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-~ On lower semicontinuity of a defect energy
obtained by a singular limit of the Ginzburg-Landau

type energy for gradient fields

Patricio Aviles* and Yoshikazu Giga
Department of Mathematics
Hokkaido University
Sapporo 060, Japan

1. Introduction
We are concerned with a defect energy measuring the strength of jump discon-
tinuities of gradient vector fields. A typical form of a defect energy for a gradient

vector field Vu in a bounded domain 2 ih R" is
JB(Vu) = / I[Va]|® dHr? (1.1)
Jz

with 4 > 0, where & denotes the jump discontinuity of Vu and [Vu] denotes the
difference of Vu of each side of £; H™~! denotes the n — 1 dimensional Hausdorff

measure. There may be many Lipschitz solutions of the eikonal equation
[Vul=1in Q with u=0 on 9OQ. (1.2)

There are several selection principles of solutions depending on physical situation.
A widely known selection principle is provided by the theory of viscosity solutions
which selects the distance function from the boundary as a unique viscosity solution
of (1.2) [L]. However, there may be another way to select solutions by minimising a
defect energy J?, as arised in the modelling of smectic liquid crystals [AG1], [SK]
or of the blistering of thin films [OG] or of the magnetic walls in soft magnetic thin
films [VB], [VB2]. As already shown in [AGS5] the viscosity solution of (12) may not
minimise J#(8 > 0) among all solutions of (1.2) for some two-dimensional bounded
non-convex domain 2 with Lipschitz boundary 8$2. However, for a convex polygonal

domain Q it is shown in [AG5] that the viscosity solution of (1.2) minimises J*
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among all gradient vector fields with bounded variation satisfying (1.2). The proof
is based on rank one properties of the Hessian VVu [Al], [AG2]. The problem
for general convex domain as well as for general energy J? seems to be left open
although there are several interesting observation by W. Jin and R. Kohn JK].

The existence of minimisers of J# subject to (1.2) is not known in general. To
attack this problem by the direct method the crucial step is to show

(i) lower semicontinuity of J#;
(ii) compactness of a set of Vu on which J?(Vu) is bounded;

under the same topology of gradient vector fields satisfying (1.2). 'If n = 1, J?
equals 2° times the total variation of u, = Vu with |u;| = 1. Thus it is easy to
show (i) and (ii) under L! convergence of u, by the general theory of functions of
bounded variation [Giu]. However, both problems are nontrivial when n > 2. In
this paper we focus the problem of lower semicontinuity of J# under L! convergence
of unit length gradient vector fields.

The main goal of this paper is to prove that J2 is lower semicontinuous under
the L' convergence of Vu provided that u solves |Vu| =1 in Q and that Vu has
bounded variation (shortly, u € BGV(Q2)) when n = 2. We do not need to assume
that u = 0 on 9. The key step is to establish a representation formula of J3(Vu)
when {Vu| =1 in Q (Theorem 2.1). Loosely speaking, the formula reads:

J(Vu) =4 sup 3 /9 10 (ud) = B,(u2) (1.3)
i=1 i

where sup is taken over all finite Borel decomposition {£2;}*, and orthogonal basis
{¢, n} obtained by a rotation of the standard basis {e;, ég} of R?; ug = 8¢ u
denotes the directional derivative and |u| denotes the total variation measure of a
measure u. A crucial step to obtain (1.3) is an observation that

0 (uf) — Oy (u3)

3

=§(1 - U? - uf;)(“&& — Unn) =0

outside ¥ if [Vu| = 1 in Q. The first identity is essentially contained in [JK].
Our proof also applies to get lower semicontinuity of modified energy:

T8 (Vu) = /E Val? a(Var)dH
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provided that 8 = 3; here a = 1if Vu in near ¥ in one side of ¥ points out the
same side of ¥ and otherwise o = 0. What is surprising us is that .J. f for >3 is
not Jower semicontinuous under the L!-convergence of Vu with |[Vu| =1 in Q and
with bounded total variation. We shall give an explicit counterexample in Remark
2.8. From this example, it is natural to conjecture that J? for 8 > 3 is not lower
semicontinuous. So our proof should not be extended to the case 8 > 3. Similar
counterexample is pointed out independently and concurrently by W. Jin and R.
Kohn.

In this paper we do not investigate questions related to (ii). We do not even
know whether or not the set Y of Vu with u € BGV () solving [Vu| = 1 in Q with
supy J3 < oo is always closed in 1.

Our representation formula is also important to study Gamma limit (see e.g.
[DM]) of the singularity perturbed variational problem with the Ginzburg-Landau

type energy:
(Vi) =3 [ e W(Tu) e VYA, W) = -1 (14)

in a two dimensional bounded domain Q with u = 0 on 8 when p = 2. Since the
Euler-Lagrange equation is fourth order we are entitled to impose another boundary
condition. The natural choice seems to be Ju/8n = —1, where n is the unit outward
normal of J€2. We are interested in the behaviour of E. as € — 0. If we admit the
one-dimensional ansatz saying that Vu is almost parallel near internal transition
layer, formal analysis for p = 2 done in [AG1], [OG] suggests that the problem has
Gamma limit '

b
7=/ / 11— (a® +7)|P/2 dr dM?,
z J-b

a = |(Vu) b= (1-a3)%?,

tan l’

where (Vu)¢an denotes the tangential component of Vu to . Since [Vu| = 1, we

see .
- 1
= JPFL o —_ — o2\p/2
J=cJ Wlthc-—2p+1 /_1(1 §°)P1< ds.

The value ¢ = 1/6 when p = 2. Although it was conjectured a long time ago in
[AG1] that the Gamma limit of E, with p = 2 equals 7 = J3/6, it has been left



4

open. Using our representation formula (1.3), we prove that
J3(Vu)/6 < liminf E.(Vu©) (1.5)

for p = 2 provided that Vu fulfills (1.2) with bounded variation of Vu and that Vu®
converges to Vu in LP({2) for p > 3. This provides an estimate from below of the
Gamma limit of E, at least L3(Q) sense. Although we do not study in this paper,
in many examples Vu has an approximate sequence Vu® Asatisfying the boundary
condition for F, with _ '

lim E.(Vuf) = J3(Vu)/6
if Vu is sufficiently regular away from ¥. Thus our estimate (1.5) is sharp.

Since we believe that J? for 8 > 3 is not lower semicontinuous, for p > 2 the
Gamma limit of E, must be different from J. This suggests that the behaviour of
E as € — 0 for p = 2 is rather special and there arises no microstructure which
may break one dimensional ansatz. For p = 2 we also prove that the Gamma limit
E, is the same as that of

E.(Vu) = % /Q e~ W(Vu) + ¢ |Auf?

by extending an integral identity obtained in [JK].

Convergence problem of E, for gradient vector fields is not well studied compared
with scalar field. When W has isolated equal minima, the problem was studied by
[KM1, 2] where it was shown that the microstructure arises. For our E. with p =2,
W. Jin and R. Kohn [JK] calculated the limit of minimal value of E. and proved
that results are compatible with one-dimensional ansatz for several examples of
domain. However, if there is anisotropy in |Vu| for example |Vu|? is replaced by

u§+/\u§ for small A >0,
they showed that the one-dimensional ansatz is not longer valid.
2. Representation and lower semicontinuity of defect energy

Let © be a bounded domain in R?. Let L(Q) denote the space of integrable
functions on Q2. We do not distinguish spaces of vector-valued functions from that
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of scalar-valued functions. Let BV (2) denote the space of functions with bounded

variation, i.e.,

BV(Q) = {w € L}(Q);

each component of Vw is a finite (signed) Radon measure on 02},

‘where Vw denotes the distributional gradient of w. Let BGV(Q) be the space of
real-valued functions whose gradient belongs to BV (Q), i.e.,

BGV(Q) = {u € L}(Q); Vu € BV(Q)}.

For u € BGV(Q) it is well-known (see [F}, [Giu], [S]) that the Hessian VVu is a
2 X 2 matrix of Radon measures decomposed as

VVu=VVu | Qo+ VVu | (Q\(QUZ))
+v@ (Vut —Vu~YH! | T, (2.1)

where ® denotes the tensor product of vectors. Here 3 denotes the set of Jump
discontinuity of Vu and v represents a H'| ¥ measurable unit normal vector field
on X. The vectors Vu* are the trace of u on ¥ defined by

Vut(z) = leifg Vu(z £ ev(z))

and H! denotes the one dimensional Hausdorff measure. By p | A we mean a
measure on {2 defined by (4| A)(D) = u(AN D) for D C Q, where y is a measure.
The part VVu | { is absolutely continuous with respect to the Lebesgue measure
£? and £?(§2) = L2(Q). The last two terms in (2.1) are singular with respect to
L2,

In [AGS] several integrals measuring the size of jump discontinuities of Vu are
studied for u € BGV/(2). We recall one of them. Let J? (3 > 0) be of form

B = f IVu)|® dH?, (2.2)
z

where [Vu] = Vut — Vu~. This quantity only depends on u through its gradient
so we often write it by J#(Vu). If |[Vu] is bounded on Q, J2 for 8 > 1 is always
finite for u € BGV (), since J? is dominated by a constant multiple of J! which
is dominated by the total variation of VVu. |
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- The goal of this section is to give representation of J2 and prove the lower
semicontinuity of J3 under the L-convergence of gradients of u € BGV(Q2) when
Vu solves the eikonal equation |[Vu| = 1 in Q. For this purpose we use a vector
field associated to Vu which turns to be the same as introduced by W. Jin and R.
Kohn [JK]| when |{Vu| =1 in Q. We set

= —_ g 3 _Z 3
2(p,q) = <313_,_ —34 ) » (2.3)
and define
G1(Vu) = div (E(us, uy)), Vu = (ug, uy).

Since Z is C?, the chain rule by A. 1. Volpert [V] implies that G 1(Vu) is a signed
Radon measure on Q for u € BGV(Q) if |Vu| is bounded on . We need to rotate
this measure. Let B = {£,n} denote an orthonormal basis of R? with the same
orientation as I = {e;,e2}, where e; = (1,0), ez = (0,1), i.e., there is a rotation
matrix U such that Ue; = ¢, Ue; = 7. Let B, denote the sets of all orthonormal

basis with the same orientation as I. For B € B, we define

(V) = div®(E(ug, uy)) = O @@) _a, @.&,) (2.4)
where u¢ = J¢u, u, = Oyu and 8, 8, denote the directional derivative; here div®
denotes the divergence in the coordinate system associated to B. We decompose
the domain and on each decomposed pieces we consider this rotated measure G B-
To be precise let A denote the totality of all finite Borel decomposition of Q, ie.,
each element of A consists of a finite set of disjoint Borel sets {Q:}2, in Q with
Uizi £ = Q. Let Ag be the set of {Q;}; € A with the property that each §; is
of form | '

={(z,7); a<z<b c<y<din®

with some a, b, ¢, d € R. We are now in position to state our main results.

Theorem 2.1 (Repfesentation). Assume that u € BGV () satisfies |Vu| = 1
(L2— a.e.) in 2. Then

(i)

3dH! =6 su 3 (Vu THR (Y2 ;
L vapan=e P [, 416a(0 Lais @ en, Bies,)
(2.5)
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for a set A in §2, where || denotes the total variation measure of a measure u. In

particular

J3(Vu) = 6 sup{f: /Q d|Gs,(Vu) | ul; {4} €A, B; eB+}. (2.6)

=1

Both formulas are still valid even if A is replaced by Ag.
(i) _
m .
J3(Vu) =6 sup {Z / Vs, @i - E(ug,, u,,,.)d£2
=1 1/

p; € P, {Q‘I-}T—-l €ANg and B;e€ B+}, (27)

!

where ®; is the set of real-valued C! functions ¢ compactly supported in int ;
(i.e. ¢ € Cj (int Q;)) that satisfies |p| < 1 in Q;; Vg, denotes the gradient in the

coordinates associated to B; = {&; n;}.

Theorem 2.2 (Lower semicontinuity).  Assume that u® € BGV(Q) (¢ > 0)
satisfies |Vuf| = 1 (L2-a.e.) in Q. If Vu* converges to Vu® in L1(Q) (or L3-a.e.),
then

J3(Vu°) < Timinf J3(Vu). (2.8)

Proof that Theorem 2.1 implies Theorem 2.2.  Suppose that Vu® — Vu in L1()
as € — 0. We may assume that Vu® — Vu® in Q (£2-a.e.) by taking a subsequence.
Since |Vu®| is bounded, the dominated convergence theorem implies that

/ VB, p; - E(ugi ugi)dﬁ2 =]eiﬂ:)l / Vb, @i - E(ug, uf, )dL2.
. Qi

Since the supremum operation is lower semicontinuous under convergence, the rep-
resentation (2.7) now yields (2.8). O

To establish the representation foumulas (2.5), (2.6) we prepare several estimates.

Lemma 2.3. 6 |Gp (Vu)| < |[Vy]|® H! | T as measures, where u € BGV ()
with jump discontinuities 3 fulfilles |Vu| =1 (£?-a.e.) in Q and B € B,.

Proof. By rotation we may assume that B = {e;,e;} = I. Let A be a set in
Q\X. Since |Vu| =1 on £,

2
E(u u)=(u (1—u2—ﬁ> —u (1—u2—ﬁ>>- (2.9)
o z) Yy z v 3 ’ (7 T 3 3 .
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the right hand side is the vector field introduced by W. Jin and R. Kohn [JK]. As
observed in [JK] at least formally a direct computation yields

div(E(uz, uy)) = (1 —u2 - uz)(um — Uyy). (2.10)

By the chain role for functions with bounded variation (A. I. Volpert V]) (2.10)
implies that

div(E(uz, uy)) A= 0
since |Vu| = 1 we may assume that Vu is approximately continuous outside ¥ and
YN A =0 sothat on A the right hand side of (2.10) equals zero. Thus

IG1(Vu)| | A
is identically zero if AN = @.
It remains to prove that
6 / d |G (V)| < / VP dH. (2.11)
> =

Since
Laiexui=F [ 100?00~ (@) - 500w, |
to show (2.11) it remains to prove thé,t
()~ 2P e— (@)%~ ()P | < ((ud —ug)?+ (uf —ug)2)¥2, (2.12)
where v = (v, 1y). We set
v = (cos g, sin o), Vut = (cos (o + ), sin(c + 6)) (2.13)
so that

Vu™ = (cos (¢ — 7 — ), sin(oc — 7 — 8))

= (—cos(c — @), —sin(o — 9)).

By additive formulas (for trigonometric functions) we see that
(u)? = cos®(o + 0) = cos(c + 6)(1 — sin?(o + 6))

1
=3 cos(o + 0)(1 + cos2(o + 6)),

(u7)® = —cos®*(c — §) = —% cos(oc —6)(1 + cos 2(c - 9)).



- Thus again using additive formulas we obtain

(wh)? = (uD)? = %{cos(a +6) + cos(c — 6)
+ cos(o + 8) cos 2(c + 6) + cos(o — 6) cos 2(o — )}

B

{2cos ocos 0+ -;—{cos(3(a +0)) + cos(—(o + 6))}

+ -;-{cos(.‘.%(a —0)) +cos(—(c - 0))}}

N =

{3cos ocos §+cos 3 o cos 3 6}.
Similar calculation deduces
+3 3 _ 1., . .
(ug)® = (uy)* = 5{3sm o cos § —sin 3 o cos3 6}.
We now observe that

P=((u})® - uz)®)ve — ((u)® — (ug)®)wy
= %{3008 ocos o cos § —3 sin o sin o cos 6

+cos 3ocos 360 cos 0 — (—sin 30 cos 3 §)sin o}

= %{3cos fcos 2 g+ cos 36 cos(3c— o)}

4
=% cos 2 o{3cos §+cos 3 6} = 5 cs 20 cos® 4.

Since

[Vu]|? = (cos(o + 8) + cos(o — 6))2 + (sin(o + 8) + sin(o — 8))?2
= (2 cos 0 cos 0)®+ (2 sin & cos 6)% = 4cos?9,
our formula for P implies

4|P| =8| cos 2 o] | cos® 6] < 8| cos® O] = (V][

which is the same as (2.12). Thus the estimate in Lemma 2.3 has been proved.

The proof in particular yields:
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Lemma 2.4.  Foru € BGV(Q) satisfying |Vu| = 1 (L2-a.e. ) in § the identity
4

/ d |Gp(Vu)| = = / |cos 2 o | cos® 9] dH?
=nA 3 Jena |

_1 / |cos 2 of [[Vaf? dH?

holds for a subset A of Q with B = {¢,n}. Here ¢ and o + 8 are arguments of v
and Vgut with respect the coordinate system associated to B, respectively. (In

the case B = I, o and 0 are the same as given in (2.13).)

Proof of Theorem 2.1. (i) By Lemma 2.3 it suffices to prove that for each § > 0
there is {Q;}72, € Ag and B; € B, such that

/ VP aH <3 6 / d|Gs, | | +6 (2.14)
ZNA YNA

i=1
for every subset A in 2. We may assume that J5 [[Vu]|® dH* # 0. Since the jump
discontinuity % of Vu is countably one rectifiable (see e.g. [DG1], [F}, [Giu], [S],
[AG2]), T is of form

(o e)
=] Z:UZ, (disjoint union)
=1
with H!(Zo) = 0; the set ; is compact and lies on some C! curve C¢ embedded
in R2.
Since |[Vu][® is bounded on %, for each ¢ > 0 there is N > 0 (independent of A)
that satisfies

.
,, / [VulP] dnt <3 VU dH? +6/2. (2.15)
N4 =1 JZena

Since X is compact and lies ona C! hypersurface Ct, for each small w, say 0 <
w < w/4, there is {Q;}7%, € Ay with the property that the set ©Oy; of arguments of
vin ;NXe(1 < ¢ < N) contained in an interval of length less than w. On each Q;
we take B; = {&;, n:} € By such that the argument ¢; € ©4;. By Lemma 2.4 and
Lemma 2.3 we see that :

6
Vull®| dH? < / d|Gp,(Vu) | ;
Lo, 0Pt < [, 41Gs (V) L2y

<s [ MleB,.Wu)miH( ! —1) [ vul a0,

cos 2w
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By (2.15) this yields

./;:n IVul’l dH* < 6 Z / d |G, (Vu) | Qul +6/2

i=1

N(coslzw‘1> /2 IVu]j® dH.

We take w small so that the last term is dominated by § /2. Thus we obtain (2.14).

(ii) We may take A = A in (2.6). Since J 3(Vu) is finite, we may assume that
Gp; [ 09 = 0 in Q in (2.6) by shifting edges of rectangles. Since int §; is not
empty if {;}%; € Ay, foru € BGV(?) the Riesz representation together with
integration by parts yields

‘/S;i d|Gp,(Vu)| = sup{

/ ¢ d |G5,(Vu)
Q;

;¢€¢}

= sup p € &},

/ Ve, ¢ - E(ug,, uﬂi)dﬁz )
2

provided that Gp, | 69- = 01in . Since the value of the right hand side of (2.7) is
unchanged even if we restrict {€;} so that Gp, [ 0€; = 0 in Q, the formula (2.6)
now yields (2.7). O

The method developed here applies to the modified defect energy
J3(Vu) = / [Vul® H(Vu* - v)dH?,
=

where H is the Heaviside function: H(r) = 1 for 7 > 0, H (1) = 0 otherwise.
The value H(Vu* v) is independent of the choice of v. It only depends on points
of ¥ and behaviour of v near ¥. This defect energy only measures the jump
discontinuities where du/8v > 0.

Theorem 2.5 (Representation).  Assume thatu € BGV(Q) satisfles |Vu| =1
(L%-a.e.) in Q. Then

L vl B dnl—ssup{z | d(Ga v, Lo

{2, € A, By ={¢&,n;} € By with the condition ) :

the argument o of v on Q; N T from &; is less than 7r/4}
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~ for a set A in Q. In particular

73(v) = osup{ 3 / d(Gs, (V)| i QT €

i=1

B; = {&,m:} € By satisfying the condition ( C)}

Both formulas are still valid even if A is replaced by Ag. Here pi, for signed measure

p denotes the nonnegative part of .

Theorem 2.6 (Lower semicontinuity).  Assume that uf € BGV(Q) (e > 0)
satisfies qu’s | =1 (L%-ae.) in Q. If Vu® converges to Vu® in LY(Q) (or L2-a.e. ),
then
JE (V) < liminf J3(Vu?)
The proof is essentially similar to that of Theorems 2.1 and 2.2. For example
we have a representation of (Gg); corresponding to Lemma 2.4. The proof is

essentially contained in that of Lemma 2.3.

Lemma 2.7. - Letu € BGV(Q) satisty [Vu| =1 (L%-a.e.) in Q. Then
/ d (G(Vu))y = 4 / (cos 2 0 cos® 6)4 dH', (ay = max(a,0))
=na 3 Jsna

for a subset A of Q with B = {¢,n}. Here o and o6 are arguments of v and Vg u™t
with respect to the coordinate system associated to B, respectively. If |o| < /4,
then the right hand side equals

%1 / cos 2 o(cos® 6), dH!.
TnA
If we note Lemma 2.7 and
/ [VulP H(Vut-v)di =8 [ (cos )3 ditl,
=nA TnA

we observe that the rest of the proof of Theorem 2.5 parallels that of Theorem 2.1.
Theorem 2.6 follows from Theorem 2.5 in the same way to derive Theorem 2.2 from

Theorem 2.1 since we have

/ d(Gp(Vu))y = sup{/ pdGp;;p€®;, o> 0}
i

°~sup{/ (=Vg, 0 - E(ug, uy,))dL? o &;; ¢ 20}.
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We safely omit the details to the reader.

Remark 2.8  Our lower semicontinuity results (Theorems 2.2 and 2.6) are rather
surprising since for § > 3

I = [ (v B var

is not lower semicontinuous with respect to the L! convergence of Vu satisfying
|Vu| =1 in Q. We give a counterexample. Let 2 be a rectangle of form

Q={(z,y); [yl <1, |z| <2}.

Let 4% be the minus of distance function from the boundary 99, i.e.
u(z,y) = —dist((z,y), 092).

Evidently, the jump discontinuity ¥ of u° is of form

2=L US.|.. U S..,
L={(z,y) €Q; |z| <1, y=0},
Se={(z,9) €Q; ly|=%z -1}

and Vu't v > 0(H!-a.e.) on . To construct a sequence we set
v(z,y) = —dist((z,y), D) for (z,y) € D,
where D is a square of form
D=A{(zy)l =] <1, lyl <1}

Our u° is rewritten of the form
viz—-1,y), z>1
uo(m’ y) = Iyl - 1a lml S 1
U(.’l)+1, y)7 z< -1

vFork=1,2,~-- we set

2k
for | o] - j/k| < 1/2, ly| < 1/2k, j=0,1,--k (2.16)

uk(z,9) = +v <2k(m - ~Jk-), 2ky> + L 1,
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and u¥(z,y) = u(z,y) for other (z,y)’s. By definition both u* and u° solves
|Vu| =1 (£?-ae.) in Q. Moreover, Vu* — Vu® (£2-ae.) in  since the Lebesgue
measure of the set of (z,y) where u* does not agree with u° tends to zero as k — oo.

We shall prove that
JZ (Vo) > lim inf JZ (V) (2.17)

for 8 > 3. Since u* = u® for || > 1, to show (2.17) it suffices to prove

/ [[Vul]|? dH! > nkminf / [[VuF]|B H(Vu - v)d(H! | =) (2.18)
L —o Jp
where T denotes the jumps of Vu* in D. By definition (2.16) of u* the set T}, is
of form

Sk =7 UTY

E; = {(xay)7 ”$| _J/k' = 1/2k) !$l <1, lyl < 1/2k for some .7= O’ lvk})
Z¢ = {(=,9); vl = Izl - j/kl, 2| <1, |y| < 1/2k for some j =0,1,---k}.

On I it is easy to see that Vut - v < 0 while Vut - >0 on T{. Thus

/ [VaHP H(Vu*, v)dH: = / (V[P dr.
Tk +

Ze

Since |[VuF]| = v2 on =} we see

/ I[Vuk]lﬂ dH* = 98/2 H1(2:)=2ﬂ/2 2.2 . 2i—k§ . 9=9. 2(ﬁ+3)/2,
-+
k
while

/ [VuO)|P dH: =2 - 2P.

L

This shows (2.18) if 8> 3. (If 8 = 3 we do not get (2.18) of course.)
Although this example is not enough to prove that J# with B > 3 fails to be

lower semicontinuous, we conjecture that J? for 8 > 3 is not lower semicontinuous.

Remark 2.9 We conjecture that (2.5) holds for all u satisfying |Vu| = 1(£2-a.e.)
in ) if the right hand side of (2.5) is finite. We do not know any charactrization of
Vu with finite right hand side of (2.5) without assuming that u € BGV ().



15

- 3. Estimates of hmlt energy of the Ginzburg-Landau type energy
Let Q be a bounded domain in R2 with. Lipschitz boundary. We consider two
functionals of Ginzburg-Landau type:

Eo(Vu) = = / {7 (IVul? — 1)? + ¢ |VVul2}dL2, (3.1)

Eo(Vu) = / VAl ~ 1) + ¢ |Aup)ac? (3.2)
with small parameter € > 0, where

AU = Ugg + Uyy, [VVU? =0, +0u2, +ul, +u2,

To fix the idea we impose

u

o= —1, u = constant on 89 (3.3)

as a boundary cohdition, where n is the unit outer normals of 092, although our the-
ory applies some other boundary conditions. We consider E. and E, as functionals
defined on

X = {Vu; u € H*(Q) satisfying (3.3)},
- where H?() is the L? type Sobolev space of order two, i.e. u € H?() is equiv-

alent to say that u, Vu, VVu € L?(Q). We next recall notion of I™-convergence
introduced by De Giorgi (see e.g. [DG2], [DM]). Let &, be a functional on

Zy={Vu; Vue I?(Q)}, (1<p< o)

with values in RU{+oo}. A functional &, is called the I'~(LP(£2))-limit of E, as
€ — 0if

£,(Vu) = inf {lminf E.(Vue), Vu® - Vu in L*(Q)}.

In other words
(i) (existence of approximate functions) for each Vu € Z, there is a sequence
Vu? € X satifying Vu/ — Vu in L?(Q) and hm Ee,; (V) = E,(Vu) for some

subsequence {g;}$2; converging to zero;

(ii) (lower semicontinuity) if Vu/ — Vu € Z, with Vu? € X, then

£p(Vu) < liminf E,, (Vui)
J—00
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for any subsequence {¢;} converging to zero.

Let £, and Efp be the I'"(LP(Q))-limit of E, and E. as e — 0, respectively. Since
§2 is bounded, by definition £, < &, for p < q.

Our goal is to give sharp estimates of £, and £, from below.

Theorem 8.1.  For the I-limit £, = &£, (1 < p < o) as functionals. If Ex(Vu) <
o0, then |Vu| =1 (L2-a.e.) in Q.

Let F be the functional on Z, of form

' sup{g I diGe, (V) | ul; {} €A, B; eB+}

F(Vu) = { if [Vu| =1 (£2%-a.e.) on § and
u = constant on 952,

L " +oo otherwise.
(3.4)

We conjecture that 7 = £,. Unfortunately, we are unable to prove this identity.

We give estimates for £,.

Theorem 3.2. F < &, on Z, for p > 3. Ifu € BGV(Q), then J3(Vu)/6 =
F(Vu) < &(Vu) for Vu € Z, (p > 3). '

Remark 3.8 (i) The restriction p > 3 seems to be technical. For example if the
boundedness of E.(Vu®) implies compactness of {Vu} in L9(Q) for all 1 < ¢ < oo,
Vuf — Vu in L1(Q) implies Vu® — Vu in LI(R). If so, £, is independent of p. In
this paper we do not pursue the problem of compactness.

(i) In many examples of Vu we observe that F(Vu) = Ep(Vu) for p > 8 if Vu is
regular away from ¥ so that we can construct approximate functions, although we
do not show explicitly in the present paper. This shows that our estimate is sharp.

We moreover conjecture that F = £, as functionals of Z,,.

In the rest of this section we shall prove Theorems 3.1 and 3.2. We begin with

an integral identity.

Lemma 3.4.  For ¢ € Cj() and u € H?(Q) we have

/ D Uzg Uyy ac? — / P Ugy Ugy dc?
Q 0

=—% / Vi - (Vi - V) Vulde®,
Q
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where V4 0 = (py, —,).

Proof.  Integrating by parts twice yields

/‘puzzuyyz/ﬂoyuzzuy_/(puzzyuy

= /(‘pm Uy Ugy — Py Uy Ugz) +/ @ uiy) (3.5)

where we suppress the domain of infegatioﬁ_ as well as d£2. Changing the role of z

and y in (3.5) we have

/ P Ugy Uyy = /(Qoy Uz Ugy — P Uy 'U'yy) +/ 12 u:y’

Averaging these two identities yields

/ P Uggy Uyy = % /{Uy(QOy(’U.z)z - sz(uz)y) - uz(wy(uy)z - (pt(uy)y)}

-+/90U§y
1
=~§/vlu-{(Vlcp~V)Vu}+/90U§y- O

We approximate the characteristic function ygq of by ¢ € C3(Q) in Lemma
3.4 to get:

Lemma 8.5. Foru € H?(2) we have

/ Ugz Uyy ar? - / Uzy Ugy dr?
Q Q

= [ Viu.(n,0,-n, 8y) V) dH?
2 Joa

where n = (ng, ny) is the unit outward normal of 95).

Proof of Theorem 8.1.  Applying Lemma 3.5 we see

2(E.(Vu) — E.(Vu)) =2 ¢ {/ Ugg Uyy AL —/ uxyl Uzy dﬁz}
Q Q
=€ Vi u - ((ny 8; —ng 8,)Vu} dHL.
an

Since u satisfies the boundary condition (3.3),

Vu=-n
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- sothat V4 u = (—n,, nz) is a unit tangent vector T of 0Q. Since 8,n = kT where

k is the curvature in the direction of —n, we see

2(E.(Vu) — E.(Vu)) =¢ /

T-a,-nd'}'llze/ k dH*.
80 |

aq

Since [ k dH' is independent of u € X, this implies Ep = &p.
The assertion that £p(Vu) < co implies |Vu| =1 in Q. is standard. We give its
proof for completeness. Suppose that £,(Vu) < co. Then part (i) of the definition

of £, guarantees that there is a sequence Vui — Vu in L? (R2) that satisfies
lim E. (Vu)=E,(Vu)
j—00

for some subsequence {¢;}32; converging to zero. Since E. ,(Vu?) is bounded,
312 _ 1)2
o €j

is bounded as j — co. Since &; — 0 as j — oo, this implies |[Vu?|2 — 1 in L3(R),.
Taking a subsequence if necessary, we may conclude that Vu? — Vu (£2-a.e.) and
[Vud| — 1(£2-a.e.) in Q. Thus [Vu| =1 (L2-a.e.) in Q.

Proof of Theorem 3.2. We may assume p = 3 and £3(Vu) < 0. By Theorem 3.1
we have [Vu| = 1 in Q. It is not difficult to prove u = const on 8 since there is
Vus converging to Vu in L3(Q) with Vu® € X. Thus to show F < & it suffices to

prove

> [ dica(vu Lo <& 9)
i=1

with {Q;}72, € Ao, B; € B;. As in the proof of Theorem 2.1 (i)

/ d |Gg,;(Vu) | Q| = sup
Q;

pi€D;

~/S‘2 vBiQO,; ‘ E(ufi’ uﬂs’) d‘Cz ) B‘i = {E’i? nz}

Since the last term is lower semicontinuous under L3(Q) convergence of Vu, to

show (3.6) it suffices to prove

[ Ve - B0, w8 ac?

< Ee(Vu®, Q) +0(1) (3.7)
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for Vu® € X converging to Vu in L3(Q) with bounded E,(Vuf, Q;) as & — 0,

where
1

E(Vu, Q)= / {7} (IVul2 = 1) + ¢ [VVul?} de?.
Q;
We shall prove (3.7). We may assume that B; = I by a rotation of coordinates.
Integrating by parts and using (2.10) yields

- | Vo - Z(ug, uy)dL? i—_/ ¢ div (E(ug, uy))dL?
Q &

= [ 0= V) s ~ w)ac?,

£

where ¢ = ; € ®. Since |p| < 1, the Cauchy inequality yields
— 1 —
| /Q Ve - Blua, uy)dL? < 3 /Q AT = [VUP)? + e0? (uae — uyy)?}dL?
1 ) « .
=3 [ € Q- IVUP e, + a2, — 2, )

+e /Q 9% (Uzy — Yoz Uyy)}dL? (3.8)

T

SEE(’U,, Qi) + K

K =¢ / PP (U2, — Usg Uyy) AL
Q.

1

We apply Lemma 3.4 to get
k=% / Vi (VY - V) VaddL? with g = o,
Q;

Applying the Schwarz inequality, we obtain

1

<
K< 3

sup |V ¢ [le¥/2 V* ul|a (|2 |VVu ||ga.
Q; :

Assume now that Vu® be as in (3.7). Since E.(Vu®, ;) is bounded as ¢ — 0, we
observe that |[e'/2 |[VVu| ||» is bounded as € — 0 and that £~1/2| [Vus|?2 — 1 ||z2
is bounded so that [[Vu¢||2 is bounded. Thus

1e¥/2 VL ufj2, -0 as e — 0.

so that K with u = u tends to zero as ¢ — 0. The estimate (3.7) now follows from
(3.8) with u = u®.
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The last assertion now follows from Theorem 2.1. [ -

Remark 3.6.  The identity of Lemma 3.5 has been essentially used by W. Jin
and R. Kohn [JK], where the right hand side vanishes by boundary conditions. This
identity together with estimate (3.8) with ¢ = 1 has been used in [JK] to estimate
the lower bound of liminf._,; miny E..

Remark 3.7. By the Cauchy inequality-it is clear that
E.(Vu) > / | |Vul? — 1] [VVuldL2.
Q

If Vu is a scalar-valued function, the Gamma limit of E. (with volume constraint
on [, u dL?) equals the right hand side as proved in [M] and [St] if it is interpreted
in an appropriate way. There is a general way to interpret the right hand side
for u € BGV(Q) proposed in [AG3] (see also [AG4]). However, we do not know
whether the interpretation of [AG3] agrees with J3/6.
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