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Abstract

In this paper, we use the no-response test idea, introduced in ([L-P], [P1])
for the inverse obstacle problem, to identify the interface of the discontinuity of
the coefficient γ of the equation ∇ · γ(x)∇+ c(x) with piecewise regular γ and
bounded function c(x). We use infinitely many Cauchy data as measurement
and give a reconstructive method to localize the interface. We will base this
multiwave version of the no-response test on two different proofs. The first
one contains a pointwise estimate as used by the singular sources method. The
second one is built on an energy (or an integral) estimate which is the basis of
the probe method. As a conclusion of this, the no response can be seen as a
unified framework for the probe and the singular sources method. As a further
contribution, we provide a formula to reconstruct the values of the jump of
γ(x), x ∈ ∂D at the boundary.

1 Introduction and statement of the result

1.1 Introduction

The inverse boundary value problem for identifying an inclusion inside a conductive
medium from infinitely many measurements was initiated in [Isa]. Isakov proved
uniqueness for identifying the inclusion D. Later, in [I], a method for identifying the
inclusion was proposed. This probe method has been generalized to deal with general
scalar equations with mixed boundary conditions and with source term [D-N] and
for anisotropic elastic systems [I-N-T]. In a recent paper [A-D], a stability result
concerning this problem of localization of the interface of discontinuity is given.

For the inverse obstacle problem, in [L-P] and [P1] the no response test is proposed
to localize an obstacle from finitely or infinitely many measurements and in [P2] we
find the description of the singular sources method for shape reconstruction. The
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Figure 1: The no response test is a method with a general minimization formulation
which unifies the singular sources method (SSM) (pointwise estimate of fundamen-
tal solution) and the probe method (PM) (energy estimate of fundamental solution).
Convergence of the SSM or PM is used to prove the convergence of the multi-wave no
response test. However, the no response test also admits a one-wave version which
tests for analytic continuability. In the one-wave case the SSM or PM do not work.
Here, the no response test may be based on the point source method or the enclosure
method.

purpose of this paper is to use the idea of the no-response test to reconstruct the
inclusion from infinitely many measurements and to clarify its relation to the probe
and the singular sources method.

We show that the functional of the no-response has two different versions of lower
estimates. One is of energy type. It is exactly the one of the probe method as it is
given in [I]. This implies that in any case where the probe method converges then
the no-response test also converges. The other version is of pointwise behavior. Its
behavior is exactly the one of the singular sources method, see [P2]. We will use
this second version to give another convergence proof of the no-response test. The
relation of the methods is visualized in Figure 1 and explained in the section 3.5

As a further contribution, we derive a formula to reconstruct the values of A(x),
x ∈ ∂D. Similar formula has been given in [I-N] using the probe method. In their
formula, one needs to compute the integrals of the gradient of the fundamental solu-
tion on D. We will explain more about our formula after the statement of the main
result in the next section.

The idea to justify the blowup in a pointwise sense of this indicator function
is to transform this behavior to the one of the Green’s function of the equation
∇ · γ(x)∇ + c(x). Then we prove that this Green’s function is locally (near any
point a ∈ ∂D) equivalent, in the L∞ norm sense, to the fundamental solution of
∇ · (1 + A(a)χ−)∇ where χ− is the characteristic function of the negative half-space.
The explicit form of this last fundamental solution gives the result. The proof of this
equivalence is given by freezing and flattening the coefficient γ(x) near the point a.
To justify these two steps, we combined some estimates of the corresponding Green’s
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functions given in [A-D], Lp, 1 < p < ∞, and L∞ estimates of solutions for scalar
divergence form elliptic equations with discontinuous coefficients, see [S] and [L-V]
respectively. The term c(x) is added to include the case c(x) = k2 for the singular
sources method, see section 2.

The paper is organized as follow. In the following subsection we formulate the
problem and describe the no-response test for this problem. In section 2, we recall
the probe method and the singular sources method in details and state the result.
In the section 3, we describe the proof of the result and the relations of these three
methods. In section 4, we give the details of the proof.

1.2 Statement of the results.

Let Ω be a bounded domain in R
n, n = 2, 3. We assume that Ω contains a bounded

domain D with its boundary ∂D. We suppose that ∂D has the C1,1 regularity. We
consider a function γ of the form

γ(x) := 1 + χDA(x),

where χD is the characteristic function of D and A(x) is a C1(D) function satisfying
A(x) > 0 in D. We denote by

Lγ := ∇ · γ∇ and Mγ := Lγ + c(x),

where c(x) is a bounded measurable function.
Let Φ be the fundamental solution of M1 and Φ′ be the one of L1 where M1 and

L1 are Mγ and Lγ when γ(x) = 1, x ∈ Ω, extended by 1 to R
n \Ω and c(x) extended

by zero to R
n \ Ω.

Further, consider f ∈ H
1

2 (∂Ω) and let uf be the H1(Ω) solution of

{

Mγu
f = 0 in Ω,

uf = f on ∂Ω.
(1.1)

This problem is well posed by assuming that zero is not an eigenvalue for the re-
lated operator. By taking all the functions f ∈ H

1

2 (∂Ω), we define the Dirichlet to
Neumann map

Λ : H
1

2 (∂Ω) → H− 1

2 (∂Ω), f 7→ Λ(f) :=
∂uf

∂ν
|∂Ω,

where ν is the exterior normal of ∂Ω.

Definition 1.1 (Inverse Problem.) Let the function c(x) and the Dirichlet to
Neumann map Λ be known. Our task is:

1) Reconstruct the interface ∂D of discontinuity of the coefficient γ(x).
2) Recover the values of A(x), x ∈ ∂D.
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Now, we explain the idea of the no-response test introduced in [L-P, P1] for the
inverse obstacle problem and show how to adapt it to our problem.

The no-response test. By (1.1) and Green’s formula, we write

uf(x) =

∫

∂Ω

{

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y)

+

∫

∂D

{

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y), (1.2)

for x ∈ Ω \ D. Letting x → ∂Ω in (1.2) and using Green’s formula proven in the
Appendix, we obtain

uf(x) =
1

2
uf(x) +

∫

∂Ω

{

∂uf

∂ν
(y)Φ(x, y)− uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y)+

+

∫

∂D

{

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y) (1.3)

for x ∈ ∂Ω. From our Cauchy data on ∂D, we know the function

Jf(x) :=
1

2
uf(x) −

∫

∂Ω

{

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y), x ∈ ∂Ω.

By (1.3) we have

Jf (x) =

∫

∂D

{

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

}

ds(y), x ∈ ∂Ω. (1.4)

For ϕ ∈ L2(∂Ω) we define the single layer potential v[ϕ](y) by

v[ϕ](y) =

∫

∂Ω

Φ(x, y)ϕ(x)ds(x) y ∈ Ω.

Multiplying (1.4) by ϕ, integrating over ∂Ω and exchanging the order of integration,
we obtain

∫

∂Ω

Jf (x)ϕ(x)ds(x) (1.5)

=

∫

∂Ω

ϕ(x)

{
∫

∂D

(

∂uf

∂ν
(y)Φ(x, y) − uf(y)

∂Φ(x, y)

∂ν(y)

)

ds(y)

}

ds(x)

=

∫

∂D

{

∂uf

∂ν
(y)

∫

∂Ω

ϕ(x)Φ(x, y)ds(x) − uf(y)

∫

∂Ω

ϕ(x)
∂Φ(x, y)

∂ν(y)
ds(x)

}

ds(y).

Hence
∫

∂Ω

Jf (x)ϕ(x)ds(x) =

∫

∂D

{

∂uf

∂ν
(y)v[ϕ] − uf(y)

∂v[ϕ]

∂ν(y)

}

ds(x). (1.6)
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Let now B be a domain inside Ω. We define the functional

Iǫ1,ǫ2(B) := sup
(f,ϕ)∈Mǫ1,ǫ2

(B)

∣

∣

∣

∣

∫

∂Ω

Jf(x)ϕ(x)ds(x)

∣

∣

∣

∣

(1.7)

where

Mǫ1,ǫ2(B) :=
{

(f, ϕ) ∈ H
1

2 (∂Ω) × L2(∂Ω) : ‖v[ϕ]‖H1(B̄) ≤ ǫ1

and ‖f − v[ϕ]‖L2(∂Ω) ≤ ǫ2

}

. (1.8)

Our main indicator function is defined by

I(B) := lim
ǫ1,ǫ2→0+

Iǫ1,ǫ2(B). (1.9)

Please note that it is defined on a set of domains, not in the underlying ’physical’
space. Now, using the data given by the Dirichlet to Neumann map we may calculate
the functional (1.6) or the indicator function I(B) defined in (1.7), respectively. In
section 2, we give the proof of the following theorem which gives a reconstructive way
how to localize ∂D and how to reconstruct the values of A(x), x ∈ ∂D.

Theorem 1.1 1) We have the following characterization of D from the Dirichlet to
Neumann map:

D =
⋂

B∈B

B,

where B := {B ⊂ Ω : I(B) = 0}.
2) Knowing ∂D, then for every x ∈ ∂D, we reconstruct a sequence (f p

n, ϕp
n) ∈

H
1

2 (∂Ω) × L2(∂Ω) such that the following formula is valid:

A(x)

A(x) + 2
= lim

p,n→∞
(4π)|zp − z∗p |

∫

∂Ω

Jf
p

n(x)ϕp
n(x)ds(x), (1.10)

where zp is any sequence of points in Ω \ D tending to x as p tends to ∞ and z∗p is
the point symmetric to zp with respect to the plane tangent to ∂D at the point x.

Based on our Lemma 3.1, the functions φp
n, and hence f p

n, can be reconstructed
using the Tikhonov regularization scheme. Please also note that from (1.10) we don’t
need to know D everywhere to reconstruct A(x). It is enough to know D near the
point x. In fact it is enough to know the point x and the plane tangent to ∂D at the
point x.

Remark 1.1 The conditions on ∂D and A(x) can be weakned by considering ∂D

having the C1,α regularity, A(x) ∈ C0,α(D) where 0 < α ≤ 1 and A(x) 6= 0 near ∂D.
We take the limit cases to simplify the exposition.
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2 The probe and singular sources methods

Now we recall the probe and the singular sources methods.
The probe method. The functional of the probe method is defined by

∫

∂Ω

(Λ − Λ0)f(x) · f(x) ds(x),

where Λ0 is the Dirichlet-Neumann map when γ = 1 in Ω.
Let now zp ∈ Ω \ D such that zp tends to z ∈ Ω when p tends to ∞. We

set E(zp) any regular domain such that zp ∈ Ω \ E(zp) and D ⊂⊂ E(zp) ⊂ Ω.
Using the Rungé approximation, we can find a sequence of functions, vp

n, such that
‖ vp

n − Φ(·, zp) ‖H1(E(zp)) tends to zero when n tends to ∞.
We take now fn,p := vp

n |∂Ω and evaluate
∫

∂Ω
(Λ−Λ0)f

p
n(x) · f p

n(x)ds(x) , then, see
[I], for every p fixed we obtain

lim
n→∞

∫

∂Ω

(Λ − Λ0)f
p
n(x) · f p

n(x)ds(x) =

∫

D

A(x)(∇wp + ∇Φ)(x) · ∇Φ(x)dx (2.1)

where wp is the H1-solution of
{

Mγwp = −∇ · χDA(x)∇Φ(·, zp) in Ω,

wp = 0 on ∂Ω.
(2.2)

The characterization of z to be in ∂D is given by the testing

lim
p,n→∞

∫

∂Ω

(Λ − Λ0)f
p
n(x) · f p

n(x)ds(x) = ∞.

The singular sources method. For this method we take c(x) = k2 > 0, constant.
One can find a sequence of densities gp

n(ξ) such that vp
n :=

∫

S
eikx·ξgp

n(ξ)dξ tends to
Φ(·, zp) in E(zp) with the H1-norm, see [C-K] or [P2].

We define up
n as the solution of

{

Mγu
p
n = 0 in Ω,

up
n = vp

n on ∂Ω.

Then wp
n := up

n − vp
n satisfies:
{

Mγw
p
n = −∇ · χDA(x)∇Φ(·, zp) in Ω,

wp
n = up

n − vp
n on ∂Ω.

Tending n to ∞, we deduce that wp
n tends to wp in H1(Ω) which the solution of (2.2).

From the data (up
n, ∂u

p

n

∂ν
) |∂Ω, we compute via the point source method the values

up
n(zp), then we compute

lim
n→∞

(up
n(zp) − vp

n(zp)) = wp(zp). (2.3)

The characterization of z to be in ∂D is given by the testing limp→∞ wp(zp) = ∞.
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3 Description of the proof of Theorem 1.1 and a

relation between the three methods

3.1 Description of the proof

We give the proof for the case n = 3. The case n = 2 can be treated similarly with
the appropriate changes for the behavior of the related Green’s functions. We denote
by N the set of positive integers. We start by proving the first part of Theorem 1.1.

3.1.1 Case one

Let D be such that D ⊂ B. Let also ϕ ∈ L2(∂Ω) be such that ‖v[ϕ]‖H1(B) < ǫ1 and

f ∈ H
1

2 (∂Ω) be such that ‖f − v[ϕ]‖L2(∂Ω) ≤ ǫ2. Then the function w := uf − v[ϕ] ∈
L2(Ω) satisfies

{

Mγw = −∇ · χD∇(v[ϕ]) in Ω,

w = f − v[φ] on ∂Ω.
(3.1)

We decompose this function into w := w̃ + ˜̃w where w̃ satisfies (3.1) with zero
boundary condition and w̃ the solution of (3.1) with homogeneous equation in Ω.
Hence we have ‖w̃‖H1(Ω) ≤ cǫ1 and ‖ ˜̃w‖H1(F ) ≤ cǫ2 for every F ⊂⊂ Ω. Then also
‖w‖H1(F ) ≤ cǫ2 for every F ⊂⊂ Ω. Taking F = B, we deduce that ‖uf‖H1(B) ≤
c(ǫ1 + ǫ2). Hence Iǫ1,ǫ2(B) ≤ c(ǫ1 + ǫ2)

2. This means that if we have D ⊂ B, then:

IB = 0.

3.1.2 Case two

We suppose that ∂B ∩ D 6= {}. We take a point a in ∂D \ B and a sequence
zp ∈ Ω \ (D ∪ B) such that zp tends to a. We denote by E(zp) an open domain
containing D and B such that zp ∈ Ω \E(zp). We consider the sequence of functions
Φ(·, zp). We have the following lemma whose proof will be given in section 4.2.

Lemma 3.1 For every p ∈ N, we can find a sequence of functions ϕp
n(x) ∈ L2(∂Ω)

such that ‖v[ϕp
n] − βΦ(·, zp)‖H1(E(zp)) tends to zero when n tends to ∞, where β is a

constant independent on x.

Now for every p ∈ N fixed, we have:
∫

∂Ω

Jf (x)φp
n(x)dx =

∫

∂D

(
∂uf

∂ν
(y)v[ϕp

n] − uf(y)
∂v[φp

n]

∂ν(y)
)ds(y).

For every p ∈ N, let (f p
n)n,p ⊂ H

1

2 (∂Ω) be such that ‖f p
n − v[ϕp

n]‖L2(∂Ω) tends to zero

when n tends to ∞. We define uf
p

n the H1(Ω)-solution of the problem:
{

Mγu
f

p

n = 0 in Ω,

uf
p

n = f p
n on ∂Ω.

(3.2)
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Proposition 3.1 We have:

| lim
p,n→∞

∫

∂Ω

Jf
p

n(x)φp
n(x)dx| = ∞

By Proposition 3.1 and case one, we easly deduce the first part of Theorem 1.1. There
are two ways to prove Proposition 3.1. In the following subsection we explain them.

3.2 Two representations for the blowup

We set wp
n := uf

p

n − v[ϕp
n]. Hence wp

n satisfies:

{

Mγw
p
n = −∇ · χDA(x)∇v[ϕp

n] in Ω,

wp
n = f p

n − v[φp
n] on ∂Ω.

(3.3)

We write wp
n = w̃p

n + ˜̃wp
n where w̃p

n satisfies

{

Mγw̃
p
n = −∇ · χDA(x)∇v[φp

n] in Ω,

w̃p
n = 0 on ∂Ω.

(3.4)

and ˜̃wp
n is a solution of

{

Mγ
˜̃wp

n = 0 in Ω,
˜̃wp

n = f p
n − v[φp

n] on ∂Ω.
(3.5)

For p ∈ N fixed, we obtain that v[φp
n] tends to βΦ(·, zp) on any subset of E(zp)

in the H1 norm (see Lemma 3.1). Hence, the right hand side of (3.4) tends to
−β∇ · χDA∇Φ(·, zp) in H−1(Ω). From Lax-Milgram lemma we deduce that w̃p

n is
bounded in H1(Ω) and tends weakly to some w ∈ H1(Ω) which satisfies in the

distribution sense Mγw = −β∇ · χDA∇Φ(·, zp). Similarly w̃p
n is bounded in H

1

2 (∂Ω)
and, hence, converges strongly to w in L2(∂Ω). Thus, w = 0 on ∂Ω.

Consider the problem (3.5). Since ‖f p
n − v[ϕp

n]|L2(∂Ω) tends to zero as n tends to

∞, by interior estimates we deduce that ˜̃wp
n tends to zero in H1(B) For all B ⊂⊂ Ω.

Finally, we deduce that wp
n tends to w(·, zp) ∈ H1(Ω) in H1(B) for every B ⊂⊂ Ω,

where w satisfies:
{

Mγw = −β∇ · χDA(x)∇Φ(·, zp) in Ω,

w = 0 on ∂Ω.
(3.6)

Since D ⊂ E(zp), the previous argument and Lemma 3.1 imply that:

∫

∂Ω

Jf
p

n(x)ϕp
n(x)ds(x) =

∫

∂D

{

v[ϕp
n]

[

∂uf
p

n

∂ν
−

∂v[ϕp
n]

∂ν

]

+
[

v[ϕp
n] − uf

p

n

] ∂v[ϕp
n]

∂ν

}

ds(x)

tends to

β

∫

∂D

{

Φ(·, zp)
∂w

∂ν
− w

∂Φ

∂ν
(·, zp)

}

ds(x).
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I. Integration in Ω\D: The pointwise version of the no-response test. Using
the Green’s representation formula applied in Ω\D, we deduce that

∫

∂Ω
Jf

p

n(x)ϕp
n(x)ds(x)

tends to:

βw(zp, zp) − β

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x). (3.7)

II. Integration in D: The integral version of the no-response test. We write:
∫

∂D

{

Φ(·, zp)
∂w

∂ν
− w

∂Φ

∂ν
(·, zp)

}

ds(x)

=

∫

∂D

{

Φ(·, zp)
∂(w + Φ)

∂ν
− (w + Φ)

∂Φ

∂ν
(·, zp)

}

ds(x). (3.8)

We remark that w + Φ satisfies ∇ · γ∇(w + Φ) = 0 in D and recalling that ∆Φ = 0
in D we deduce that:

∫

∂D

{

Φ(·, zp)
∂(w + Φ)

∂ν
− (w + Φ)

∂Φ

∂ν
(·, zp)

}

ds(x) =

= −

∫

∂D

{

Φ(·, zp)(1 + A(x))
∂(w + Φ)

∂ν+
− (w + Φ)

∂Φ

∂ν+
(·, zp)

}

ds(x)

=

∫

D

A(x)∇Φ · ∇(Φ + w) dx (3.9)

where ν+ is the unit normal oriented into Ω \D. Hence,
∫

∂Ω
Jf

p

n(x)φp
n(x)ds(x) tends

to

β

∫

D

A(x)∇Φ · ∇(Φ + w) dx. (3.10)

3.3 Proof of Proposition 3.1

Now for every ǫ > 0 fixed, we choose:

β := β(zp, ǫ) =
ǫ

4

[

max(

∫

B

|Φ(·, zp)|
2dx,

∫

B

|∇xΦ(·, zp)|
2dx)

]−1

.

With this choice, we have ‖βΦ(·, zp)‖H1(B) ≤ ǫ
2
. Since ‖v[ϕp

n] − βΦ(·, zp)‖H1(E(zp)

tends to zero as n tends to ∞, for n large enough we obtain ‖v[ϕp
n]‖H1(B) ≤ ǫ and

‖v[ϕp
n] − f p

n‖L2(∂Ω) ≤ ǫ.
As a conclusion we have a sequence of functions φp

n such that for every fixed p ∈ N

there is N(p, ǫ) ∈ N such that for all n ≥ N(p, ǫ) we have

‖v[ϕp
n]‖H1(B) ≤ ǫ and ‖f p

n − v[ϕp
n]‖L2(∂Ω) ≤ ǫ.

This sequence has the property: for p fixed,
∫

∂Ω
Jf

p

n(x)ϕp
n(x)ds(x) tends to

βw(zp, zp) − β

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x).
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The function w is called the reflected solution to the system Mγ . In the next section,

we justify the following result:

Proposition 3.2 1) The sequence w(zp, zp) tends to ∞ when zp tends to a.
2) The sequence

∫

∂Ω
Φ(·, zp)

∂w
∂ν

ds(x) is bounded with respect to p.

We remark that β(zp, ǫ) is bounded with respect to zp since (zp)p∈N ⊂⊂ Ω \ B. This
implies that

lim
p,n→∞

∫

∂Ω

Jf
p

n(x)ϕp
n(x)ds(x) = ∞.

Hence Iǫ(B) = ∞. We proved the theorem. 2

On the other hand we can show the blowup of
∫

∂Ω
Jf

p

n(x)φp
n(x)dx by using (3.10).

This the way of the probe method, see [I].

3.4 Reconstruction of the values of A(a), a ∈ ∂D.

In this part we show how to recover the values of A(a), a ∈ ∂D from the Dirichlet
to Neumann map. Let x ∈ ∂D. From the proof of the reconstruction of ∂D, we
reconstructed a sequence f p

n such that

∫

∂Ω

Jf
p

n(x)φp
n(x)ds(x)

tends to

β(zp, ǫ)w(zp, zp) − β(zp, ǫ)

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x),

when n tends to ∞. The constant β(zp, ǫ) has been introduced just for normalization,
we take it here equal to 1. Then, we have

w(zp, zp) = lim
n→∞

∫

∂Ω

Jf
p

n(x)φp
n(x)ds(x) +

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x).

Now from Proposition 4.1, we deduce that

A(a)

A(a) + 2
= lim

p→∞

|zp − z∗p |w(zp, zp)

(4π)−1
.

Knowing that
∫

∂Ω
Φ(·, zp)

∂w
∂ν

ds(x) is bounded, we deduce the following formula to
compute the values of A(a), a ∈ ∂D

A(a)

A(a) + 2
= lim

p,n→∞
(4π)|zp − z∗p |

∫

∂Ω

Jf
p

n(x)φp
n(x)ds(x), (3.11)

where zp is in Ωa,θ and zp tends to a as p tends to ∞. 2
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3.5 Some comments on the relation between the three
methods

The limit (2.1) is the one related to the probe method (3.10). The behavior of the
pointwise estimate of the no-respose test (2.3) is exactly the one of the singular
sources method (3.7). The convergence of the no-response test is a consequence of
the convergence of either the probe method or the singular sources method.

Since it is known that the integral (3.10) diverges as zp tends to ∂D, see [I],
then

∫

∂Ω
Jf

p

n(x)φp
n(x)ds(x) diverges also. We will show that also the one given in the

pointwise sense is diverging as zp tends to ∂D. This will give a formula to reconstruct
the values of A(x), x ∈ ∂D.

To prove the convergence of these methods, the energy version is easier, see [I],
since the pointwise estimates are more difficult to establish than the energy ones.
Regarding the stability, the pointwise version is more suitable , see [P2].

4 Behavior of the reflected solution and proof of

Proposition 3.2.

Our first goal is the justification of the first point of Theorem 3.2. We recall that the
reflected solution satisfies:

{

Mγw = −β∇ · χDA∇Φ(·, zp) in Ω,

w = 0 on ∂Ω.
(4.1)

Let us consider the sequence w(zp, zp). From (4.1) we see that the distribution G :=
1
β
w + Φ satisfies

{

MγG = −δ(x − zp) in Ω,

G = Φ(·, zp) on ∂Ω.
(4.2)

The purpose of the following lemmas is to localize the dominant part of G in the
pointwise sense. The proofs will be given in the section 3.1.

We set G̃ the Green’s function of Mγ on Ω with homogeneous boundary Dirichlet
condition.

Lemma 4.1 For every B ⊂⊂ Ω, the function (G − G̃)(x, z) is bounded for x ∈ Ω
and z ∈ B.

Let us define the Green’s function G′ of Lγ on Ω with homogenous Dirichlet
boundary condition, i.e:

{

LγG
′ = −δ(x − z) in Ω,

G′ = 0 on ∂Ω.
(4.3)

Lemma 4.2 The function (G̃ − G′)(x, z) is bounded for (x, z) ∈ Ω2.
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Let now a ∈ ∂D. We set Lγ(a) as the expression Lγ with γ replaced by γ(a) :=
1 + χDA(a). We denote by G′

0 the Green’s function of Lγ(a) on Ω with homogenous
Dirichlet boundary condition. We denote also by Ωa,θ the positive cone of center a

with axis ν(a) and angle θ ∈ [0, π
2
) where ν(a) is the normal to ∂D on the point a

oriented outside D. The positivity of this cone is to be understood in terms of the
direction of ν(a).

Lemma 4.3 Let ǫ > 0, θ ∈ [0, π
2
) and B ⊂⊂ Ω such that D ⊂ B be fixed. There

exists a constant c(ǫ, B, θ) > 0 such that

|(G′ − G′
0)(x, y)| ≤ c(ǫ, B, θ)

[

d(y, ∂D)]−
ǫ

3−ǫ

for x ∈ Ω and y ∈ Ωa,θ ∩ B where 0 < c(ǫ, B, θ) is a constant.

Let Φ′
γ(a) be the fundamental solution of ∇·(1+A(a)χ−)∇·, where χ− is the char-

acteristic function of the negative half-space of R
3 given by R

3
− := {x := (x1, x2, x3) ∈

R
3 : x3 < 0}. Let T be the transformation of coordinates which transforms the half-

space given by the points which are below the plane tangent to ∂D on a to the
half-space R

3
−.

Lemma 4.4 Let θ ∈ [0, π
2
) be fixed. For ǫ > 0 and δ > 0 small enough, there exists

a constant c(δ, θ) such that

|(G′
0 − Φ′

γ(a) ◦ T )(x, y)| ≤ c(δ, θ)
[

d(y, ∂D)
]−ǫ

for x ∈ Ω and y ∈ Ωa,θ ∩ B(a, δ) where 0 < c(δ, θ) is a constant.

Now, we have the following formula, see [A-I-P]:

Φ′
γ(a)(x, y) −

(4π)−1

|x − y|
=

A(a)

A(a) + 2

(4π)−1

|x − y∗|
,

with (x, y) ∈ R
n
+, where y∗ is the point symmetric to y with respect to the plane

{y ∈ R
3 : y = (y1, y2, 0)}.

Proposition 4.1 Let a ∈ ∂D and θ ∈ [0, π
2
) be fixed. There exists δ > 0 small

enough such that the function

|y − y∗|

[

1

β
w(y, y∗) −

A(a)

A(a) + 2

(4π)−1

|y − y∗|

]

is bounded for y in Ωa,θ ∩ B(a, δ).
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As a consequence of Proposition 4.1, for every θ ∈ [0, π
2
) we have:

w(zp, zp) → ∞ as zp → a.

where zp ∈ Ωa,θ.

Proof of Proposition 4.1. We write

G = (G − G̃) + (G̃ − G′) + (G′ − G′
0) + G′

0

and we recall that 1
β
w = G − Φ, then from the previous lemmas we obtain

|
1

β
w(x, y) − (G′

0 − Φ)| ≤ c
[

d(y, D)
]

−ǫ

3−ǫ

Now, we write

G′
0 − Φ = G′

0 − Φ′
γ(a) ◦ T + [Φ′

γ(a) ◦ T −
(4π)−1

|x − y|
+

(4π)−1

|x − y|
− Φ].

By Lemma 4.4 the term G′
0 − Φ′

γ(a) ◦ T is bounded by c
[

d(y, D)
]−ǫ

and arguing as

for Lemma 4.2, (4π)−1

|x−z|
−Φ is also bounded. Recall also that T is an isometry since it

is given by a combination of a translation and a rotation, then using the identity

Φ′
γ(a) ◦ T (x, y) −

(4π)−1

|x − y|
=

A(a)

A(a) + 2

(4π)−1

|x − y∗|

we deduce that there exists a constant c such that

∣

∣

∣
G′

0 − Φ −
A(a)

A(a) + 2

(4π)−1

|x − y∗|

∣

∣

∣
≤ c

[

d(y, ∂D)
]−ǫ

for every x and y in Ωa,θ ∩ B(a, δ). Hence we have the estimate:

|y − y∗|

[

1

β
w(y, y)−

A(a)

A(a) + 2

(4π)−1

|y − y∗|

]

≤ c
[

d(y, ∂D)
]− ǫ

3−ǫ

|y − y∗|

≤ c
[

d(y, ∂D)
]1− ǫ

3−ǫ

+ c
[

d(y, ∂D)
]− ǫ

3−ǫ

[

d(y∗, ∂D)
]

.

Choosing δ > 0 small enough such that Ωa,θ ∩ B(a, δ) ∩ ∂D = {a}, then there exists
a constant c(δ) > 0 such that d(y, ∂D) ≥ c(δ)d(y, a).

Taking ǫ > 0 satisfying − ǫ
3−ǫ

+ 1 > 0, we deduce the result.
2
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4.1 Proofs of the lemmas.

The proof of Lemma 3.1 can be adapted from the one given in [C-K] or [P1] for the
denseness of the range of the Herglotz wave operator. Here, we provide a concise
version of the proof.

Proof of Lemma 3.1. Let Ẽ(zp) be any domain such that E(zp) ⊂⊂ Ẽ(zp) ⊂ Ω
and zp ∈ Ω \ Ẽ(zp) and let H : L2(∂Ω) → L2(∂Ẽ(zp)) defined by

H(ϕ)(x) :=

∫

∂Ω

Φ(x, y)ϕ(y) ds(y).

We want to prove that Φ(x, zp) ∈ R(H)
L2(∂Ẽ(zp))

, where R(H) is the range of H .
We know that the adjoint of H is given by the operator, H∗:L2(∂Ẽ(zp)) → L2(∂Ω)

with H∗(ϕ)(y) :=
∫

∂Ẽ(zp)
Φ(x, y)ϕ(y)ds(x). We write

L2(∂Ẽ(zp)) = R(H) ⊕ N(H∗),

where
N(H∗) := {ϕ ∈ L2(∂Ẽ(zp)) : H∗(ϕ) = 0}.

To prove our lemma, it is enough to prove that Φ(x, zp) ∈ N(H∗)⊥. Let ϕ ∈ N(H∗),

then
∫

Ẽ(zp)
Φ(x, y)ϕ(x)ds(x) = 0, for y ∈ ∂Ω. Passing to the conjugate, for

v(y) :=

∫

Ẽ(zp)

Φ(x, y)ϕ(x)ds(x)

we derive v(y) = 0 for y ∈ ∂Ω. Solving the exterior problem






L1v = 0 in R
n \ Ω,

v = 0 on ∂Ω,

v satisfies the Somerfeld radiation conditions at infinity.

(4.4)

we deduce that v(y) = 0, ∀y ∈ R
n\Ω. By unique continuation, we have v(y) = 0 ∀y ∈

R
n \ Ẽ(zp). Since zp ∈ Ω\ Ẽ(zp), then v(zp) = 0, hence

∫

∂Ẽ(zp)
Φ(x, zp)ϕ(x)ds(x) = 0.

This proves that Φ(x, zp) ∈ R(H)
L2(∂Ẽ(zp))

. It means that for every p fixed, there
exists a sequence ϕp

n ∈ L2(∂Ω) such that H(ϕp
n) tends to Φ(x, zp) in L2(∂Ẽzp

), as n

tends to ∞. Since both of H(ϕp
n) and Φ(x, zp) satisfy the same elliptic equation in

Ẽ(zp), then using interior estimates, we deduce Lemma 3.1. 2

Proof of Lemma 4.1. We have

Mγ(G − G̃) = 0 in Ω, G − G̃ = Φ(·, y) on ∂Ω. (4.5)

Since for y ∈ B ⊂⊂ Ω, Φ(·, y) is very smooth and bounded in C2(∂Ω), then ([L-V],
corollary 1.3) gives the result.
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2

Proof of Lemma 4.2. We have

Lγ(G̃ − G′) = c(x)G̃ in Ω, G̃ − G′ = 0 in ∂Ω. (4.6)

Using the Green’s representation in Ω, we write:

(G̃ − G′)(x, y) = −

∫

Ω

c(z)G̃(z, y)G′(z, x)dz. (4.7)

We know that G′ is bounded in L2(Ω) (see [D-N]). Solving the problem

{

Mγ(G̃ − G′) = −c(x)G′ in Ω,

G̃ − G′ = 0 on ∂Ω,
(4.8)

we deduce that G̃ − G′ is uniformly bounded in H1(Ω), hence G is also bounded in
L2(Ω). From (4.7), we deduce that (G̃ − G′) is bounded in (x, y) ∈ Ω2. This ends
the proof. 2

Proof of Lemma 4.3. Let B ⊂⊂ Ω be a fixed subdomain such that D ⊂ B. We
set

R(x, y) := G′(x, y) − G′
0(x, y).

Then, for every y ∈ Ω fixed, R(x, y) satisfies

{

Lγ(R(x, y)) = −∇ · (χD(γ − γ(a))∇G′
0) in Ω,

R(x, y) = 0 on ∂Ω,
(4.9)

Since γ is of class C1, there exists c > 0 such that |γ(x)− γ(a)| ≤ c|x− a| for x ∈ D.
Let G̃′

0(x, y) be the fundamental function of ∇ · γ(a)∇G̃′
0 = −δ(x − y), (x, y) ∈

(R3)2. It is proved in [A-D] that

|∇xG̃
′
0(x, y)| ≤ c|x − y|−2. (4.10)

(x, y) ∈ (R3)2 with c > 0 is a constant. In Ω, we have ∇ · γ(a)∇(G̃′
0 − G′

0) = 0.
Using [L-V] and knowing that both of G̃′

0 and G′
0 are bounded, in L2(Ω), see [D-N],

we deduce that (G̃′
0 − G′

0)(x, y) is bounded for (x, y) ∈ B. From (4.10), we deduce
that:

|∇xG
′
0(x, y)| ≤ c(B)|x − y|−2. (4.11)

(x, y) ∈ B2 with c(B) > 0 is a constant depending only on B. For θ ∈ [0, π
2
) fixed,

there exists a constant c(θ) > 0 such that for x ∈ D and y ∈ Ωa,θ, we have

|x − a| ≤ c(θ)|x − y|. (4.12)
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Hence, using (4.11), we have:

∣

∣

∣
χD(γ(x) − γ(a))∇xG

′
0(x, y)

∣

∣

∣
≤ c(B, θ)|x − y|−1 (4.13)

for every x in Ω and y in Ωa,θ ∩ B. For every ǫ > 0, we have the estimate

∫

Ω

|χD(γ(z) − γ(a))∇xG
′
0(x, y)|3−ǫ dx

≤ c(B, θ)

∫

D

|x − y|−3+ǫ dx

≤ c′(B, θ). (4.14)

We return now to (4.9). Using the Lp regularity of this problem, see [S], we deduce
that

‖∇R(·, y)‖3−ǫ
L3−ǫ(D) ≤ c(B, θ).

From (4.9), we write

R(x, y) =

∫

D

(γ(z) − γ(a))∇zG
′
0(y, z) · ∇zG

′(x, z) dz, (x, y) ∈ Ω.

We rewrite it as

R(x, y) =

∫

D

(γ − γ(a))∇zG
′
0(y, z) · ∇zG

′
0(x, z) dz

+

∫

D

(γ − γ(a))∇zG
′
0(x, z) · ∇zR(y, z) dz. (4.15)

Hence, the first part satisfies:

∣

∣

∣

∫

D

(γ(z) − γ(a))∇zG
′
0(y, z) · ∇zG

′
0(x, z) dz

∣

∣

∣

≤ c

∫

D

|z − a||y − z|−2|x − z|−2 dz. (4.16)

For x ∈ D and y ∈ Ωa,θ, arguing as in ([A-D], page 11 inequality (4.12)), this last
integral is bounded by c̃| ln(|x − y|)| where the authors took y on the normal ν(a).
Their proof still justified also for y ∈ Ωa,θ since the critical point is the inequality
(4.12). Using the inequalities |x−y| ≤ d(x, ∂D)+d(y, ∂D) and | ln(|x−y|)| ≤ c|x−y|−t

locally for every t > 0, we deduce that:

∣

∣

∣

∫

D

(γ(z) − γ(a))∇zG
′
0(y, z) · ∇zG

′
0(x, z) dz

∣

∣

∣
≤ c(d(x, ∂D) + d(y, ∂D))−t (4.17)

Let us now consider the term
∫

D
(γ(z)−γ(a))∇zG

′
0(y, z)·∇zR(x, z)dz. Since ∇xR(x, y)
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is bounded in (L3−ǫ(Ω))3, then by the Holder inequality we have:

∣

∣

∣

∫

D

(γ(z) − γ(a))∇zG
′
0(y, z) · ∇zR(x, z) dz

∣

∣

∣

≤ cc(B)

∫

D

|z − a||y − z|−2|∇zR(x, z)| dz

≤ cc(B)[

∫

D

[|z − a||y − z|−2]p
′

dz]
1

p′

[
∫

D

|∇zR(x, z)|3−ǫ dz

]
1

3−ǫ

, (4.18)

where p′ := p′(ǫ) = 3−ǫ
2−ǫ

> 3
2
. Using

∫

D

[|z − a||y − z|−2]p
′

dz ≤ c′
∫

D

|y − z|−2p′dz ≤ c”
2 − ǫ

ǫ
[d(y, ∂D)]−

ǫ

2−ǫ ,

we estimate

∣

∣

∣

∫

D

(γ(z) − γ(a))∇zG
′
0(y, z) · ∇zR(x, z)dz

∣

∣

∣
≤ c(B, θ, ǫ)[d(y, ∂D)]−

ǫ

3−ǫ ,

where c(B, θ, ǫ) depends on B,θ and ǫ.
This means that for x ∈ D̄ and y ∈ Ωa,θ ∩ B, we have the estimate |R(x, y)| ≤

c(B, θ, ǫ)[d(y, ∂D)]−
ǫ

3−ǫ . Now, on (Ω \ D), R(x, y) satisfies ∆xR(x, y) = 0 with the
estimate

|R(x, y)| ≤ c(B, θ), ǫ)
[

d(y, ∂D)
]− ǫ

3−ǫ

for x ∈ ∂D and R(x, y) = 0 for x ∈ ∂Ω. Then we have the result. 2

Proof of Lemma 4.4. To prove Lemma 4.4, it is enough to prove that:

|(G′
0 ◦ T−1 − Φ′

γ(a))(x, y)| ≤ c(δ, θ)(d(y, ∂T (D)))−t

for x ∈ T (Ω) and y ∈ T (Ωa,θ). The set T (Ωa,θ) is the intersection of T (Ω) and the
cone with vertex at the origin O = (0, 0, 0), the axis in the direction ν(O) = (0, 0, 1)
and angle θ.

Arguing as in ( [A-D], Proposition 3.2), we get the following estimate:

∣

∣

∣
(G′

0 ◦ T−1 − Φ′
γ(a))(x, y)

∣

∣

∣
≤ c(r)| ln(|x − y|)| (4.19)

for x ∈ R3
−∩B(0, r

2
) and y = tν(O) with t small enough such that y ∈ B(0, r

2
) with r >

0 depending on ∂D via its parametrization. We deduce that |(G′
0 ◦T−1 −Φ′

γ(a))(x, y)

is bounded by c(r)| ln(|x − y|)| for x ∈ T (D) ∩ B(0, r
2
) and y = tν(O) with t small

enough such that y ∈ B(0, r
2
).

In [A-D], the proof depends on the inequality |x| ≤ |x−y|, which is true for these
points, and the fact that the change of variable they used fix the points of the form
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y = tν(0) i.e. Ψ(y) = y, where Ψ is the change of variables introduced to flatten
∂T (D) near the point O.

Following their proof, we find that the same result is true by taking

x ∈ R3
− ∩ T (Ω) ∩ B(0, r) and y ∈ T (Ωa,θ) ∩ B(0,

r

2
),

i.e the inequality (4.12) of [A-D] is valid for those points. This is du to the inequalities
|x| ≤ c(θ)|x − y| and |Ψ(x)| ≤ c′(θ)|Ψ(x) − Ψ(y)|, where c(θ) and c′(θ) depend only
on θ, which are satisfied for these points. The second inequality is a consequence of
the first and the form of Ψ.

Hence as for the proof of Lemma 4.3, we have:

|(G′
0 ◦ T−1 − Φ′

γ(a))(x, y)| ≤ c(r, θ)(d(x, ∂T (D)) + d(y, ∂T (D)))−t

for every t > 0, x ∈ R3
− ∩ T (Ω) ∩ B(0, r) and y ∈ T (Ωa,θ) ∩ B(0, r

2
).

Now, we show that |(G′
0 ◦T−1−Φ′

γ(a))(x, y)| ≤ c(r, θ)[d(y, ∂T (D))]−t for x ∈ R
3
+∩

T (Ω)∩B(0, r) y ∈ T (Ωa,θ)∩B(0, r
2
). To do so we observe that on R

3
+∩T (Ω)∩B(0, r),

we have G̃(x, y) := G′
0 ◦ T−1(x, y) − Φ′

γ(a)(x, y) satisfies ∆G̃ = 0 with uniformly
bounded boundary conditions. The uniform boundedness of the boundary conditions
is justified by:

1) the fact that |G̃(x, y)| ≤ c(r, θ)[d(y, ∂T (D))]−t for x on the boundary of R
3
+ ∩

T (Ω) ∩ B(0, r) and y ∈ T (Ωa,θ) ∩ B(0, r
2
) and

2) both of G′
0 ◦ T−1(x, y) and Φ′

γ(a)(x, y) are bounded for x in ∂B(0, r) and y ∈

B(0, r
2
).

The second point is justified since for x ∈ T (Ω) \ B(0, 2
3
r) and y ∈ B(0, r

2
),

both of G′
0 ◦ T−1(x, y) and Φ′

γ(a)(x, y) satisfy divergence form elliptic equation with

discontinuous coefficient and homogenous second member. Since G′
0 ◦ T−1(x, y) and

Φ′
γ(a)(x, y) are bounded in L2(T (Ω)), then [L-V] implies 2).

We deduce that |G̃(x, y)| ≤ c(r, θ)[d(y, ∂T (D))]−t for x ∈ R
3
+∩T (Ω)∩B(0, r

2
) and

y ∈ T (Ωa,θ)∩B(0, r
3
). Hence, taking all together, we showed that G̃(x, y) is bounded

by c(r, θ)[d(y, ∂T (D))]−t for x ∈ T (Ω) and y ∈ B(0, r
2
). To finish the proof we take

δ = r
2
. This ends the proof. 2

Proof of the second point of Theorem3.2. To show that the term

∫

∂Ω

Φ(·, zp)
∂w

∂ν
(·, zp)ds(x)

is bounded with respect to p, it is enough to remark that the sequence zp is near ∂D

hence Φ(·, zp) is very regular and bounded in H
1

2 (∂Ω).
Next, we investigate the term ∂w

∂ν
(·, zp). Near ∂Ω the function w solves an elliptic

equation with zero second member. From Lemma 4.2, we have (G − G′)(·, z) is
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bounded in L2(Ω) with respect to z ∈ Ω. Since G′(·, z) is bounded in L2(Ω) with
respect to z ∈ Ω, hence also G(·, z) has the same property . Now, by interior estimates
we deduce that w(·, zp) is bounded in H1(B) for every B ⊂⊂ (Ω \ D̄). We take now
B as any corona surrounding D and denote by ∂B the exterior part of the boundary
of B. Then solving the problem Mγw = 0 in ΩB, where ΩB is the domain limited by
∂Ω and ∂B, with Dirichlet condition on ∂Ω∪∂B, we deduce that ∂w

∂ν
(·, zp) is bounded

in H− 1

2 (∂Ω). This implies that
∫

∂Ω
Φ(·, zp)

∂w
∂ν

ds(x) is bounded with respect to zp. 2

5 Appendix: Justification of the Green and jumps

formulas for the equation −∆+ c(x) where c(x) is

a bounded function.

In this appendix, we justify the Green and jump formulas for the equation −∆+c(x)
where c(x) is a bounded function. In the case where c(x) is continuous these results
are known, see [Isa1]. We assume that c(x) = 0 for x ∈ R

n \ Ω. The following
argument is true in R

n, n = 2, 3. We give the details for n = 3. Let us consider the

distribution Ψ(x, y) := Φ(x, y) − (4π)−1

|x−y|
. Then Ψ(·, y) satisfies

{

(−∆x + c(x))Ψ = −c(x) (4π)−1

|x−y|
in Ω̃,

Ψ(x, y) = Φ(x, y) − (4π)−1

|x−y|
on ∂Ω̃,

(5.1)

where Ω ⊂⊂ Ω̃. Since the right hand side of (5.1) is continuous with respect to y ∈ Ω
with values in L2(Ω̃), we deduce that Ψ is continuous with respect to y ∈ Ω with
values in H2(Ω) by interior estimates.

1) To prove the Green’s formula, it is enough to prove that

lim
r→0

∫

∂B(y,r)

u(x)
∂Φ

∂ν
(x, y) −

∂u

∂ν
(x)Φ(x, y)ds(x) = u(y).

We write
∫

∂B(y,r)

u(x)
∂Φ

∂ν
(x, y) −

∂u

∂ν
(x)Φ(x, y)ds(x)

=

∫

∂B(y,r)

u(x)
∂Φ′

∂ν
(x, y) −

∂u

∂ν
(x)Φ′(x, y) ds(x)

+

∫

∂B(y,r)

u(x)
∂Ψ

∂ν
(x, y) −

∂u

∂ν
(x)Ψ(x, y) ds(x), (5.2)

where we used the notation Φ′(x, y) = (4π)−1

|x−y|
. Now, since u satisfies

(−∆ + c(x))u(x) = 0 in Ω,
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then u ∈ H2
loc(Ω), hence u(x) is continuous in Ω since Ω ⊂ R

3. Since u is continuous

and ∂Φ′

∂ν
= ν(x)

4πr2 , where r = |x − y|, then using the mean value theorem we deduce
that the first term is tending to u(y) as r tends to zero. Using the Cauchy-Schwartz

inequality, the other terms tends to zero since |Φ′(x, y)| = (4π)−1

r
and Ψ(x, y) is

bounded, with respect to x, in H2(Ω) for every y ∈ Ω. This ends the proof of the
point 1).

For the case where the dimension n > 3 we need the continuity of the coefficient
c(x), in which case the solution of (−∆ + c(x))u(x) = 0 in Ω is continuous.

2) To justify the jump formula, we use the decomposition Φ(x, y) = Ψ(x, y) +
Φ′(x, y). Then we have:

∫

∂Ω

∂Φ(x, y)

∂x
φ(x) ds(x) =

∫

∂Ω

∂Φ′(x, y)

∂x
φ(x) ds(x) +

∫

∂Ω

∂Ψ(x, y)

∂x
φ(x) ds(x)

where y ∈ Ω. Now, letting y tend to ∂Ω, using the jump formula for the Green’s
function Φ′(x, y) and the continuity of Ψ(·, y) with respect to y ∈ Ω with values in
H2(Ω), we deduce the desired jump formula for the Green’s function Φ(x, y).
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