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§0 Introduction

We consider the Stokes equation

(0.1) Ut —Au—t—Vp: 0,dive = 0 in Q x (0, 00),
u=1ug att=0,
u =0 on 0% x (0, c0)

in a domain  in R™(n > 2) with smooth boundary. Here u = (ul,...,u") is
unknown velocity field and p is unknown pressure field. Initial data ug is assumed
to satisfy a compatibility condition : divug = 0 in Q and the normal component of
ug equals zero on 0. This system is a typical parabolic equation and it has several
properties resembling to the heat equation.

If @ = R"”, u is reduced to a solution of the heat equation with initial data U
because there is no boundary condition. For example regularity-decay estimate

(0.2) IVu(t)|lp < Ct=2/2|jug)l, for t > 0

holds for all 1 < p < oo with C independent of ¢ and ug, where ||f(t)|, :=

([ lf(t x)]pdm) Y7 and V denotes the gradient in space variables. If p = 2, the
estimate (0.2) is still valid for any domain. Indeed, since the Stokes operator A is
self-adjoint and nonnegative, the operator A generates an analytlc semigroup e~*4.
This yields

|4 2e g1y < O fug .

Since u = e~*Auy and || AY?ul; = |[Vul2, (0.2) follows for p = 2.(See Borchers
and Miyakawa [3] for applications.) For 1 < p < oo, (0.2) is valid for bounded
domains (Giga [7]) and for a half space (Ukai [13]). The estimate (0.2) is also valid
for exterior domain with n > 3, with extra restriction 1 < p < n.(See Borchers and
Miyakawa [2], Giga and Sohr (8], Iwashita [10].)

TPartly supported by NISSAN SCIENCE FOUNDATION and the Japan Ministry of Educa-
tion, Science, Sports, and Culture through Grant No.08874005 {Partly supported by the Ja.pan
Ministry of Education, Science, Sports and Culture through Grant No0.08640135 .
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However, there was no result for p = 1 or p = oo where the boundary of Q is not
empty. The main difficulty lies in the fact that the projection associated with the
Helmholtz decomposition is not bounded in L! type spaces, because it involves the
singular integral operator such as Riesz operators. Nevertheless in this paper, we
prove (0.2) for p = 1 where Q is a half space R} = {z = (z1, -+ ,z,); 2, > 0}.

Theorem 0.1. Let u be the solution of the Stokes equation (0.1) in Q = R? with

initial data ug € L'(R™), which satisfies the compatibility condition. Then there is
a constant C independent of ug such that '

(0.3) IVa@)lls < Ct72u]lx

for allt > 0.

This is rather surprising since we do not expect |lu(t)||1 < C|lug|l; for & = R?%.
Actually, the estimate (0.3) follows from a stronger estimate:

Theorem 0.2. Under the same hypothesis of the Theorem 0.1, there is a constant
C' independent of uy such that

(0.4) IVu®)ll @) < €72 |uolls

for all t > 0.

Here

£l myy = inf{|| fll2a gny; £ € HUR™), flry = 11,

where H!(R") is the Hardy space in R™ defined later.
Combining the Sobolev inequality with (0.3), we have

(0.5) ”u(t)”n/(n—-l) < Cot-l/2||uo||1

with Cj independentlof t > 0 and ug. This has been already proved by Borchers
and Miyakawa [1] where a general L? — L? estimate

lu@)lp < Cot™*|luollg

with @ = (n/2)(1/q — 1/p) has been proved for all 1 < ¢ < p < 0o where @ = R7%.
Their method does not depend on (0.3). For 1 < ¢ < p < 00, such estimate has
been proved by Ukai [12]. There is an extensive literature on L? — L9 estimate for
exterior domain @ (n > 3) (e.g. Giga and Sohr [9], Borchers and Miyakawa [2],
Iwashita [10], Chen [4]) but the case ¢ = 1 and p = oo is included only in Chen [4]
for n = 3. .

To show (0.4), we recall the solution formula obtained by Ukai [13]. The solution
is represented by the Gauss kernel and various Riesz operators. It is known by
Carpio [4] that the solution u = Gy * uy of the heat equation with initial data
ug € L} (R™) enjoys

(0.6) O Vu®) g < Crt 2wl
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where G; is the Gauss kernel. If the solution of (0.1) were represented only by
Gt and a Riesz operator in R™, (0.6) could yield (0.4) since the Riesz operator is
bounded in H!. Unfortunately, the formula contains the Riesz operator in tan-
gential variables z’ = (z1,...,2,_1) to ORY, it is not clear that such operators
are bounded in H!(R™). To overcome this difficulty, we rewrite Ukai’s formula so
that Vu does not have tangential Riesz operators with use of the operator A whose
symbol equals |¢’|, where (¢/,£,) = £ € R™. Because of this, we need to prove

(0.7) 1Au(®) |2 ny < Cot™/*|luolly

in addition to (0.5). Although there are several extra technical difficulty, because
of the formula, this is a rough idea for the proof of (0.4).

§1. The solution formula

In this section we rearrange the solution formula for (0.1) obtained by Ukai [13]
for later use.

First, we establish conventions of notations. For an n-dimensional vector a, we
denote a tangential component (a1,...,a,—1) by a’ € R"™!, so that a = (d',an).
We set 8; = 8/0z; and let V! = (8y, - ,8,-1). Hereafter, C denotes a positive
constant which may differ from one occasion to another.

Let F be the Fourier transform in R™:

Fi©) = [ e
and let f be the Fourier tranform of f in the tangential space:
o= [ e i
Rn—1

‘The Riesz operators Rj (j=1,...,n),S; (j = 1, ...,n—1), and the operator A
are defined by :

it;

FBS 1)) = TEFHO),
ﬂwm=%ﬂm

FAF)E) = €| FF(E)
We éet R =(Ry,...,Rp-1), S=(S1,...,90—1) and define U by
" Uf=rR" S(R'f S+ Ry)e,

where 7 is the restriction operator from R™ to R}, and e is the extension operator
from R7} over R™ with value 0, that is,

{f for zn, >0,
: 0 Aforz, <0.
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- We also. deﬁne the operatOI E( ) and F(t) by
(B0 1o = / (Gule 1) ~ Gule! =o', 2 + 1)} £,
FONE) = [ {Gio—1)+ Guls' ~4/sz0+ )} S0y,

where G is the Gauss kernel G4(z) = (4wt)~™/2¢~1eI*/4 Note that E(t)f (resp.
F(t)f) is the solution to the heat equation in R} with Dirichlet (resp. Neumann)

data;

—Az=0in R} x (0,7),

Z|t:0 - .f7

2|z,=0 = 0. (resp. Opnz|z,=0 =0.)
- We:recall the formula obtained by Ukai.

'Theorém 11 (Ukai). The solution to (1.1) can be expressed as

(1.1a) u™ = UE(t)Viug,
(1.1b) u' = E(t)Vaug — SUE(t)Vyug,
where Viug = —S - uf + u® and Vaug = ul) + Su.

We give a formal proof of Theorem 1.1 for the reader’s convenience. By (0.1a)
and (0.1b), we get Ap = 0 in R%. Applymg the tangential Fourier transform, the
equation Ap = 0 is reduced to an ordinary differential equation (62 — |¢/|2)p = 0.
Assuming that p is bounded, we get (9, + |¢'|)p = 0. We set v™ = (8,, + A)u™ and
v' = Vau = v’ + Su™. Then v satisfies v; — Av = 0, v"|4=¢ = AVjug, v'|t=¢ = Vauo,
and vz, =0 = 0. Thus v solves the heat equation in R with zero Dirichlet data.
Solving v with some manipulations leads (1.1).

To solve our problem, we rewrite the formula (1.1). Note that the vector field u
in (1.2) is given as a restriction 7% of a vector field @ = (%', %,) of form

(1.2a) @" =R'-S(R'- S+ R,)eE(t)V4uo,
(1.2b) @' = E(t)Vaugp — SR’ - S(R' - S + R,,)eE(t)Viuy.

Lemma 1.2. Let j be an integer with 1 < j < n. Assume that divyg = 0 in R}
when j = n. Then the first space derivative of 4 are expressed as

(1.3a) 0;u" = — R;{R' - AeE(t)uy — R,V' - eE(t)u}
R + R V'eE(t)ul + RyAeE(t)ul},
(1.3b) 9;u =0 E(t)uy + w;

+ R {R' (V' - eE(t)up) — R,V (VA7 - eE(t)up)
— R'AeE(t)uf + R, V'eE(t)uy},
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where v it
(14) w; = { Ay B forl<jsn=l,

V' (V- A7F(t)uy) for j =n.
0

Proof. To show (1.3), it is convenient to use the Fourier transformation by 8,4 in
(1.2). Note that the operator S; and eE(t) are commutable. Then we get

o =i i (61 i) (i memoniy+semo)

G () e (i e e e
|§|{(|§|'“ i) s + (g i€ is|'5')ﬂ Bt )}
Flosut) = ity (F(BOG) + (B0
~tier (1) G er 1) (e B @u + #epond))
— it (B (Ou;) - S F(BOu)

18 ) & g e ¥ e u
*m{wﬁ Flep(u) - 1ie (it I )

‘ 'Lfn- ' n
€] — =1 ) F(eE(t)ug) ¢-
(lfl ] ’
By the inverse Fourier transform,the first identity implies (1.3a). To show (1.3b),
we must handle the term i£;(i¢’'/|¢'|) F[E(t)ug]. Taking the inverse Fourier trans-

form, this term is transformed to §;V'A7'E(t)uf. For 1 < j < n — 1, this equals
to w;. For j = n, we invoke the assumption divug = 0, so that d,uf = =V’ -y

BV AT B (t)up = 8.V'A7Y | {Gilo —y) - Gi(e' — ¥, + ya)} u(9)dy
R’_;_ : :

9 g .
{e0ue =9 = g’ ~v. ot un) |0

2t

Yn=+00

[{-Gule —) = Gule! — ¥,z + v} 0], "y

VA~

2,
/ { ynGt(’”‘y”m”y"Gt( y’awn+yn)}uz;<y>dy

R»— 1
+ / {Gt(m - y) + Gt(m/ - yl7mn + yn)} 8nug(y)dy}
+

v {Ge(z —y) + Ge(z' — ', + yn)} V' - ug(y)dy
R}

= —V/(V' AT F(t)uh) = w. O
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§2. Proof of theorem

To prove Theorem 0.1, we need to estimate the right hand side of (1.3) in L*(R™).
In this section we estimate these terms in the Hardy space 7!, which is the subspace
of L', instead of L. We recall the definition of the Hardy space H!. Note that the
following definition is one of many equivalent definitions of the Hardy space. (See
Fefferman and Stein [6].)

Definition 2.1. A function f € L*(R™) belongs to the Hardy space H! = H!(R")
if e
(@) =sup|G, * f(z)| € L (R™),

where the symbol * denotes the convolution with respect to the space variable z.
The norm of f € H*(R") is defined by

£ ll2r = 1 f* 22 mmy

" Here, we remark that a L! function f belongs to H! if and only if its Riesz
transform R;f belongs to L!'(R™) for all j, and that

|l 2 W Fllrny + Z | R; fl| L1 (g») (equivalent norm).
J=1

For the convenience, we denote the operator norm of R; in H! by ||| - |||7x-
To estimate (1.3) in H!, we require the following lemma.

Lemma 2.2. Let K be an integral operator of form

(2.1) - Kf(x)= /R" k(z,y)f(y)dy for x € R™.
If the kernel k(z,y) satisfies that |

- sup [|k(-,9)ll2a = ko < oo,

yER
then K is a bounded operator from L*(R") to H(R") i.e.
(2.2) K fllzer < koll fllgn)-
Proof. By definition of H?,
@3 (&K@ =sw|[ Gle-2) [ Hen)i)dvds

< sup
s>0

/R RO /R Gz~ z)k(z,y)dzdy‘

< /R | F(w) {ili%)

Integrating (2.3) by z,

b

/ Gs(z — 2)k(z,y)dz
Rn

1K Fllrer < / F@IEC )l dy
R» ]
< Koll £l zr rmy- o

We next show several pointwise estimates on the heat kernel.
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Lemma 2.3. Assume that real parameters | and m satisfy 0 <1< n and m > 0.
Then there exists a constant C = C)_,, which does not depend on z € R andt > 0
such that

(2.4a) |9;Gi(z)] < CtHFm=n=D/2|5~ g |=™ for 1 < j < n with n > 2,

(2.4b)
80, A1 Gy(z)| < Ctlttm—n=1)/2 1~ Zp|"™ for 1 < j,k <n—1 withn > 3,
]
(2.4¢) |AGy(z)] < CtFm—n=0/23!| =Yg |=™ with n > 2.

In (2.4a), the restriction | < n is unnecessary.
Proof. We first prove (2.1a). Since 8;Gi(z) = —(z;/2t)G¢(z) and e~lzlP/4t <
C[t‘l/2x|_°‘ for a > 0, we have

.

(2.5) 0;Gi(z) = ——2—;Gt(m)

— _%e—lw'ﬁ/%—ml?/u
2tn/2+

< Ct(l+m—n—1)/2 |$I|_l Imn|—m.

—1/2

9

We next show (2.4b). Note that A™! is equal to v(—A')_l/2 = ( 2;11 8,%)

so the integral kernel of A™! is cn|z'| "2 for n > 3, where ¢, is some positive
constant. Therefore we have

(2.6) 8;06 A" Ci(z) = cnd; 0 / o' — |2y, za)dy
R

Set = t1/22 to get
8,05, A7 Gi(z) = (D25, 5, A"1Gy (2).

So it is sufficient to show (2.4b) for t = 1, i.e.

(2.7) 10;0,A71G1(2)| < C|2'|7Hzn| ™.

In fact, if (2.7) is valid, then we have

|00, 00, AT Gy ()| = t~("TD/12|5,. 8, AT1G1 (2))

< G2 ||l g | =
= Ctlttm=n=1)/2 1\ =l|g, |-m

for any ¢t > 0.
Let 11 be a smooth function in R"~! such that 0 < 4; < 1, supp ¥ C {|2/| < 1},
and 91 ||1j<1/2 = 1. Set ¢p3 =1 —¢)1. Then

(2.8)

C 2 ZI— d a2
00,071 G1(7) = (s 19,0, /R B f‘ﬁf(_T,f_—)ze W' /4 gy

- ! 2
+0,0. [ e ety
R

1 Izl _ ylln—Z
= CeT /AL () + (2"}
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.+ 'The estimate-of the term I;: We have

B b . ) o
(2.9) Ii(2") = 9;0% ly'|<1 I_y_}l("—‘)26 iy
P1(y')

= LK k(2 =y )dy
/ly'|51 ly/[~=2" ’

where

K;n(') = (zjzk - 6”—’“) e=l= /4

and 6; ;, is Kronecker’s delta. Recalling |2/ —y'| < |2/|+1 and |2/ —¥'|2 > |2|?/2—1
holds for |y'| <1, we get

! 1 2 1 ‘12
Kyl — )| < {ﬂﬂu N _} o1 2=2)/8

4 2
1/4 ,
= () + 1P 42} e
< Cl2'|7h
Hence we have
L) <cC 1y
i< 19/
S C|ZI|_l

The estimate of the term I,: We have

(2.10) IQ(Z() — /l;n—l (8j8k¢2)(2' —vy') 6_|yl|2/4dy/

Iz/ _ ylln—Z

—(n- 2){/]&"_1 (O52)(#' — y’)ﬁ__yk—e_w"z/“dy’

- y/|n
) PN ZE T -l ey /}
+ [ (@) — ) e gy
+ Yo (' =y Lin(2 —y)e W Iy
Rn—-l

= Ji(2) = (n = 1) Jo(2") + Js(2),

where

T Tk 5',]3
bt = 0 s - Bt

2"

Since the support of 0;42 and 0;0,1)s are included in 1/2 < |z| < 1, the estimates
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of J; and J3 can be obtained like as the estimate of I;:

y ! ' 12
(2.11) J1(2)] = / Oi0:2)(y) -~y 214 gy
Jipswise I
SI]V2¢2||L00/ /1 26—(|Zl|2—2)/8dyl
12yl 191"

< Clt, |

(2.12) T ()] < ||Vl g / L —(ep-asgy
1/2<lyi< Y1
< ||

To estimate the term J3, we use the inequality |2'|' < Ci(|2’ — ¥'|' + |¢'|'). Since
|Lj,k(z’)| < l—zr:;;ﬁ, we get

(2.13)
3 'z/_y/|l Iy/|l 12
Js ()| < Cl7 l/ (' + eIV 1P /4t gy
<o [ (G
<cl [y e iy
|2/ —y'|>1/2
= 2|7
Combining the estimate (2.11), (2.12), and (2.13), we get |I2(2')| < C|2/|~! and
2.14 8:0,A71G1(2)| < Ce=on/4|/ |
J

< Cuml#|zal ™™

This proves (2.7) for n > 3.

The estimate (2.4c) for n > 3 is easily obtained by the fact that A is equal to
(—ANA™Y = —(82 +---82_,)A~! and by applying (2.4b).

Finally, we show (2.4c) for n = 2. Note that A is equal to |9;| = 0151. So we
have
(215) . AGt(QJ) = (9151Gt($)

1

1
= 01— lim —Gy(z1 — Y1, 22)dy.
T €l0 lyr|>e Y1 t( ! )

(See Torchinsky [12], p.266.) Integrating by parts, we get

1
/ “"Gt(ml - y1,$2)dyl = [108; |3/1|Gt(331 - y1,w2)]
lyr|>e Y1

+ [1°8|y1|Gt($1 - y1>$2)] .

—/ log |y1|0y, G¢(z1 — Y1, %2)dy
ly]>e

= log e(Gt(ml +€,29) — Ge(zy — €, xz))

: o
+/ log |y1|— yl"Gt'(fﬂl — Y1, %2)dy1.
C Sy |>e 2t
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Sending ¢ | 0, we get

oo

N
(2.16) AGy(z) = ~0y / log |y1| =

—0

— N Gi(z1 — y1,22)dy1.

Set £ = t'/2z and y = t'/2w. Then we have

t_l G] (Zl — wl,'wz)t /Zd'wl

(AGy)(z) = t‘l/zazl/ (log |wi | +logt1/2) L1 517

= t—3/2 (AGl)(z)
So it is sufficient to show (2.4c) for ¢t = 1.

(2.17)

11 _, e
AGi(z) = ;EB 2/45‘1{/ log |y1 [ 3/1 (z1—91)? /4dy

[y1]<1
VA
+ / log |y1| 2
lys[>1

1

= me_z§/4(I1(z1) + IL(z1)).

U e"(zl—yl) /4dy1}

The estimate of I;: We have

1 N . 2
1 z1— —(21—u1)2
B = [ togluly (1- BB etimntingy,

As the same suggestion to (2.11), we obtain

1 s +1 _l=i?
@18)  InG) <3 [ Doghll(1+ LD g,
-1
< C(1+|z[P)e 1l /8,

The estimate of Ir: The method is similar to the case n > 3. Integrating by
parts,

I(z1) = 31{ [Iog |y1{e-—(z1_yl)2/4] +o0

1
+ [log [ya|e= (v 4] .

— / le"—(‘zl_yl)z/éldyl}
. jy1]>1 hn

_ f AU ) gy,
jyi[>1 yl 2

-1

= (D4 =(a=1)?/4 / L eteivtagy,
ly1|>1 Y1
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We set wy = 27 —y; and obtain

I(z) = R O ORI +/ —1——‘36“"’?/4(11111.;
|z1—w1|>1 (Z]- - wl)

Using |z1|' < C(|z1 — w1]! + |w]'), we obtain
(2.19)
[Ta(an)] < e GrFD /A 4 om0

1 I
+C 7 (Izl —wy |72 4 &) e~ 1o’/ gy,
[21~w1|>1 |le ‘

< Clz|™
since | < 2 so that |27 — w;|'~2 < 1. Combining the estimate (2.18) and (2.19),we
obtain (2.4c) forn=2. O
We are now ready to show the key lemma for the main theorem.

Lemma 2.4. Assume a function a = a(z) is in L*(R%). Then

(2.20a)  8;E®)allze < CtT VP allpirny for 1 <j <m,

(2.20Db) ‘
10;0e A eE (t)ally < Ct“1/2||a||L1(R1) for1<jk<n-—1,

(2200) ||AeE(t)a||Hi S C’t"l/ZHaHLl(Ri),

(2.20d)

||8j8kA_1F(t)a||H1 < Ct~1/2|la||L1(R1) for 1 S j, k S n—1.

Proof. To show (2.20a,b,c), we extend the function a(z) from R} over R™ with
a(z',zn) = —a(z’, —y) for £, < 0. Then

[E(t)a](z) = Gt * a(x)
=/, Gi(z — y)a(y)dy,
[eE(t)a)(z) = 0(zn)[E(t)al(x),

where 6 is the Heaviside function i.e.

1 forz, >0,
0 forz, <O.

0(zn) = {

Since G * (9;Gt)(x) = 9;Gsy1(x), the estimate (2.4a) implies

G, % (8;Ga)(x)] < C(s + 1) Hm=n=D/2|g/| g |=m
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for any nonnegative [ and m. Thus, for 0 <!+ m < n+ 1 we have
(8JGt)*($) < Ct(l+m—n~1)/2|m/|-—l|m/|—-m.

Therefore We obtain

4
(2.21) HajGt”'Hl < ch’mt(l+m—n—1)/2/ |$/|_l|$n|_md.’£,
k=1 Qg

where Q1 = {|2'| < t1/2,|z,| <2}, Qp = {|2| > t1/2, |z,| < t1/2}, Q5 = {|2'] <
t1/2 |z, | > t1/2} and Q4 = {|2'| > t1/2, |z,| > t1/2}. For each integration of (2.21),
we take suitable [ and m such that Il =m =0in Q1, I =n, m =01in Qy, [ = 0,
m =2in Q3 and l =n —1/2, m = 3/2 in Q4. We thus observe that the right
hand side of (2.21) is estimated from above by constant times t~1/2, Thus (2.20a)
is obtained. The estimate is obtained by Carpio [3, Lemma 2.1] but the proof is
misprinted in [3, p.457 line 4], so we gave the proof.

To prove (2.20b), we put k(z,y) = 8;0,A10(z,)Gi(z — y). Then

(2.22) |
(G xk9)(e)) = [ Gule = o)k(z,u)ds
1 1

—_ —|z'—w'|2/4.s ) A—l -—|z'—y'|2/4td/
(4ms)n/2 (4mt)n/2 /Rn_le O50h™"e zx

Foo 2 2
/ e—-|zn-—:1:n| /4se—|zn—'gn| /4tdzn.
0

Since the integrand in the last integral in (2.22) is nonnegative, we get
(G b(,9)(@)] < 10;06A Gra(a)].
By (2.4b) calculation similar to derive (2.21) yields
sup ||k(, y)|lza < Ct7/2
y
for n > 3 and for n = 2 with j = k = 1. Applying Lemma 2.2 we get (2.20b,c).
Note that (2.20b) agrees with (2.20c) if n = 2.

The estimate (2.20d) is obtained in the same way as above but this time we have
to extend a(x) as an even function in z,, i.e. a(z’,z,) = a(z’, —z,) for z, < 0. O

We are now ready to prove Theorem 0.2. By Lemma 1.2 and Lemma 2.4,
n—1

105n |71 < |HRj|”H1{Z 11 Billlze (| AeE (t)uglle + || OkeB(t)ug|lra)
k=1

+ 1Bl (IV - eE@)ugllre + IIAEE(t)Ugllnl)}
—1/2
< Ct 4 uoll 2wy,
18, [l < Ct™*|uol| s g
Since u = u[gy , We now get |
IVullrgn) < IVaullra@n) < IValla < C272|luol| o n)-

The proof is complete.
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