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MI-HO GIGA and YOSHIKAZU GIGA

Remarks on convergence of evolving graphs by
nonlocal curvature

1. Introduction
This is a continuation of the work of the authors [GG1-5] on graph-like solutions
for motion driven by nonlocal weighted curvature in the plane.

We consider a fully nonlinear evolution equation in one space dimension:
s + Fug, Aw(n)) =0 (1.1)

with Aw(u) = (W'(%s))s. Here W is a given convex function on R and its derivative
W' may have jumps ; F is a given continuous function satisfying monotonicity

condition: :
F(p,X)< F(p,Y) for X>Y (1.2)

so that the equation (1.1) is at least degenerate parabolic. The subscripts ¢ and =
denote partial differentiation in time and space variables, respectively. If W(p) =
p?/2 and F(p,X) = —X, (1.1) is the heat equation. If W(p) = (1 + p?)!/2, Aw(u)
is the curvature of the graph of u(t, ) so Aw is often called the weighted curvature.
The value Aw is actually unchanged by adding an affine function to W but we
still denote it by Aw rather than Aww. If W(p) = (1 + p*)¥/? and F(p,X) =
—(1+ p?)Y/2X, then (1.1) is the curve shortening equation for the graph of u(t, ).
We are interested in studying the case when W' has jump discontinuities. A typical
example is W(p) = |p|/2. In this case the meaning of solutions of (1.1) is unclear
even if u is smooth, since Aw(u) = §(uy)uzy is not a well-defined distribution
because of the presence of the Dirac § measure.

To circumvent this inconvenience we introduced in [GG1, 3] a notion of general-
ized solution for (1.1) by extending the theory of viscosity solutions [CIL]. In [GG3]
we established comparison principles and the unique global existence of generalized
solutions for a given periodic continuous initial data, although Aw () turns to be a
nonlocal quantity. As anticipated, our solution is obtained by the limit of solutions
of smoother strictly parabolic problem approximating the original problem [GGS5].

Typeset by ApS-TEX
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We shall first state it in a rigorous way. Let £ be the subset of the space of convex

functions of form

£ ={W; W is convex in R and W is C? except some discrete set P.

Moreover, sup W" = cx < oo for every compact set K in R}.

K\P (1.3)

Of course, £ includes all piecewise linear convex functions. The set P is called the
singularity of W. Let F = Fr be the set of all continuous function P : [0,7) x
R x R — R satisfying the monotonicity condition (1.2) for F(¢, p, X) with respect
to the last variable X. Let Fy = Fur be the set of F € F which is either time
independent or uniformly continuous on [0,7'] x [-Kp, Kg] x R for each T' < T,
Kp > 0. The last assumption together with boundedness of cx in (1.3) seems to be
technical in the next convergence theorem but we do not attempt to remove it. We
- consider the initial value problem with periodic boundary condition to avoid extra
technicality; see [GG3] for other boundary conditions. Let C(T) denote the space
of all continnous functions on T = R/wZ, i.e. the space of w-periodic continuous

functions.

Convergence Theorem 1.1. ([GG5]) For F, € Fyr, W, € £ withe > 0
assume that F, — Fo, W, — Wy locally uniformly ase — 0 in [0,T) x R x R and
R, respectively. For ¢ > 0 let u* € C([0,T") x T) be the generalized solution of

{ u + Fe(t,vay Aw,(v)) =0 in (0,T) xR, (1.4)

(0, z) = ug(=), z€R

with ug € C(T). Hug — ug in C(T), then u® converges to a fanction v € C([0,T) x
T) locally uniformly in [0,T) x T and u is a generalized solution of

{ us + Fo(t,uzy, Aw,(2))=0 in (0,T) xR,

u(0,z) = uo(z), z€R. ((15)

The constant T may be taken as +oco.

Theorem 1.1 is quite general because it allows any degeneracy of W}', W". This
justifies a way to construct a solution u of (1.5) with general Wy € &, F, € Fu
by approximating Wy by W, € C* N € with W' > 0 and Fo by F, € C®° N Fyu
for € > 0, so that the problem (1.4) is strictly parabolic and it is solvable by the
classical theory (cf. Proposition 2.3).
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In this note as an application of Theorem 1.1 we study the convergence of deriva-
tives u;. The key ingredient is the L*(T) estimate of second derivatives, or more

generally
||(£(u§))=IIL1('r)(t)=/; |(6(u2))a(ts2)ld2 < [€(ugs)ellzrcry  (1.6)

for any C*! nondecreasing function £. It is not difficult to prove this estimate for
smooth solution with smooth F, and W, but Theorem 1.1 passes such an estimate
to a general problem. This shows that Theorem 1.1 is useful. As noted in [GG5]
Theorem 1.1 is also essential to prove the convergence of crystalline algorithm (ini-
tiated by S. Angenent and M. Gurtin [AG] and J. Taylor [T] and analyzed by P.
Girdo and R. Kohn [GK1-2]) for a general equation (1.5). The convergence results
by [GK1-2] as well as [FG] apply, for example, the heat equation and curve short-
ening equation. In [GK1] L? convergence of derivatives of solutions by crystalline
algorithm is proved with rate of convergence for these examples with both the Neu-
mannn and Dirichlet boundary conditions. Our convergence of derivatives is L?
convergence for any p > 1 for a general problem with no rate of convergence.

It turns out that Theorem 1.1 is powerful to get a priori estimates (1.6) with
£(0) = o of solutions by analyzing crystalline algorithm. In this paper we extend
crystalline algorithm in [GK1] for a general problem (1.5). We moreover derive a
priori estimate (1.6) with {(¢) = o, which yields the convergence of derivative u¢,
without using any analytic theory of parabolic equations other than Theorem 1.1.
This is one of main goals of this paper.

In crystalline algorithm one restricts a class of solutions to a special class of
piecewise linear function to construct solutions [AG], [T]. The problem roughly
corresponds to the case when W is piecewise linear. The main ansatz is that each
piecewise linear part (called a facet) of the graph of solution u(t,-) stays as a facet
and does not change its slope and that only its end points move. This ansatz is
natural and it is regarded as a generalized solution in our sense [GG2]. However,
if F depends on space variable, such an assumption that a facet stays as a facet
of the same slope (unless it disappears) is turns to be unnatural. In this paper
we give an example that the comparison principle may not hold if facet-stay-facet
assumption’ is imposed. '

For physical background of problems the reader is referred to [GG3] and [GGS5]
and references cited there especially a book of M. Gurtin [Gu], reviews of J. Taylor,
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J. Cahn and C. Handwerker [TCH] and of P. Girdao and R. Kohn [GK2]. The
bibliography of [GG3] and [GG5] includes many references related to recent work
on the motion by crystalline energy and nonlocal curvature. We won’t repeat to
cite these articles unless necessary in this note. This note is written so that no
explicit definition of generalized solutions is necessary. To read this note we only
need to admit that classical solutions for strictly parabolic problems are generalized
solutions. \

We are grateful to Professor D. Hilhorst for informing us of the reference [O]. The
second author was partly supported by the NISSAN SCIENCE FOUNDATION and
the Japanese Ministry of Education, Science, Sports and Culture through grant no.
08874005, 09242201 for scientific research.

2. Convergence of derivatives

We state a priori estimate (1.6) in its general form. For a finite (signed) Radon
measure 1 we denote its total variation by |||, since ||¢||; equals L!(T) norm if p is
absolutely continuous with respect to the Lebesgue measure. We shall simply write
L?(T) norm of f by ||f||,. The partial derivative in z is taken in the distribution

sense.

Theorem 2.1 (A priori estimate). Let u € C([0,T) x T) be a generalized
solution (1.5) with ug € C(T), where Wy € £, Fy € Fyr. Let ¢ be a nondecreasing

C! function on R. Assume that ug,, is a finite Radon measure (so that ug, €

L*(T) i.e., ug is Lipschitz). Then

l[2alloo (£) < [|%02]loo 0<t<T, (2.1)
1(€(a))all1(t) < [1(¢(uoe))alle, 0<t<T. (2.2)

In particular,
Aw, (2)]11(2) < llAw, (wo)llz, 0<t<T
if Wy € C?, where Aw,(u) = Wi(us)o-

To show (2.1)-(2.2) we first prove them for smooth solutions with smooth W,
and Fy.
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Proposition 2.2. In addition to the hypotheses of Theorem 2.1 assume that
Wo is smooth and that Fo(t,-,-) is smooth in R x R for each t. Assume that u is
smooth in [0,T) x T. Assume that ¢’ > 0. Then the estimates (2.1)-(2.2) are valid.

We approximate the original problem (1.5) by smooth strictly parabolic problem
so that there exists a unique smooth solution.

Proposition 2.3. Assume that Wy € £ is smooth and W) > 0 everywhere.
Assume that Fo = Fo(t,p, X) € Fyr is smooth in each variables and that for each
T' <T, Ko > 0 there is A > 0 such that §Fy/0X < —A on [0,T"] x [ Ky, Ko] x R..
Assume that ug is smooth. Then there is a unique classical solution u of (1.5) which
is smooth in [0,T) x T.

Proof of Proposition 2.3.  We differentiate (1.5) in z and set v = u, to get

vy + 0,(Fo(t, v, Wy(v)s)) = 0,
(2.3)
v(0,2) = v, Vo = up,.
By the maximum principle we have a priori bound
[19]oo(®) < llv0lleo; 0 <t < T. (2.4)

By (24) and assumptions of Fy and W we now apply the theory of uniformly para-
bolic equations [LSU] to get a unique global smooth solution v of (2.3) for smooth vg.
Since the condition j;” vo = 0 implies fow v(t,+) = 0, we get smooth periodic solution
u of (1.5) by integrating v in the space variable u(t,z) = [ v(¢,y)dy + u(¢,0). O

Lemma 2.4 (Approximation). Assume that ug € C(T) and that ug,, is a
finite Radon measure. Let £ be a nondecreasing C* fanction on R with ¢’ > §
uniformly for some 6 > 0. Then there is u§ € C®(T) (¢ > 0) that satisfies

31_1'% ||(£(u:)z))z”1 = Il(ﬁ(qu))a”h (25)
lim [fugo —woall, =0, 15p< oo (29)
lim_ [fugy oo =[]l e

Sketch of Proof of Lemma 2.{. We first note that ||ugsz||1 < co with ug € C(T)
implies ug, € L*°(T). Indeed, by a fundamental formula of calculus we have
ups(2) = f: Uoaa(Y)dy for ug € C*(T) if wpo(a) = 0; such a € T exists since



6

fo‘" 20, = 0. This yields ||ugs|lcc < ||uow2|l1- Extension to general functions is
standard by approximation argument as in [Giu].

Since {(u02) € L*(T), we approximate {(ugaz) by 8, € C°(T) (see e.g. [Giu))
so that 0, — £(uga) in P(TY(L < p < oo), [Weellt — [I(E(uas))elles [Belloo —
||é(uoz)2||cc as € — 0. We take w, = 6‘1(0,) to get w, — ug, in LP(T)(p > 1)
since {' > 6 implies |{(v) — {(w)| > 8|v — w|. Unfortunately w, may not satisfy
f: w, = 0. However, since f: % = 0, the convergence w, — wugp, implies
lim,_¢ f: w, =0.Weget v, =w,—~c, withe, =w™? f: w, to get f: v, = 0 and
e — Uy in LP(T) with ||ve[|ec — [[%0a]|co. Moreover, [|((v¢))sll1 — |1(£(u0a))sl1
as € — 0, since [|(§(we))allr — [|(€(u02))s]|1 and

[1(6(we))a — (€(ve))alls < 11€'(we + c) = €' (ve)llo ||vea]ls — 0.

The last convergence follows since ||v.||co and ||v¢o||1 is bounded and ¢, — 0. If
we set u§(z) = [ v.(y)dy + uo(0), then Jy ve = 0 implies u§ € C=(T). By
constructions it is clear that u§ satisfies (2.5)-(2.7). O

Proof of Theorem 2.1.  We first note that ||uos]|co < ||%0as||1 so that ug, € L.
Since ||%gsz|l1 < 00 We may assume that £ > § > 0 uniformly for some § > 0.
Indeed, assume that ||(£5(%2))x|[1(2) < [|(€5(%02))a|]1 for €5(0) = £(o) + 6o, § > 0.
The right hand side converges to ||(£(uos))a|l1 since 8||ugsn||ls — 0 as § — 0.
By lowersemicontinuity ||(£(uz))s||1(t) < ?_n_:_) l|(és(%2))a]]1- Thus (2.2) follows for

general ¢ € C! with ¢' > 0.

For given Wy € £, Fy € Fur it is not difficult to construct a sequence W,, F,
converging to Wy, Fo locally uniformly in R and [0,7") x R x R, respectively as
€ — 0, such that W, and F, satisfy all assumptions on Wy and Fp in Proposition
2.3. We approximate ug by u§ by Lemma 2.4. By Proposition 2.2 we get (2.1) and
(2.2) for u§ and u*. By Theorem 1.1 and lowersemicontinuity of norms we get (2.1)
and (2.2) by sending e - 0. O

Proof of Proposition 2.2.  We consider (2.3) instead of (1.5). Estimate ||ups||1(2)
< ||uo,5||1 is proved by proving Ll-contruction property of solutions which is stan-
dard; see references of [O] for example. We rather estimate directly, although the
idea of approximating sign function by sgns(p) (which equals p/§ for |p| < & and
sgn(p) for |p| > 8) with § > 0 is standard. We set ¥5(p) = [ sgns(q)dg. For.



w = £(v), we calculate, by integration by parts, to get

w

% /ow Ps(w)dz = /; sgns(w)é(v)pide = _‘/o sgng(w)w, &(v)de.  (2.8)
Using the equation (2.3) we get
§'(v)e = —€'(v)8-(F(t,v,22)) = —w Fp(t,v,2,) — E(v)Fx(t,v,2,) 200
with z = W'(v). Since £’ > 0, we rewrite z,, by using w, and w to get
§(v)e =—w A— Fx(t,v,2,) W"(v)w,,
A = Fp(t,v,25) + €' (v) Fx (2, v, za)(W" (v)/€'(v))a-

We use this formula in (2.8) to get

4 / Ps(w)de =/ sgnj(w)w, w A de
+/ sgny(w)w? Fx(t,v,2,)W"(v)dz (2.9)
o/
S/ sgng(w)w, w A dz =: 04(t)
0

since W" > 0, Fx < 0 and sgnj > 0. By definition of sgn; we see ||sgn}(w)w||;(t) —
0 as 6 — 0 uniformly in [0,T). Since A and w, is smooth in [0,T) x T, this now
yields o4(t) — 0 uniformly for ¢ € [0,T"] for each 7' < T. Thus integrating (2.9)
yields

w W t
/ |w|(t, z)dz — / lw|(0, 2)dz < lim / o5(s)ds =0
0 0 610 Jo

for all 0 <¢ < T. This yields (2.2). The estimate (2.1) follows from the maximum
principle (2.4). O

Theorem 2.5 (Convergence of derivatives). Assume the same hypotheses
of Theorem 1.1. Assume moreover that uf,,(¢ > 0) is a finite Radon measure .
with T, ~ol[ufells = 7 < 00. Then [[ugaslfs < 7, |45 ®) < 7, [[uslleal®) < 7.
Moreover, for everyr, 1 <r<ocoand 0 <T' < T

lim sup ||uf — un|l.(t) = 0. (2.10)
e—0 0<t<T!
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Proof.  Since ||uf,]|lco < ||4fap|l1 the estimate ||us]|co(t) < v follows from (2.1).
Since ug — ug in C(T) implies ||ugsa||1 < lim, g ||§se|l1 by duality representation
of norms, we have ||upas||1 < v, so that ||ugs||e < v, Which yields ||us||oo(t) < 7
by (2.1).

If (2.10) were false, then for some 7,1 < » < oo there would exist sequences
t; €[0,T7'] (j =1,2,--+), &5 — O(e; > 0) and a constant § > 0 and ¢, € [0,7"] such
that

llugi (t5,°) — ualte,*)|ls > 8 and t; — ¢, (as j — o). (2.11)

By (2.2) and BV version of Rellich’s compactness (see [Giu]) f; := ug/(t;,-) has
a convergent subsequence (still denoted f;) in L™(T). Since w®i(t;,-) — u(t.,-)
in C(T) by Theorem 1.1, the limit of f; in L"(T) should equal u,(t.,-). This
contradicts (2.11). O

Remark 2.6 (Uniqueness of solution of (1.5)). There are a number of papers on
(2.3) even if W' has jumps. The uniqueness of solutions as well as L contraction
property of solutions is well-studied. Although the boundary condition is different,
the reader is referred to the article [O] of F. Otto and references cited there. How-
ever, if W' allows jumps together with degeneracy of W, the uniqueness of our
generalized solution of (1.5) does not follow from existing uniqueness theory (cf.
[O] and references cited there) for (2.3) when Fy(t,p, X) depends on X nonlinearily

even if ug 1s smooth.

3. Method by crystalline algorithm

A typical example of an energy W in £ is a piecewise linear convex function. Such
an energy is called a crystalline energy (density). For simplicity we assume that the
singularity P is a finite set, i.e., P = {p; < p3 < -+ < pm}. To analyse (1.5) with
crystalline W = Wy, one often considers solutions in a special class of piecewise
linear functions. To explain the method we recall a special class of piecewise linear
solutions as in [GK1] and [GG2].

For a piecewise linear continuous function f, a (bounded) closed (nontrivial)
interval is called a faceted region of f if it is a maximal interval on which f is affine.

We say that a piecewise linear continuous function is an admissible crystal if

(a) slope f, belongs to P;
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(b) slope f, in adjacent faceted regions should be adjacent in P, i.e. if f, = p;
on a faceted region, then f, on each adjacent faceted region equals either
Pi—1 OF pipy withi4+1<m,i—1>1.

We say that w € C(J x T) is an admissible evolving crystal (with respect to
P) in a time interval J if u(t,) is an admissible crystal and (the abscissa of)
a jump of u,(t,:) moves smoothly in time ¢ € J. We have implicitly assumed
that each jump does not collide each other. We now recall a system of ordinary
differential equations (ODEs) so that an admissible evolving crystal solves (1.5).
By periodicity of u(t,z) in 2 there are only finitely many points (for each t € J)
{z1(t) < 22(t) < -+- < 24(t)} in [0,w) for which any faceted region of u(t,-) is
represented as I;(t) = [2;-1(t), 2;(t)], (j = 1,--- ,d) with convention that 2; + w =
zj+4. On each I;(t), u; is independent of z so its value is denoted (u;);(t) and
u, is independent of both z and ¢ so its value is denoted (u,);. We say that an
admissible evolving crystal « € C(J x T) is an admissible solution of (1.5); (with
W =Wy, F="Fy)if

(we); () + F(¢, (ua);, x5 A((%);)/Li(8)) =0, j=1,---,d, teJ (3.1)

with . .
A(pi) = W'(p; +0) — W'(p; —0), pi € P,
L;j(t) = the length of faceted region I;(t),
where x; = 1 (resp. —1) if u(t,") is convex (resp. concave) around Ij; other-

wise x; = 0. The quantity x; A((us);)/L;(t) corresponding to Aw(u) is nonlocal

weighted curvature. An elementary geometric consideration shows that

dL;(t)/dt = P?(ut)j +P,T1(ut)j—1 +P}("t)j+1’ j=1,--,d (3-2)
with
b= ((2a)j = (wa)j-1)™" + ((wa)s41 = (a);) ™7, (3.3)
it ==((te); — (wa)i-1)™"  p} = ~((wa)j+1 = (wa);)™".

Since x; and (u,); are time independent, the system (3.1),‘ (3.2) yields a system of
ODE:s for L;’s, so that its initial value problem is solvable locally in time at least
when F € Fr is C*.

We shall prove fundamental properties for admissible solutions. -
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Theorem 3.1 (Maximum principle for u;).  Assume that F = F(t,p,X) €
C([0,T) x P x R) satisfies the following: (a) Fx € C([0,T) x P x R) (so that
- (8.1)-(3.2) is locally solvable); (b) F satisfies the monotonicity condition (1.2) with
respect to X; (c) Fy € C([0,T) x P x R). Let Cp be sup{|F¢|;[0,Tp] x P x R}
with 0 <Tp <T. Let u € C([0,Tp) x T) be an admissible solution of (1.5) with an
admissible crystal ug € C(T). Then
(i) min15,'sd(ut),-(0) —Cot < (ut),-(t) < ma.x1_<_,-sd(ut),~(0) + Cot
for all1 < j < d,t € [0, Tp).
(ii) If x; # 0, then j-th faceted region does not disappear at t = Tj,
| ie., zj41(t) — zj(t) does not converges to gero as t T Ty provided that
Limy 10 F(t,p,X) = Foo forall t € [0,T),p € P.

Remark 3.2. (i) Results in Theorem 3.1 generalize the corresponding results in
[GK1] when F(t,p,X) = —X. At some time, say t = Tp > 0 some facet may
disappear but by (ii) only a faceted region with x; = 0 may disappear. Thus
as in [GK1] there is no chance that three consecutive faceted regions disappear
simultaneously and u(Tp — 0,-) is still admissible; see [GG2] for detail. One can
solve (3.1)-(3.2) with initial data u(Tp — 0,-) which has less numbers of faceted
regions. We repeat this procedure renumbering indices of faceted region I; and
construct u globally in time. Such u is called a weakly admissible solution of (1.5).
(ii) Assumption (a) on F can be weakened. For regularity in X we only need
to assume that F is locally Lipschitz in X with a uniform bound for |Fx| on
[0,T'] x P x K for any T' < T and any compact set K in R (so that (3.1)-(3.2)
is uniquely locally solvable). For assumption (c) of regularity in ¢ we only need
to assume Lipschitz continuity in ¢ and a bound for F, in [0,7'] x P x R for any
T' < T. In this case (u;);(t) may not be C* but is still locally Lipschitz. However,

the proof below can be easily adjusted under this weaker assumption.

Proof of Theorem 3.1.  The idea of the proof is similar to that of [GK1]; we give
it for completeness. Part (ii) follows from (i). Indeed, if a faceted region I; with
X; 7 0 disappeared, then F(t,(us);,x; A((u2);)/L;j(t)) = +00 or —oco0 as t — Tp.
By (3.1) this contradicts (i).

Since (u;); solves (3.1)-(3.2), ();(t) € C*[0,Tp). For U(t) := maxi<j<a (ue);(t)
and { € [0,Tp), let 7 = j(f) be a number that satisfies (u;);(£) = U(£). Then

d(w);/dt < Cp at t=i. (3.4)
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Indeed, if x; = 1 (resp. x; = —1) then (22);_1 < (ua); < (u2);.4, (resp. (a);_y >
(%2); > (#a);44), so that p;..’ > O,pj_1 < O,pJ} < 0 (resp. p? < 0,,0;_1 > O,p} > 0)
for p;’s in (3.3). By (3.2) and maximality of (ue); (f) we now observe that

(dL;/dt)(E) = pj(we); () + Py (ue);_y () + p5 (we); 41 (D)
> (resp. <)pj(ue);(£) + p; " (ue); (2) + p} (we);(F) = 0,

since p;-'1 + p} + p;-’ = 0. Thus |
(dA;/dt)() <O for A;(t) = x; A((ua);)/L;(2). (3.5)

Differentiating (3.1) in ¢ and using (3.5) we obtain

(d(we); /dt)(E) = — Feld, (wa);, A;()) = Fx(E, (wa);, A;(9))(dA;/dt)(F) < Co +0

since Fx < 0 by monotonicity of F in X. This yields (3.4).

The next lemma (which is not explicit in [GK1]) with f;(¢) := (u;);(t) — Cot im-
plies that U(t)—Cot is a nonincreasing function. Thus (u);(t) < max;<i<a (:):i(0)
+ Cot for all j,1 < j < d, t €[0,Tp). A symmetric argument gives the estimate
from below for (u;); in (1). O

Lemma 3.3. Forto > 0and j=1,2,:--dlet f; be a real-valued locally Lipschitz
function on [0,%0). Let f be f(t) = maxi<j<a fj(t). For each j let T; be of form
3; = {t € [0,t0); F(t) = f;(t)}. Assume that f;(ﬂ <0forallje{l,--,d} and

a.e. t € ;. Then f is nonincreasing in [0,o).

Proof. If f is not nonincreasing, then f(a) < f(b) for some a < b, a,b € [0,1,).
Since f is locally Lipschitz continuous, it is almost differentiable and 0 < f(b) ~
f(a) = f: f’(’z)dz. Thus there is a point § € (a,b) such that f together with all
fi’s is differentiable at 8 and p := f'(3) > 0.

There exist ¢ € {1,---d} and 2, | 4, =, € (3,b) that satisfies f(2;) = fi(2()
forall £ =1,2,---. If not, for each 7 there is §; such that 0 < z — § < §; implies
f(z) # fi(z). However, this implies f(z) # fi(z) for all i € {1,---d} and = with
0 <2 —§ <minjci<g 6. This contradicts the definition of f.

Since f and f; are continuous, f(8) = f;(3). Since f/(3) < 0, for any 0 < ¢ <
P = f'() it holds.that f;(2) — f;(5) < g(¢ — 5) for > § sufficiently close to 5. We
take ¢ = z, for sufficiently large £ to get |

a(z. — 8) > fi(e) — £i(8) = f=0) — £(3),
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which contradicts that f'(3) =5 >¢>0. O

It is easy to derive a priori estimates like (2.1), (2.2) for weakly admissible

solutions. :

Lemma 3.4.  Assume the same hypotheses of Theorem 3.1 (including (ii)) con-
cerning F. Let u € C([0,T) x T) be a weakly admissible solution of (1.5) such
that u is admissible on [t;,t;41) for some ts = 0 < t; < -+- < 1}, < thy1 =T
(£=0,--- ,h —1) and some faceted region disappears as ¢ T £,(£ > 1).
(i) ||#alleo(t) is constant in [t;,2,41)(£ > 0) and may decrease at t = t,(£ > 1).
In particular,

|[#a]loo () < [|%0alleos t € [0, T). (3.6)

(i) ||#ze|l1(2) is constant in [t;,t;41)(£ > 0) and llu?,|l1(tt) = ||%oall1 (£2+0) <
||#az||1(te — 0) for £ > 1. In particular,

|luasll1(t) < llwoeallr, ¢ €[0,T). (3.7)

(iii) ||A(x)||1(2) is constant in [t;,t,11)(£ > 0) and ||A(w)|]1(te) = ||A(2)]|1(2c +
0) < [|A(u)[|1(t,—0) for £ > 1, where A(u)(t,z) = A;(t) in (3.5) for z € I;(t).
In particular,

[IA(I11(2) < [|A(o)llx, t € [0,T). (3.8)

Proof. (i) This is clear since (u5); does not depend upon ¢ € [t;,¢;11) and no
faceted regions are created as ¢t T¢,(£ > 1).

(i) Since ||uga|/1(t) = E?:I |(u2)j+1 — (wa);], t € [0,%1), it is easy to see that
|42z ||1(t) is independent of £ € [t;,2,41)(£ > 0). Ast T ¢,(£ > 1) jumps of u,(t,-) of
u actually disappear and u(t,,-) is still an admissible crystal. Thus ||u,,||; actually
drops at t =t,(£ > 1) ast 1 ¢,. ’,

(i) Since [IA@I11(t) = Ty LOMGO] = Sioy s 1A, ¢ € [0,) it is
easy to see that ||A(u)||1(¢) is independent of ¢ € [t;,2,41)(£ > 0). Examining the
pictures of possible disappearance of faceted region in [GG2], which is still applicable
for our general function F, we conclude that ||A(x)||; may drop at ¢t = ¢,(£ > 1)
as t T t;; note that in the case that our two consecutive faceted regions disappears
||A(%)||1(£) does not drop at t =t, ast 1#,(£>1). O
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Remark 3.5.  The estimates (3.6) and (3.7) follow from Theorem 2.1 once we
know that a weakly admissible solution is a generalized solution. This idea can
be implemented if we modify the value of F(¢,p,0) for p # P so that the next
proposition applies. We note that our proof for (3.6)-(3.8) does not depend on the
theory of partial differential equations. It is not known whether (3.8) follows from
Theorem 2.1 since A(u) is not a local quantity.

Proposition 3.6 (Consistency). Assume the same hypothesis of Theorem 3.1
(including (ii)) concerning F. Then a weakly admissible solution u € C([0,T) x T)
of (1.5) is a generalized solution of (1.5) provided that

F(t,p,0) = 6F(t,p,0) + (1 - 6)F(t, Prt1, 0) (3.8)

forp=0p; + (1 — O)pry1 With0 <0< 1, k=1,.-- ,m—1.
This is a main topic of [GG2] for F(t,p, X) = —a(p)(X—C'(t)) with a nonnegative

continuous function a and a continuous function C. However, the proof can be easily
extended in our general setting. We remark that assumptions on F in Lemma 3.4

and Proposition 3.6 can be weakened as in Remark 3.2 (ii).

A priori estimates by crystalline algorithm. We shall prove (2.1) and (2.2)
with £(¢) = o by Theorem 1.1 without using the theory of uniformly parabolic
equations (Proposition 2.3). For this purpose we approximate ug € C(T) by ad-

missible crystals; this approximation is not intended for numerical computation.

Lemma 3.7 (Approximation by admissible crystals). Assume that ug €
C(T) and ||uges|l1 < 0o. Then there is a sequence of finite set P, in {p;|p| <
|l%0s|]oo +1}(n = 1,2,--+) and a sequence of u? which is an admissible crystal with

respect to P, such that ug — ug in C(T) with ||ug,||cc — ||%0s]|co and

JLim [lug,, |y = ||uos]l1, (3.9)
lim [P,|=0 with |P,|=max{|r—s|, r,s€ P, r<s, (r,5)N P, =0}

(3.10)

Proof.  There is a sequence of smooth functions v, such that v, — ug in C(T)
with [|vie]le = [|02]lco 81d ||v2al1 — ||%02z|l1 as £ — oo (cf. [Giu]). By a
diagonal argument we may assume up € C®(T). Similarly, we may still assume

that ug is real analytic by truncating w-periodic Fourier expansion of ug.
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If ug, # 0 is real analytic, the set of points Z = {2 € T;ugsn(z) = 0} is finite
(and nonempty by periodicity). We express theset Zby Z={0<z; <2z, < -+ <
z;, < w} and set ¢; = ugo(2;)(: = 1,2,--- ,14p), so that

. 1o
llwoaslls =Y lgj+1 —gj] With gipi1 = qu. (3.11)
=t

For 74 := ||%ga||ec + 1 and r_ := —r, we set
P, = {pj €ER;p; = (7'+_'r—)'j/2n+"—’ j=0,1,2,--- ,2"}U{qi;i= 1,2,--- 40},

so that (3.10) holds. If ug, = 0 we take P, as above by interpreting that the set
of g;’s is empty and we set u§ = up. If ugps > 0 in (2;,2;41) then we approximate
up» by a piecewise constant nondecreasing functions £, in [z;, 2;+1] with values in
P, that satisfies
nli’n:o zasil_lél:.-“ |wos — ful(z) =0, | (3.12)
fn takes all values of P, N [g;,g;+1] and its inverse ()
for » € P, N[g;, gi+1] has an interior in [2;, 2;41];
| moreover fn(z;) = g, fu(zit1) = Git1, (3.13)
Zita Zita
/ fn(z)de =/ uge(2)de. (3.14)
% 2
H %, < 0in (2;,241) we take f, in [z;,2;41] as a piecewise constant nonin-
creasing function satisfying (3.12)-(3.14). In each piece [2;, zi+1] we assign u(z) =
I :: fa(y)dy+uo(z;). Then, (3.13) and (3.14) guarantee that u? is an admissible crys-
tal with respect to P,. The convergence ug — ug in C(T) with ||, ]lcc — ||%00]|co
follows from (3.12). Since ||ug,,|l1 = E:f_:l |gi+1 — @;| by comstruction we have
||%g0z|]t = ||#oss||1 for all n. Thus (3.9) follows from (3.11). [

We introduce our crystalline algorithm to approximate solutions of (1.5).
(i) For given up € C(T) with ||ugza|l1 < co we take u2 and P, as in Lemma 3.7.
(ii) For Wy € £ we take a piecewise linear convex function W, such that W, = W,
on P, and W, is affine outside P, with W (p, — 0) = W¢(p1 — 0), W.(pn + 0) =
W4(pm + 0), where p; = min P,, p,, = max P,.
(iii) For Fo € Fyr, we may assume that Fy is C® by mollifying. We take
Fou(t,p, X) = Fo(t,p, X) + Ga(X) with G,(X) = G(X/n) with a nonincreasing
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C* function G (with bounded derivative) that satisfies G(X) = 0 for | X| < 1 and
imyx_, 4o G(X) = Foo. We then take
Fon(t,p,X), pE P,orpé¢ [p1,pm),
Fo(t,p, X) = 0 Fon(t, P4, X) + (1 — ) Fon(t, pa+1, X),
P=0p+(1-0)prt1, 1 <k<m—-1,0<6< 1.

For such F, and W, we consider a weakly admissible solution u™ of (1.4) with
Fe = Foy, W, = Wy, ug = ug, € = 1/n,n > 1; modification by G guarantees the
global existence of weakly admissible solutions. By definition F, satisfies (3.8).
Thus, by Proposition 3.6 «™ is a generalized solution of (1.4). Since (3.10) implies
that W,, — Wy uniformly in [r_,»,], F, — Fy locally uniformly and ¥ — ug in
C(T) as n — oo, Theorem 1.1 guarantees the local uniform convergence 4™ to the
generalized solution u of (1.5) in [0, T) x T. Note that the limit of W, may not agree
with Wy outside [p1, pm](= [r—,7+]). However, since ||u?||o < 74, our u actually
solves (1.5) with original Wy. Since u™ approximates u and u™ is constructed by
solving ODEs (3.1)-(3.2), the method (i)-(iii) is a kind of crystalline algorithm. Our
way of approximation of Wy is different from [GK1, 2] since our W,, and P, also
depend on initial data ug.

It is by now clear that (2.1) and (2.2) with £(¢) = o are obtained by Lemma
3.4 and Theorem 1.1 since we have ||uf,,||1 — ||voss||1 and ||ug,|lcc — ||%00||co as

n — 0o by Lemma 3.7. The convergence (Theorem 2.5) also follows since it needs
(2.2) only for £(0) = o

4. Counterexample when F depends on the space variable
As we observed by Proposition 3.6 and Theorem 1.1 a weakly admissible solution
is obtained by approximation by a smooth strict parabolic problem.

When F depends on the space variable, it is still possible to derive a system like
(3.1)-(3.2) if we admit the ansatz that a facet stays as a facet with same slope.
However, such an ‘admissible solution’ may not fulfills a comparison principle. We
give an example below. This observation shows that such a solution cannot be
obtained by approximation by smoother strict parabolic problem. In [R] and [GG4]
a reasonable way to interpret solutions is proposed. |

Let us consider an example given in [GG4] when F depends on the space variable.

We consider an equation of form

u — {W'(15)a — C(2)} =0, z € R, t >0, (4.1)
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where W(p) = Alp|/2, C(z) = max{0,1 — |z|} with positive number A. We take

0 | IZI < ay,
’ll,o(z; ao) = Q(‘B - ao) z > ag, (42)\
—glz+an) 2 < —aq |

as an initial data, where g is a positive number and ag > 1. Let us recall that the
exact solution u of this initial value problem in [GG4] obtained by subdifferential

formulation.

(i) the case A > 1.

u(a(t; o)) [2| < a(t; o),
ug(z) otherwise

u(t,2;00) = { (4.3)
with a(t; ) = (e + (A — 1)t/q)*/2. For later convenience we set the right hand
side of (4.3) as f(t,2;ap).

(ii) the case A < 1.

—C(AY?)t 2| < AY?,
u(t,z;a0) =< —C(a)t AY? < 2] < 1,

up(®;00)  otherwise.

We observe that in the latter case a facet of ug on [—ao, ag) is split into five facets.
We also observe that for any oy > ap > 1 we have u(t, 2;a) < u(t,z;0p) fort > 0
and z € R for the both cases.

We shall discuss what would happen if we assume ‘facet-stay-facet assumption.’
Let us assume that a function v(¢,z) solves (4.1) under facet-stay-facet assumption
with initial data uo(2;ap). Integrating v; from ag — o to ap + o at t = +0 with

small positive o, we have

agto @o+o v
[ wde= [ W) - C@)Me = W)Y, -

—Qg—0 -—Qp—0

at ¢ = 40, since ap > 1. Facet-stay-facet assumption implies that the left hand
side equals 2(o + 0)v¢(+0, 2) which is independent of 2 € (—ag, ag). Sending o to
0 implies that :

A-1

1
'vt(+0,z) = -—2-a—0—- = Aw(‘v(+0, '), 0) - E for z € ('—ao,ao).
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We observe that the right hand side equals weighted curvature minus the average of
C(z) on the faceted region (—ap, ag). Thus we obtain that v(t,z;a0) = f(¢, 2; ap)
for z € R and t > 0 with d(t;ao) > 0. }

When A < 1, comparison principle is not valid for ». In fact, for @y > ap > 0
it holds that uo(2;ap) < uo(2;a0) for z € R. However, we have v(t, ;@) >
v(t, z;a0) at least for t € (0,ad¢/(1 — A)) and 2 € (—a(t;ap), a(t;ag)), since
a(t; ) — T > at;e) — oo implies that ug(a(t; @) > uo(a(t; ao)).

When C'is independent of z, the subdifferential formulation is consistent with our
generalized solutions [GGS5]. It is desirable that the notion of generalized solutions
is extended to the case when C depends on z so that it is compatible with the
subdifferential formulation as suggested in [GG4].
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