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Abstract. In this paper we prove instant extinction of the solutions to Dirichlet and Neumann boundary
value problem for some quasilinear parabolic equations whose diffusion coefficient is singular when the

spatial gradient of unknown function is zero.

1. Introduction.

There are many works on quasilinear parabolic equations whose diffusion coefficient is singular when
the gradient Vu of unknown function v = wu(t,x) is zero. Examples include the level set equations of

surface evolution equations ([2], [5], [11], [12]) and the p-Laplace diffusion equation
ug — div(|VulP~2Vu) = 0 (1.1)
with 1 < p < 2 ([3], [14]). Another example is the equation
| U — up 2ugy =0, (1.2)

for which the inverse function z = z(¢,u) of a solution wu(t,z) solves the heat equation z; = Zy,.
Except the last example (1.2), the initial value problem is globally well-posed for any bounded uniformly
continuous initial data at least in the viscosity sense ([2], [5], [11], [12], [14]).

In this paper we study

up — |ug| " ugy = 0 (1.3)

for o > 0 or its general form

ug — a(Ug)ugy = 0, (1.4)

where a > 0 is C? except at the origin. If & = 2, (1.3) is the same as (1.2) and if o < 1, (1.3) is the same

as (1.1) with & = 2 — p up to the dilation of u. We consider the homogeneous Dirichlet and Neumann



boundary value problem for (1.4) on an interval Q. We postulate that all reasonable solutions should be

some limit of solutions of regularized equation of (1.4):
U — a° (Ug)Uyy = 0in Q@ = (0,T) x Q2 (1.5)

where a® > 0 is smooth everywhere and a® — a in some sense. Let u® be the solution of (1.5) with the
zero boundary condition on 9Q. Under very mild assumptions on a® and up we show that if ¢ is not

integrable near zero, i.e., .
/ a(p)dp = oo, (1.6)
-1
then

uw(t,z) -0 for t>0 as e£—0 (1.7)

uniformly in # € Q provided that u*(0,z) = uo(x). In other words any reasonable solution extincts
instantaneously irrelevant to the initial data ug. Let v® be the solution of (1.5) with the Neumann
condition v; = 0,2 € Q and v°(0, z) = up. Then the structure condition (1.6) now implies (instead of
(L.7))

() »uppe for t>0 as £—0 (1.8)

uniformly in x € Q, where uog is the average of ug, i.e.,

Uop = / uodz/(length of Q). (1.9)
Q

From the study of [14] it follows that if a fails to satisfy (1.6), then the set of admissible functions
in [14] is not empty so that the theory of viscosity solutions applies to (1.4) and the instant extinction
does not occur. The theory in [14] also applies to (1.1) so the instant extinction does not occur for (1.1)
with 1 < p < 2. So the condition (1.6) is optimal. Several parts of our argument are extendable to a
multi-dimensional domain. We first discuss extinction problem in L? for equations of divergence type and
then apply it for one dimensional problem. Our proof depends on integration by parts and is elementary.
In [4] Evans studied (1.2) with the boundary condition u(t,a) = —co, u(t,b) = co for Q = (a,b). An
approﬁcimate equation (1.5) with a”(p) = 1/(p? + £2) is considered there. Let w* be the solution of (1.5)

with w®(0, z) = uo(z). Then it is shown in [4] that

lim lim w® (¢, ¢) = (ug)*
t—0£—0 (t,z) = (uo)

where (up)* is the derivative of the convex hull of a primitive of ug. Although the proof and the situation
is different, this is interpreted as a similar phenoinenon that there is no reasonable solution for (1.3) with
o = 2 continuous up to initial data.

For equations with very fast diffusion there are several results different from ours. The reader is
referred to [16] and papers cited there. In our context the Cauchy problem for (1.3) is considered with
a nondecreasing bounded initial data. A typical result says that the solution becomes unbounded (near
z = 00) instantaneously if and only if a > 2. This also explains the effect of strong diffusion.

Recently, M.- H. Giga and the second author ([7], [8], [9]), constructed a continuous solution for (1.4)

for any continuous (periodic) initial data even if a contains Dirac’s delta function by extending the theory
' 2



of viscosity solutions. Their results apply to the case when a is Dirac’s delta function so that the instant
extinction does not occur. Although the singularity of a is strong, it violates (1.6) so their theory is
consistent with our theory. Such a type of singularity of a is typical in describing motion by crystalline
curvature as introduced by Angenent and Gurtin [1] and independently by Taylor [15].

The first and second authors were partially supported by the Grant-in-Aid for Scientific Research of
The Ministry of Education, Science and Culture of Japan, and partially supported by Environmental

Research Institute of Hokkaido Tokai University.
2. Instant extinction.

Let €2 be a smoothly bounded domain in R™ and let T > 0. We consider

ug — div(A®(Vu,t)) =0 in Q@=(0,T)xQ (2.1)
u(0,z) = uo(z) at t=0 (2.2)
with either
u=0 on 90 (2.3)
or ;
A*(Vu,t)-v=0 on 0 (2.4)
where v is the outward normal on 8. We assume for 0 < £ < 1 that
(A1) A*=A*(p,t): R" x[0,T] - R" is continuous with its derivatives 3_AE_ " A0 114, j<n,

Op; ' Op:iOp;’
(A2) for each M > 0 there is a constant K.(M) > 0 such that A%(p,t)-p > K.(M)|p]* for |p| < M,
0<t<T, and lim,_,0 K. (M) = 0.

Our first observation is on the behavior of L? norm |[u||2(t) = ([, Ju(z, t)[?dz)/2.

Remark.  Since the equation (2.1) is unchanged by replacing A* by A® 4 C with C independent of p,
the condition

Af(p,t)-p > K.(M)|pf?
can be weakened as

(A*(p, 1)+ C) - p > K.(M)|p|?

with some vector C (independent of p).
It is not difficult to check that
A*(p) = (pP +2) " 2%p  (g>0)

satisfies (A2) or its modification remarked here if and only if 0 < ¢ < 1 (cf. £3).

2.1. Lemma on L? estimates(Dirichlet problem).

Assume (A1)-(A2). Let «* € C(Q) be a solution of (2.1) and (2.2) with (2.3) such that uf, Vu?,
V3u® € C(Q). (For brevity here and hereafter we shall simply say that u® is a C'"? solution.) Assume
3



that Vu® is bounded on @, say {Vu®| < M uniformly for 0 < 2 < 1in Q. Then
uf|[3(2) < exp(—2M K (M)t)||uollf (2.5)

with 0 < £ < 1, where A; is the first eigenvalue of the minus Laplacian on Q with the Dirichlet condition

(2.3). In particular ||[u*{|3(t) — 0 as £ — 0 for ¢ > 0.

Proof. Multiplying v* with (2.1) yields

1d 12 / )
—— | [uf|*de =~ [ A°(Vu©,t) - Vu'de
53 /. ] R

by (A2) and the Poincaré inequality we have

/AE(VuE,t)-VuEd:c > KE(M)/ |V dx
Q Q
K (M) w3

v

This now yields

d, . .
I < — 20K (M) || 3.

We thus obtain (2.5). The last assertion follows from (2.5) since K, (M) — 00 asz — 0.

2.2. Lemma on L? estimates(Neumann problem).

Assume (A1)-(A2). Let v° € C(Q) be a CY? solution of (2.1) and (2.2) with (2.4). Assume that
|Vv®| < M on @ with some M > 0 independent of £, 0 < ¢ < 1. Then

[lv" — uog|[5(2) < exp(—2uK.(M)t)|luo — uoxl3, (2.6)

where p > 0 is the second eigenvalue of the (minus) Laplacian on §2 with the Newmnann condition (2.4).

In particular, |[v® —uo#||§ — 0as = — 0for t > 0. Here uog = [, uodz/|Q| where || is the volume of .
Proof. We set u® = v* — ugg and observe that u® solves (2.1) and (2.4) with
u*(0,x) = up — ugx.

Since ©® solves (2.1) and (2.4), we see

d . -~
| ELH (t, z)dx = 0.
;From (uf(0, ))# it now follows that (u?(0,-))% = 0. Multiplying u* with (2.1) and integrating by parts

with (2.4) yields
1d

Il ‘621.':_ Af £ 1) . V' dr
2dt/9|u|dT Az (Vur,t) - Vu'der

Since (u*(t,-))# = 0, the Poincaré inequality ([10], §7.8, (7.45)) with (A2) yields

A*(Vur,t) - Vufde > KE(M)/IVU.E|2dm
£ o

v

K (M) uf |13



As in the proof of Lemma 2.1 this now yields (2.6). The last assertion follows from (2.6) and K. (M) — oo

as e — 0.

2.3. Theorem on uniform convergence.

Assume (A1) - (A2).

(i) Let u* € C(Q) be a C»? solution of (2.1) and (2.2) with (2.3). Assume that [VuF| < M on Q for
0 < £ < 1. Then there is C = C(n) such that,

[|u®||oo (t) < CfMl_aexp(—/\lKE(M)Gt)||uo]]g, 0=2/(n+2).
In particular ||u®||oo(t) — 0 as ¢ — 0 for t > 0.

(ii) Let v* € C(Q) be a C? solution of (2.1) and (2.2) with (2.4). Assume that |Vu®| < M on Q for
0 <& < 1. Then there is C' = C(n) such that

[0 — uogfloo(t) < CMl_oeXP(-/LKe (M)9t) lluo — uox|f3-
In particular ||v° — uog||oo(t) — 0 as € — 0 for t > 0. Here ||f]|oc = sup{|f(z)|;z € §2}.

Proof.. Our estimates follows from (2.5) and (2.6) with the Gagliardo-Nirenberg inequality

2
0. 1-0 g 4
1flloo < ClIfllz - [IVAllos™, € = 7=

for f with f = 0on 9Q or f with fz = 0. For f € C*(Q) vanishing on 6 the inequality (2.7) ilﬁmediately
follows from that for f € Cg¢(R™) which is standard ([6], Part 1, Theorem 9.3).

(2.7)

The weaker version of the inequality (2.7), i.e.,

[1flloe < Coll £V Allas® + 11£1165) (2.8)

holds for all f € C*°(Q) with Cy independent of f. This inequality may be familiar ([6], Part1, Theorem
10.1). We note that (2.7) follows from (2.8) for f with fx = 0. Since (2.7) for f with fx = 0 is less
familiar, we give the proof that (2.8) implies (2.7) with fz = 0 for convenience,

Suppose that (2.7) were false. Then there would exist {f;} C C°°(Q) with ||fj||loc = 1 and fg = 0
that satisfies

1 lille

N — ”f oo —

= Wil i vz > Ml e e (2.9)
J J /0

the second inequality follows from (2.8). This yields either ||f;|l2 — 0 or ||V fj|lw — 0 as j — o0. If

||fjll2 — O, then by (2.9) it contradicts ||f;|lec = 1 for all j. If ||V fi|lec — O, then the Ascoli-Arzela

theorem says that {f;} converges subsequently to a constant function g in C'(Q). Since fjx = 0 implies

g = 0, this contradicts the property || f;||loc = 1 for all j.

3. One dimensional problem.

Unfortunately, in general the gradient bound may not be obtained in @ if n > 1 because of variety of

domain, unless the equation is uniformly parabolic (see e.g. [13]). To avoid this extra difficulty we shall
S



concentrate on one diniensional case. In this case we may assume ) = (0, L). The Dirichlet problem can
be reduced to the periodic boundary problem on (—L, L) by extending u on (—L,0) by —u(—=z,t). The
Neumann problem can be also reduced to the periodic boundary problem on (—L, L) by extending u on
(—L,0) by u(—=x,t) provided that a® = A®/8p is even in p, where af is now scalar and positive. Since

w = uy of (2.1) now solves

Wy — @° (Ug, )Wyy — ap (U, tywi=0 on (0,7)xR,

applying the maximum principle yields the bound of u,, for the bound of ug,. Here ay(p,t) = %ﬁ
3.1. Lemma on bound for u,.
Assume (Al) and n = 1.
(i) Let u® € C(Q) be a C*2 solution of (2.1) and (2.2) with (2.3). Then
|t 2lloo(t) < ||uoslloos, 0<t<T, 0<z<1
(ii) Let v* € C(Q) be a C'? solution of (2.1) and (2.2) with (2.4). Then
[|0°2]|oo (t) € Juogllow, 0LELT, 0<e<1
provided that o*(p, t) is odd in p. |
We now give a sufficient condition for (A2) when n = 1. We rewrite (2.1) as
U = 0 (U, Dty = 0, | (3.1)
where a®(p,t) = 6(;2 E.

3.2. Proposition.
Assume that for 0 < = < 1,
. . . . o o e Od .
(al) a" = a*(p,t) : R x [0,7] — R is continuous with its derivative a, = T and o® > 0,
(a2) pag <0,
(a3) a°(p,t) is even in p,

(a4) for each M > 0, there is k. (M) such that
M
/ a®(p,t)dp > k.(M), 0<t<T
0 .

and

k(M) —> 00 as £—0.



P

Then A%(p,t) = / a°(q,t)dg satisfies (Al). Moreover A%(p,t) = 3°(p,t)p with continuous £
0

R x [0,7] — R. (This condition guarantees that u, = 0 implies A® (uy,t) = 0).

. Proof.  From (al) it follows (Al). By (a2) A*(p,t) is concave in p € [0, o). Thus

As(p,t) > é%zp for 0<p< M.
By (ad) we now obtain 3
k(M)
£ > — <p<
A% (p,t) > i for 0<p<M
Since A%(p, t) is odd by (a3), this yields
€ kE(M) 2
> —_— g < M.
Aptlpz —p—p for oM

Setting K. (M) = k.(M)/M leads to (A2) where the last property follows from definition of A°,

3.3. Theorem on instant extinction.
Assume (al) - (ad).

(i) Let u® € C(Q) be a C? solution of (3.1) in Q = (0,7) x Q with (2.2) and (2.3). If ug, is bounded

on {2 then there is a universal constant C that satisfies
16 loo () < Clluog|lss *exp(—MKx (|[tos oo )t6) [[uoll§, t> 0.

In particular

lin%) [|e]ea(t) =0 for t>0.

(ii) Let v* € C(Q) be a %2 solution of (3.1) in @ with (2.2) and
upy =0 on Of. (2.4")

If up, is bounded on  then
* ~ o oo (£) < Clluogl 5 exp(—uE: (|uoglloc)t6) 1o — uoiellfy ¢ > 0.
In particular
1in(1) ||v* — uog||oo(t) =0 for ¢>0.

Proof. This follows from Theorem 2.3, Lemma. 3.1 and Proposition 3.2.

3.4. Remark on the periodic boundary condition.

The second statement of Theorem 3.3 is still valid even if (2.4') is replaced by the periodic boundary
condition. Here p > 0 should be the second eigenvalue of the minus Laplacian on {2 with the periodic

boundary condition. The proof is the same as the Neumann problem so is omitted.



3.5. Example.

We consider

ut — a(Ug) gy = 0 (3.2)

with a € C*(R\{0}), a > 0. We moreover assume that a(p) = a(—p) and a'(p) > 0 for p > 0. Our main

assumption on a is .
A a(g)dq = co. , (3.3)
A typical example is
a(p) =|p[™® with o> 1 (3.4)

Let a®(p) — a(p) as = — 0 for a.e. p. Then the Fatou lemma with (3.3) implies

M

lim [ a*(p)dp=oc0

20 Jo
so such a°(p) fulfills (a4). Of course there are many examples of such a sequence. For example, we may
take

a*(p) = (|pl* +2)*  for a(p) = |p|™=.
Our Theorem 3.3 says if the solution of (3.2) and (2.2) with (2.3) or (2.4') is obtained as a limit of
solutions of regularized problem, then it must extinct instantaneously for the Dirichlet préblem and it
must equal the average of the initial data instantaneously for the Neumann problem. By Remark 3.4
the statement for the Neumann problem also holds for the periodic boundary value problem. In [9] a
continuous solution for (3.2) is constructed for any continuous periodic initial data even if a contains
Dirac’s delta function. ‘
It is unlikely that instant extinction occurs in their problem. However, their results do not contradict

1
/ adq
-1

ours since in their paper the integral

is assumed to be finite which excludes (3.3).
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