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On the Zeroes of Solutions of an
Extremal Problem in H!

Jyunji Inoue and Takahiko Nakazi

To the memory of Professor Katsutoshi Takahashi

Abstract. For a non-zero function f in H?, the classical Hardy space on the unit disc, we put
Sf ={g € H': arg f(e¥) = arg g(e¥) a.e. 6}.

The intersection of S/ and the unit sphere in H! is just a set of solutions of some extremal problem in
H?, Tt is known that S/ can be represented in the form Sf = S8 x go, where B is a Blaschke product
and go is a function in H! with §% = {\.go : A > 0}. Also it is known that the linear span of Sf
is of finite dimensional if and only if B is a finite Blaschke product, and when B is a finite Blaschke
product, we can describe completely the set SZ and the zeros of functions in S&.

In this paper, we study the set of zeros of functions in S8 when B is an infinite Blaschke product
whose set of singularities is not the whole circle. Especially we study the behavior of zeros of functions
in 8B in the sectors of the form: A = {re® : 0 <r < 1,¢; < 8 < ¢} on which the zeros of B has no
accumulation points, and establish a convergence order theorem of zeros in A of functions in S5.

1. Introduction and preliminary results

N, and H? for 0 < p < oo denote the Smirnov class and the Hardy spaces on the
- open unit disc D in the complex plane C, respectively. A function h in N, is called
outer if it is invertible in N,. A function ¢ in N, is called inner if | ¢ |= 1 a.e. on D.

OMathematics Subject Classification. Primary 30d55; Secondary 30C75, 30D40.
Key words and phrases. Hardy spaces, Extremal problem, Distribution of zeros, Solution sets
The authors are partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Edu-
cation, Science and Culture , Japan. '



For a non-zero function f in H?, put
ST ={ge H': arg f(®) = argg(e®®) a.e. on 6D}

The intersection of S/ and the unit sphere in H* is just a set of solutions of an extremal
problem about a continuous linear functional on H* (cf.[1]). The set S¥ were studied
by several authors (cf. (1], [3], [4], [6] and [7]). Hayashi [3], [4] showed that there
exists a Blaschke product B and an outer function go in H' such that

S/ =88xgyand S%={\-go: >0}
Hence it is important to study S when f is a Blaschke product.

If B is a finite Blaschke product, each function f in S is analytic on DUAD and so
the set of zeros of f in DUOD consists of finite points, and we can describe completely
the set S® and the zeros of functions in SB (cf. [7]). When B is an infinite Blaschke
product, we need further considerations and new ideas to study the zeros of functions
in SB. |

For each f in H', sing (f) denotes the set of points of 8D on which f cannot be
analytically extended. _

In this paper, we consider the case in which Blaschke products B have the property
sing(B) # 6D.

The following is the first elementary result we need, which is probably known.

Proposition 1. If Q is an inner function and if f is a function in S, we have

sing(Q) = sing(f).

Proof. Since f € S5, f/Q is nonnegative a.e. on D. By [2]; Lemma 4.2, f/Q
extends analytically across any open arc J such that J C 9D \ sing(Q), and since
@ is analytic on 0D \ singQ we have sing(f) C sing(Q). By the same method, if
B € 0D \ sing(f), @/f has a meromorphic extension to a neighborhood V of 3, and
so () also has a meromorphic extension on V. But, since @ is bounded on VN D, Q is
in fact analytic on V, that is 8 ¢ sing(Q). Q.E.D.

Definition 1. For a function f in H* and a positive integer n, we say that o € 0D



is a zero of order n of f if

[(z) e H! and f(z) ¢ H'

G- G pe

hold. The set of all the zeros of f on 0D counted according to its order is denoted by
Z(f;0D). Z(f; D) denotes the usual zeros in D of f and put

Z(f; D)= Z(f; D)U Z(f;0D).

2. Lemmas to the main theorem.

In this section, we collect lemmas which we use in the proof of the main theorem

in the next section.

Lemma 1 Let b be a Blaschke product :

b(Z) H I Zn l 1 _ Zn = rneizn ('n = 1,2, )

We put ‘
(1 —etenz)2

a(2) = [ ooy M

Then the right hand side product in (1) converges uniformly on each compact set of D,

and we have
() gs € H*(D).
(ii) g» s outer, and we have

1— e—i(zn-—z) 2

| gb(eiz) |=
n

a.e.z on [0,2n]. | 2)

_ ,,.ne—i(zn—x)
(iii) gs(e®®) =| gs(e™) | b(€*®) a.e. T on [0,27], and hence g, € S°.

Proof. If if b is a finite Blaschke product, the lemma follows by easy calculus, and
so we consider the case that b is an infinite Blaschke product.



Let us define outer functions g,(z) = (1—e™*"2)/(1 —r,e **2) n=1,2,.... Then

we have )
1 —e ¥z

1—r,e-i®nz

zlz'(l_rn)
|1—Zpz |’

11— gu() = ’1—

and for each € > 0, if we put K, = {z € D :| 2 |< 1 — ¢}, we have
sup{| 1 — gn(2) |: z € K.} < (1 —rn)/e.

Therefore, we have

(o, o] 1 [o o]
D sup{|1—gu(2) : z€ K.} < - > (1 —ra) < oo,
n=1

n=1

and the right hand side of (1) converges to a continuous function g(z) which is holo-
morphic on D.
(i) To show that g, € H*, we examine the modulus of g, ;

(1 _ ei(z——x,,))(l . e—i(m—mn))
(1 — rpei@=2n))(1 — rpe—ia—2n))
2(1 — cos(z — z,,))
1 —2ry,cos(z — z,) + 72

| gn(e®) I*

If we put, p(z) = 2(1 — cosz)/(1 — 2rcosz + r?), we have

max | p(z) [=| p(7) |= (%—7)2

0<z<27

by elementa,ryvcalculus, and hence

4 < e¥1-7a) (0 <z < 2n).

iry |2
n < —_—
|90(e) P< (7 <

By the maximal principle, | g,(z) [*< €2(-™) (z € D), and

| gb(z) [_<__ H e2(1-mn) — o2 PR < o0 (Z € D),
n=1
that is , g» € H*.

ii) Since | gn(e®®) |< 2, we have
14+rn

147,
2

| gn(e™) IS 1 (0 <z < 2m),



and we can apply Lebesgue’s monotone convergence theorem in the following calucu-

lations:

= 1I|(* Z”")gn(O)r

| H<1+r,,>

n=1
2
= Hexp / log g,,(e”) dz/2n
n=1
2n RO .12
= exp /0 Zlog gn(e”’) dz/2m. (3)

By (3), we have 332, log |14f2 g, (¢%)|? converges a. e. = to an integrable function,
say ¢(z). But since 352, log |1t2|? converges to a finite negative constant, it follows
that 3, log | g.(e*®) |* converges a.e. z to an integrable function. In this case,
{| =X, log|gn(e®)|? |: N = 1,2,...} is bounded by an integrable function max{| ¢(z) |
2322 1(1 —4)}, and hence we can apply Lebesgue’s dominated convergence theorem
in the following calculation of modulus of | gy(2) | :

(90| = T I P
= Hexp/ [

o it [e.o] .
= expf ER[eiz—i_ z] log [] | gn(e™) |? dz/2m.
0 er—2z n=1

] log | ga(e®®) [? da/2

27 ir + [o.o] .
exp eiz z log [] | g (€) > dz/2n| (z € D). (4)
0 eT—2z T4

(4) implies that g, is outer and that (2) holds.
(iii) Since by (™) = [T {(~=Zn)/(| 2 |) - (€ — 2za)/ (1 — Zze™®)} converges to
b(e*®) in H? (cf. [5] p.65), we can choose a subsequence {by, }$, such that

b(e™) = Jim by, (€**) a. e.z on [0,2m]. (5)

From the relations

Zn eim_z" iz
(—I z |1—-'z‘"ei$)/g’2‘(e )20 (z€[0,2n]), n=1,2,...,



it follows that

Ni .
[T 42(e*)
n=1

If we multiply the both side of (6) by by, (¢*®) and take the limit in k, we have by (2)
and (5),

- (Nk gﬁ(eiz))/ka(e"“) (z € 0,21), k=1,2,.... (6)
n=1

. - Nk .
b(e) | go(e®) |= lim T] 2(¢®) a. ez on [0,2a]. )
n=1

2
1+7rp

Lebesgue’s dominated convergence theorem in the following caluculations :

)? < oo, we can apply

Since the pointwise convergence in (7) is bounded by [132,(

g(2) = lim ] ga(2)
27 Nk ,
= klim P.(6 —z) <nI;Il gﬁ(e”)) dz/2m

2m Ni ,
= / P.(0 —1z) (lclim 11 gﬁ(e”))d:c/%r
0 T n=1

= [TR@-on) e | da/om, (8)

where z = re® € D and P,.(z) denote the Poisson kernel. (8) implies that (iii) holds.
Q.E.D.

Lemma 2. Let cy,c; be real numbers such that 0 < ¢y < 2w, ¢y < ¢; < ¢g + 2,
and let s(2) be a singular inner function such that

s(2) = exp(~ [ S Zautt),

et — 2

where p # 0 is a nonnegative singular measure whose support (supp(u)) is contained
in [cg, co + 27| \ (cp,¢1). We denote by A; (5= 0,1) the sectors of the form:

Ao={re’:0<r<1, cO<0<c'¥J25£1—}, A ={re’:0<r<i, c";cl <0<l
Then (1 + s(2))? is an outer function in S* which satisfies
> | e — 2z |P + > | €1 — 2 |P< 00 (p>1). (9
z€2((1+8)%;D)Ndo z€2((1+s)%;D)NA1

6



Proof. Let us define two auxiliary singular inner functions:

€% +2z :
s5(2) = ol Sl =01 (10)

For a fixed 8(cy < 6 < ¢;), we have

? 10 it 0 tC 6
e+ ¢ e+ e l+e
< <

eiCO — eio - eit _ ei@ - Zezcl _ 61,0 (t € Supp()u')),
and hence
ewo + 6 ezt +e 10 1.61 + 61,8
IIuIIe,q, prr S ey ap(t) < l“#”m (@< b< f21)- (11)

As we can see easily, (1 + s(z))2 has a zero at e?(cy < 6 < ¢;) if and only if

[ —(e®* + e®?)/(e® — e®)du(t) = in(2k + 1) for some k € Z. Moreover, each of zeros of
(14 5(2))% in {€¥ : ¢y < § < ¢} is of order 1 (cf. Definition 1) since

d

0

1.0 ~
d (1 + S(Z)) g0 = s(e /rm (t) # 0, (C() <f< Cl).
Thus if we define 6, € (cg, 1) (if such a n € Z exists)by
 [et+efn
z/ mdp(t) =m2n+1),¢ <0, <cy, (12)

we have Z((1+5(2))%;D)N{re? : 0 <r <1, < 8 < c;} = {€?n}cr for some " C Z.
By the same reason, each of the zeros of (1 + s;(2))? has a zero of order 1, and if
we put

Z(1+so(2)):D)N{re? : 0<r<1,c0 <0 <co+ 21} = {€=}nez,
€ < oo < ZTp < Tpyr < .7,<c0+27r,
Z(1+51(2)%D)N{re? : 0<r <1, =21 <0 < 1} = {e¥ }nesz,
=27 < ... < Yp < Ypi1 < -, < €y,

Zp(n < 0) and y,(n > 0) are characterized by the equations

ico 1Ty

il o = 7n+ 1), @<z <cotm (n<0), (13)
wl + e"y A

|y Hewl ——=7(2n+1), a-T<y.<c (n>0). (14)



Thus, by (12), (13) and (14) considering the relation (11), we have
ot+tm>z2,20, neliln<0 and 0,>y,>c;—m nel,n>0. (15)
By (15), we have
z |eico_ei0n |p+ Z |eic1_ei0n Ip
nel',n<0 ’ ne€ln>0

<Y |-t P> e —et P (p>1). (16)
n=1

n=0

On the other hand, it follows from (13) and (14) that

. . llell : : [l
ico __ ,iT-n |, 1771 11 _ ptyn | 000 —_
€0 =€ v T (n o), | € =€V v T (n— o0). (17)
By (16) and (17), we get
>, e —e Pt Y e —e <o (p>1). (18)

n€l,n<0 n€l,n>0
(18) is equivalent to (9). Q.E.D.
Lemma 3. Let {z,}ncz be an infinite sequence in the interval (0,27) such that
2> .2z 2z(>m) >z 1 >..>0, nlLrgoscn = 2m, andJLrgxox_n =0,
and let 0 > 1. Then the following (a) and (b) are equivalent.

(8 D InP(zn—2n1) <o (0<p<1/o).

necz
(b) Do l2r—za P+ ) 2%, <00 (0<p<o0).
n=0 n=1

Proof. (a) implies (b): Let p € (0,00) ,andlet ¢ = 3°,cz nX(z,_, 2] » Where X de-
notes the characteristic function of E. Then by (a), ¢ € L?([0,27]) C weak L?([0,27]) (0 <
p < 1/0). Therefore, for each p(0 < p < 1/0), there exists C, > 0 satisfying

| {z16() [2 7} |= @T—50r) +2a <2 (2 1), (19)



where | E | denotes the Lebesgue measure of E. If we choose po(0 < pp < 1/0) so that
pop > 1, we have by (19),

Z(Zn Tp_1 ”+Zx " <208 Z——— < o
n=1
(b) implies (a): Let p € (0,1/0) be arbitrary. For each positive integer n, there
exists a 8 € (0,1) such that

w—(n—-1)F 1-(1-1/n)? 0 \p-1
1 1/n =p(l— E) )

by the mean value theorem. So, there exists C, > 0 such that
— (1P <O (n22), (20)

Since 0 < p < 1/0, we can choose p > ¢ and g such that g(p—1) < =1, 1/p+1/g=1.
In fact, we can simply set p so that p = 1/p — & > ¢ for some small € > 0. Then by
(20) and Hérder’s inequality, we have

3 (@ — Taet) + 3 (<)@ — T—no)

n=1 n=1

= f:(n (n = 1)?)(2r — za- 1)+}: - )

21 — 2o+ z_1+ Y Cpn? {27 — Tn_1) + T_n}

n=2

IA

00 1/9 1 oo 1/p
<2m—zp+ 21+ Cp (E n(p‘l)q) (Z(27r - xn_l)”)

n=2 n=2

00 1/9 / 1/p
—l—CP(Zn(”"l)q) (E(x_n)”) . - (21)

n=2 n=2

By (21), we can conclude that (b) implies (a). Q.E.D.



3. The statement and the proof of the main theorem.

Theorem 1. Let B be an infinite Blaschke product such that there exist cg,c; € R
which satisfy

0<c<2mep<er<Scot2m {€:c <0< e} Nsing(B) = {e,6}.

We denote by A; (j =0,1) the sectors of the form

c+a c+a

2
For f € 8B, we define the order of convergence of Z(f; D) N Aj to e j=0,1 by

Aoz{rew:0<r§1,c0<9< } Alz{re“’:0<r§1, <0<}

Ord[e™; Z(f;D)NAj =inf{p>0: Y |z—€% |P< oo}
z€Z(fD)NA;
Then the following (i) and (ii) hold.
(i) If Ord[e™; Z(f; D) NA;) = >1 for some f € S5, then we have

Ord[e’i; Z(g; D) N Ayl =0 (g € SP).
(i) If Ord[ei; Z(f; D) N A;] < 1 for some f € S, then we have
Ord[e”; Z(g; D) NA;) <1 (ge SP).

Proof. Let f,g € S8 and j € {0,1} be arbitrary, and suppose that the following
inequality
Y e —z]"< 0 (22)
z€Z(f;D)NA;

holds for some ¢ > 1. We will deduce the following inequalities

Yo | —z|P<o0 (p>0), (23)
z€Z(g;D)nA;
from (22), and it is easy to see that this is sufficient to prove (i) and (ii).

Let f = hbs be the canonical decomposition of f, where h is the outer part, b is
the Blaschke part and s is the singular inner part of f, respectively. If we define the
outer function g, € S® N H*® by the method of Lemma 1, then it follows from Lemma
1 and Lemma 2 that f := hgy(1 + s)? is an outer function in S® which satisfies

10



Yo €% —z|"< co.
2€Z(FiD)NA;

In the same way, we construct an outer function § € SB from g. If we can show that
the relation (23) is true for g, then it follows that the relation (23) is also true for g by
the definition of § , Proposition 1, Lemma 1 and Lemma 2. Therefore, to prove (23)
from (22), we have only to prove (23) in case f and g in (22) are both outer.

We prove (23) only in case j = 0 since the proof in case j = 1 is almost the same
with that of the case j=0. Further, we can assume (without loss of generality) co = 0.

Let us assume that f and g in (22) are both outer and denote the zeros of f and g
in Ay in the form :

Z(fiD)NhAy = {€}tnco; a1/2>212252...>0, (24)
Z(gD)NAy = {e¥}nco; a1/2>y-12y-22...>0, (25)
then the following inequality holds by (22)(note that €*® = 1 in our present situations).

> zf < oo (26)

We define functions ¢¢(6), 4(6) and pg/5(6) on (0, 27) as follows:

—2#{n .z, >0} 0<0<c/2,
er(6) = .
0 otherwise,
=2 {n iy, >0 0<0<c/2,
0 otherwise,

—2#(#{n:yn29}—#{n:xn20}) 0<0<c/2,

0 otherwise,

Pg/5(0) = {

where # A denotes the number of elements of A. We can deduce from (26) and Lemma
3 that,
¢r € LP([0,27]) (0 <p<1/0). (27)
If we define log(g/ f) so that limyqe,/2 S{log(g/ f)(€*)] =0, a moment’s thought reveals
that
Xo,c1/2(8)Slog(g/ f) (7)) = py/1(6) a.e. 6. (28)

11



Since g/ f € N, it follows from Kolmogorov’s theorem that
Slog(g/ f)(e”)] € L¥([0,27]) (0 <p <1). (29)
By (27), (28) and (29) we have

by = Gar+pr € LP(0,2n]) (0 <p<1/o). (30)
From (30) and Lemma 3, we get

D yh<oo (0<p). (31)

(31) is equivalent to the desired ihequalities (23) for an outer g € S® in case j = 0 and
¢ =0. QED.

Example 1. Let B = BiB2B; , where B; : j=1,2,3 are Blaschke products such
that: '

(i) sing (B1) C {e¥ : 7 < 6 < 27},
(ii) B, is the Blaschke product with the zeros {a_n}32; with
= 0=,
(ili) Bs is the Blaschke product with the zeros {as}52;, where
a, = (1-— (%)Pl)ei("’(%)l/al), pp>1, 00> 1.
We put
D= {re®;0<r<1,0<0<m/2}, A ={re?;0<r<1, 7/2 <0<},
Then we have for j € {0,1}
Ord[(-1)%; Z(B; D) N Aj] = a; > 1,
and hence we have by Theorem 1

Ord[(-1); Z(; D) N Ay) =05 > 1 (g € SP).

12



Remark 1. In Theorem 1 (i), we can not replace ¢ > 1 by o > 1 as the following
example shows. '

Example 2. Let B be an infinite Blaschke product with the zeros {a,}52,, where
1
n — 1-—
an = ( n(log(n + 1))2)
Then , Ord[1; Z(B; D) N Ag] = 1, where Ag = {re? : 0 < r < 1,0 < § < 7}. On the
other hand we have by Lemma 1 that

00 _ oi/n? \2

and Ord[1; Z(gg; D) N Ag)] = 1/2.

; In2
™, n=1,2,..

e SBENnH™,
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