1/r*=2/(n+1)(2j+ k—1) and let

1/#= (1= (24| +1)/(n = 1))/r* + (2|61] + 1)/ (n — 1)qo,
rf =1 -28:]/(n—1))/m* +2|Bi]/(n—1)go for 2<i<k.

Then we have by an estimate similar to (2.23)

k
1£® ()@ u — 0% ryu) [] 8F4u; L2
=2
XM oo
CY S lu; BY |-t (nm2-2181]) /(1)
i=0 7’
|lu; Bir=1/2||(n=2=2161)/(n=1)| 981y, — §Prr s L7, (2.25)

Therefore we have
00 k ,
=2 sup || f® (u) (81w — 8Prryu) [ ] 0Piw; L9 ||2dt} /2
A v
i=2

[o o] H .
M . o e
cy Fllu;B?—Ilz”" Yjw; B{n—0/2), (2.26)

i=0 7

The inequalities (2.24) and (2.26) correspond to (2.15), so that we have the
required inequality (2.11), where the estimate on the terms with k = 1 is again
similar and simpler. This completes the proof of lemma 2. 1. m]

We now turn to the proof of Theorem 1.1. By (2.8), (2.9) and Lemma 2.1,
we have

max{||®(w); L% (R, H*/)||, |8(u); LU(R, B{*V/2)]), [|8(u); LI(R, B}

< Cll(¢,¥)|ly + Co(R)R?, (2.27)
d(®(u), ®(v)) < Cp(R)Rd(u,v), (2.28)

for u,v € X(R), where C is independent of v and v. Therefore & becomes
a contraction map on X(R) if ||(¢,v¥)|ly and R are sufficiently small. The
existence of asymptotic states and the continuity of the scattering operator
follow by the standard argument (see [17]). o

References

(1] J.Bergh, J.Lofstrom, ”Interpolation Spaces,” Springer-Verlag, Berlin-
Heidelberg-New York, 1976.



- [2] J.Ginibre, Scattering theory in the energy space for a class of nonlinear
wave equation, Advanced Studies in Pure Mathematics., 23(1994), 83-103.

[3] J.Ginibre, An Introduction to Nonlinear Schrodinger Equations, in Non-
linear Waves, Gakuto International Series, Mathematical Sciences and
Applications, 10(1997), 85-133.

[4] J.Ginibre, T.Ozawa, G.Velo, On the eristence of the wave operators
for a class of nonlinear Schrédinger equations, Ann.Inst.Henri Poincaré,
Physique théorique, 60(1994), 211-239.

{5] J.Ginibre, A.Soffer, G.Velo, The global Cauchy problem for the critical
non-linear wave equation, J. Funct. Anal., 110(1992), 96-130.

[6] J.Ginibre, G.Velo, The global Cauchy problem for the nonlinear Klein-
Gordon equation, Math.Z., 189(1985), 487-505.

[7] J.Ginibre, G.Velo, Regularity of solutions of critical and subcritical nonlin-
ear wave equations, Nonlinear Analysis, Theory, Methods & Applications,
22(1994), No.1, 1-19.

(8] J.Ginibre, G.Velo, Generalized Strichartz inequalities for the wave equa-
tion, J. Funct. Anal., 133(1995), 50-68.

[9] L.V.Kapitanski, Weak and yet weaker solutions of semilinear wave
equations, COMMUN.IN PARTIAL DIFFERENTIAL EQUATIONS,
19(1994), 1629-1676.

[10] L.V Kapitanski, Global and unique weak solutions of nonlinear wave equa-
tions, Mathematical Research Letters, 1(1994), 211-223.

[11] T.Kato, On nonlinear Schridinger equations II. H*-solutions and uncon-
ditional well-posedness, J.d’Anal.Math., 67(1995), 281-306.

[12] H.Lindblad, A sharp counterezample to the local existence of low-regularity
solutions to nonlinear wave equations, Duke Math.J., 72(1993), 503-539.

{13] H.Lindblad, D.Sogge On ezistence and scattering with minimal regularity
for semilinear wave equations, J.Funct.Anal., 130(1995), 357-426.

[14] J.Moser, A sharp form of an inequality by N.Trudinger, Indiana
Univ.Math.J., 20(1971), 1077-1092.

[15] M.Nakamura, T.Ozawa, Low energy scattering for nonlinear
Schrédinger equations in fractional order Sobolev spaces, Rev. Math.
Phys., 9(1997), No 3, 397-410.

[16] M.Nakamura, T.Ozawa, The Cauchy problem for nonlinear wave equations
in the Sobolev space of critical order, (preprint).

R



[17] M.Nakamura, T.Ozawa, The Cauchy problem for nonlinear wave equations
in the homogeneous Sobolev space, Ann.Inst.Henri Poincaré, Physique
théorique, (in press).

[18] M.Nakamura, T.Ozawa, Nonlinear Schrédinger equations in the Sobolev
space of critical order, (preprint).

[19] T.Ozawa, On critical cases of Sobolev’s inequalities, J.Funct.Anal.,
127(1995), 259-269.

[20] T.Ozawa, Characterization of Trudinger’s inequality, J.of Inequal.&
Appl.,1(1997), 369-374.

[21] H.Pecher, Nonlinear small data scattering for the wave and Klein-Gordon
equation, Math.Z., 185(1984), 261-270.

[22] H.Pecher, Local solutions of semilinear wave equations in H®*! | Mathe-
matical Methods in the Applied Sciences, 19(1996), 145-170.

[23] H.Pecher, Solutions of semilinear Schrédinger equations in H®
Ann.Inst.Henri Poincaré, Physique théorique, 67(1997), 259-296.

[24] R.S.Strichartz, A note on Trudinger’s extension of Sobolev’s inequarities,
Indiana Univ.Math.J., 21(1972), 841-842.

[25] R.S.Strichartz, Restrictions of Fourier transforms to quadratic surfaces
and decay of solutions of wave equations, Duke Math.J., 44(1977), 705-
714.

[26] M.Struwe, Critical points of embeddings of Hg’" into Orlicz spaces,
Ann.Inst.Henri Poincaré, Analyse nonlinéaire,5(1988), 425-464.

[27] H.Triebel, ” Theory of Function Spaces,” Birkhiuser, Basel, 1983.

[28] N.S.Trudinger, On imbeddings into Orlicz spaces and some applications,
J.Math.Mech.,17(1967), 473-483.



