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NONEXISTENCE OF STABLE TURING PATTERNS
WITH SMOOTH LIMITING INTERFACIAL CONFIGURATIONS IN
HIGHER DIMENSIONAL SPACES

Yasumasa NISHIURA Hiromasa SUZUKI {

abstract

When the thickness of the interface (denoted by €) tends to zero, any stable stationary internal layered
solutions to a class of reaction diffusion systems cannot have a smooth limiting interfacial configuration.
This means that if the limiting configuration of the interface has a smooth limit, it must become unstable
for small ¢, which makes a sharp contrast with one-dimensional case as in [5]. This suggests that stable
layered patterns must become very fine and complicated in this singular limit. In fact we can formally
derive that the rate of shrinking of stable patterns is of order €173 35 well as the rescaled reduced equation
which determines the morphology of magnified patterns. A variational characterization of the critical
eigenvalue combined with the matched asymptotic expansion method is a key ingredient for the proof,
although the original system is not of gradient type. '

- 1. Introduction

" Dynamics of interfacial patterns attracts much interests in many fields such as pop--
ulation dynamics, combustion, chemical reaction, solidification and so on. One of the
pioneering works in pattern formation problem can:be traced back to Turing [9] who
found that spatially inhomogeneous patterns can be.formed by diffusion-driven instabil-
ity if the inhibitor diffuses faster than the activator: A typical model system is of the
form I '

( uy = e2Au + f(u,v), ' :
, , (z,t) € Q x (0, 00),
(11) ﬁ vy = DAv + g(u’av)7 :
Oou ov
\ a_n_()_gﬁ (z,t) € 02 x (0,00).

where u is the activator, v is the inhibitor,  is a smooth bounded domain in RY, and
¢ is a small positive parameter. The nonlinearity f has at least two stable branches for
a fixed v and the signs of g are different on these branches, typically (f,g9) = (u(l —
‘u)(u —a) — v,u — yv), where 0 < @ < 1,y > 0. More precise assumptions for (f,9)
are displayed at the end of this section. Although (1.1) exhibits a variety of patterns
depending on diffusion and/or reaction rates, we focus on the stationary ones in higher
space dimensions, especially we are interested in layered solutions which have internal
transition layers from one stable branch to the other one. The basic issue is that “Does
(1.1) has nonconstant stable stationary solutions up to € =0 ? And, if it does, what are
the asymptotic configurations of them ase | 0 27 As we shall see, this is closely related
to finding the location of free boundary called the interface separating two different states.
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Numerically as well as experimentally, for a fized € > 0, a variety of stationary patterns
have been observed such as spots, stripes, and labyrinthine patterns for (1.1) (see for
instance {1] and the references therein). Hence naively one can expect that (1.1) has a lot
of stable stationary solutions for small € up to € = 0.

In fact, for one-dimensional case, it is proved rigorously (see [5]) that many stable
layered solutions coexist up to € = 0. It should be noted that each layer position has a
definite limit and the distance between layer positions remains finite as € | 0.

On the other hand, for higher dimensional case, we know very little about the limiting
configuration of stable stationary solutions to (1.1) when € tends to zero. For instance,
the planar front does not persist as a stable one (see [7]) and more complicated patterns
take over it for small . We rephrase our basic question in the following way: Does (1.1)
has an e-family of stable stationary layered solutions (U¢,V*) with smooth interface T'®
up to € =0 ¢ Here I'® is defined by

= {z € QU*(z) = a*},

where o* is an intermediate value between two stable branches and, for instance, is equal
to 1/2 for the above example. Note that “smooth up to € = 0 ” means that there exist a
(N —1)-dimensional smooth compact connected manifold I' without boundary embedded
in R" such that I'* converges to I'° smoothly as € | 0.

The goal in this paper is to give a negative answer to this question under the assumption
_ that it has a matched asymptotic expansion(see_Sﬁe,ction 2 for details). Namely we have

. MAIN THEOREM Suppose that (1.1) has an e-family of stationary matched asymptotic
solutions whose mterface 18 smooth up to € = 0. Then it must become unstable for small-
6- R . . - . :

This instability result leads to the following natural question, i.e., how about the fate
of stable ones when € | 0 ? The above theorem strongly suggests that stable patterns
somehow must become very fine and/or complicated when € | 0, and if it happens, can we
characterize the domain size of those patterns and their morphologies ? We shall discuss
on these issues in Section 4 (see also [5] and [8]).

We prove the above theorem under the following assumptions.
(A.0) ¢ is a (N—1)-dimensional, smooth, compact, connected manifold without boundary
inside of €2, and the domain surrounded by I'¢ is simply-connected.

(A.1) f and g are smooth functions of u and v defined on some open set O(D Q) in R?
and the partial desrivatives f,(resp. g.) is a negative (resp. positive) constant function.

(A.2) (a) The nullcline of f is sigmoidal and consists of three smooth curves u = h_(v),
ho(v) and h, (v) defined on the intervals I_, Iy, and I, respectively. Let minI_ = v and
max I, = 7, then the inequality h_(v) < ho(v) < hy(v) holds for v € I* = (v,7) and
h.(v) (resp. h_(v) ) coincides with ho(v) at only one point v =T (resp. v) respectively.

(b) The nullcline of g intersects with that of f at one or three points transversally as
in Fig.1.1. The critical point on u = h_(v) (resp. h4(v) or ho(v) ), if exists, is denoted



by P = (U_,’U__) = (h_(v_),v_) (resp. Q = (U+,U+) = (h_};(’ll+),’l)+) or R = (’U,o,’vo) =
(ho(wo), vo))-

(A.3) J(v) has an isolated zero at v = v* € I* such that dJ/dv < 0 at v = v*, where
hi(v)
J(v) = /h z ) f(s,v)ds. Moreover we assume that v_ < v* < v.

(A4) f, <0onH,UH_, where H_ (resp. H, ) denotes the part of the curve u = h_(v)
(resp. hy(v) ) defined by H_ (resp. H+ ) = {(u,v)|u = h_(v)( resp. hy(v)) for v_ <
v < v*(v* <v < vy)}, respectively. Note that v_ < (resp. < v,) is replaced by v < (resp.
< T ) when there are no critical points on the branch v = h_(v) (resp. h4(v)). See thick
solid part of f = 0 in Figure 1.1.

(A.5) (a) gly. <0< glyy,
(b) det (%E{T’—i—))—) 3 > 0.
g LU
(A.6) . Golag,um. <0

REMARK 1.1. The assumption for the partzal derivatives in (A.1) is necessary for the
technical reason in Section 3. :

REMARK 1.2. Under the above assumptions. it is natural to assume that the internal -
layered solutions havle matched asymptotic expansions as described in Section 2. -



2. Matched asymptotic expansion of singularly perturbed stationary solu-
tion

In this section, we summarize the necessary conditions for the existence of the e-family
of matched asymptotic solutions with internal transition layers of the following stationary
problem:

0 = e2Au + f(u,v),
(2.1) in 9,
0 = DAv + g(u,v),
ou Ov '
(22) 572 =0= 5;,’- on BQ,

Before presenting the precise form of matched asymptotic expansion, we need to do a
change of variables near the interface. Let us assume that there exist an e-family of
smooth solutions (U¢(z),V¢(z)) to (2.1) and (2.2) with interior transition layers such
that the interface defined by

(2.3) rF={zeQU(z)=0a"=z}

DO =

is a compact smooth manifold .of dimension N —-1 embedded in RY and have a definite - -

limit [ with the same properties as € | 0. Let (X, #) be a local chart on I'?, with ¢(X)
an open subset of R¥=1. For zy € Xy, ¢(z0) = s = (s',---,s""") and we denote the

inverse of ¢ by . 3
3o = (23(8), -+ 75 (5))-

In some tubular neighborhood Uy(I°) = {z € R¥||y(z)| < d} of T local coordinate
system (s,y) = (s',---,sV "1, y) is defined and for z € Uy(I"?),

(24) - z=X(s,y) = zo(s*, -, 8V ) +yu(st, -+, sV )

holds, where v(s!,---,sV~1) is the outward unit normal vector at s = (s',---,5""!) to
['°. Then, X becomes a diffeomorphism from [—d, d] x I'® to Ug(I'?) if d is strictly smaller
than the infimum of the radii of curvature of I'%. Its inverse is denoted by (S(z),Y (z)).
Then I'é can be represented by

I = {zo(s) +7(s,€)v(s)|s € T°}

where _
v(s,€) = Z sk'yk(s) + ™ Yma1(s, €).
k=1

Here we introduce local shift variable 7 by the following relation:

(25) y=1+w(zh(se),



where w(7) € C*(R) is a cut off function such that
1
w(r)=1 for |7]< 3 w(r) =0 for |r|>1,
0<w(r) <1, <3

Then, by the implicit function theorem, 7 = T(s,y,¢) satisfying (2.5) is defined for
sufficiently small €. In place of z, we use a new independent variable Z, defined by

) T, z € Q\Uy(I),
= X(z,e) =
j { X(S(z), T(S(z),Y (x),¢)), z € Uy(T).

Let QF (resp. f) be the region surrounded by I'* (resp. I'°) and Q] = O\, (resp. Qp =
OQ\Q¢). Then, note that # = X (z,¢) maps I to [, and QF to QF, respectively, namely
the free boundary I'® becomes a fixed boundary I'° in the new coodinate. Throughout the
paper, we shall use the following notation

u(z) = u(s,y), a(z)=1a(s,71).

Using the above transformation, stationary problem (2.1) with (2.2) can be rewritten as

[ eMa+fa,0)=0,
"(2:6) R T
| DM#o+g(3,9) =0,
ot 0

where @ = 4(%), © = 9(&) and M is the representation of Laplacian A, in £. In Q\Uy(I'?),
M is equal to Az. On the other hand, in the neighborhood Uy(I'°), M® is defined in the
following way: For the local coordinate system (s,y) defined by (2.4) in RY, let ¢g"/ be
the contravariant metric tensor and g = det(¢¥). Then for u(z) = u(s,y), Laplacian A,
is expressed by '

(Azu)(z) = (A@yu)(sy)

_ @ )
(2.8) = b—y_zu(s’ y) + (N - 1)H(s,y) —a-gu(s, Y)
N-1 N-1
+% 2 5?37- (\/!7 ; gij%U(s, y)) ,

where H = H(s,y) is the mean curvature of the hypersurface I'(y) = {zo(s) +yv(s) | s €
I'%} at (s,y). Using this representation, for 4(Z) = 4(s, 7), M* is defined by

(Mea)(2) = Ayils, T(s,y,€))-
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It follows from this definition that M® can be expanded as M¢ = Z eF My, where
k>0

M,y = A, z €,

and for k > 1,
O, I € Q\Ud(FO),
My = at most the second order differential operator in & € Uy (1)
s (i=1,---,N—1) and 7, a\t /.
In the following, we consider only (2.6) and (2.7), so we omit symbol hat *. A family of
solutions (U¢, V¢) of (2.6) and (2.7) is called an e-family of matched asymptotic solutions
when it has the following expansions (2.9)-(2.12). Roughly speaking, (U¢, V*) is expanded
separately in two regions QF divided by the interface I'°, and they are matched smoothly

at T. It should be recalled that the boundary condition (2.3) is also satisfied at I'. More
precisely we have

Us(z) = Uy (z,¢) + @ (,€), z € Qf,
Uf(z) =~ .
Ut (z) = Up(@,€) + O (z,€), z €y,
(2.9) . o ' SR
Vi(z) = Vi (x,€) +e*¥ (z,¢), z € Qf,
Vé(z) =~ ' '

VEi(z) =V, (z,€) + 2V, (x,¢€), z € Q5
where ’ '
(2.10) Uzs(z,6) = > ui(z)ek, Vilz,e) =Y vi(x)e*,

k=0 k=0
2\ Y(z

o4 3 65 (5(@), T D)k, o e U n e,
(2.11) o (z,e) = k=0

0, z € Q5 \Uy(I),

2)\ Y(z

o(42) S w3, YD, o e Uy nat,
(2.12) UE(z,¢) = k=0

0, x € QE\Ua(T0),

qb,‘f and 7,[1;E are functions of s and &, and £ is stretched variable £ = 7/¢ (recall that

Y(&) = 7). The coefficients uf, v¥, ¢F, and ;i satisfy the equations listed below in
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appropriate function spaces, which can be obtained by making outer and inner expansions
and equating the same powers of e*. The inner and outer solutions are not independent in
the sense that they must satisfy the boundary conditions as well as Ct-matching conditions
between (UZ, V<) and (U?, V) on I, Let B5(s) = v* + T, Be(s)ek + e™Bpnya(s,€) be
the expansion of the value of V¢ on I'°. Note that the 0 — thorder should be v* from
(A.2), since (U¢,V®) is a stationary solution.

We briefly explain the algorithm of matched asymptotic expansion method and display
the equations and relations up to order O(e™). For more detailed aruguments, see [2] and

6]

First we divide (2.6) into two problems as follows:

[ 2Mfut + f(ut,vT) =0,
in QfF,
(2.13), $ DMevt + g(ut,vt) =0,
| ut=a*, vt=pf° on IY,
[ 2Mfu™ + f(u™,v™) =0,
in Qp,
| DMy~ + g(u~,v™) =0,
2.13)_ T . :
(2.13) uT =0 v =03 on I,
ou~ ov~
L -a—n' =0= '% on Of).

Then the interface is regarded as the boundary layer at T'°.

OUTER EXPANSION

Let
£ NS Nk ok NS kN k
(2.14) ut =Y uf(z)ef, v =) vi(z)e”,
k=0 k=0

where both ui(z) and v(z) belong to C”(WE)C). Substituting (2.14) into (2.13)+ and
equating like power of £*, we have the following problem for (uf(z), v (z)):
k=0

([ f(ug,v§) =0,
in QF,
(2.15) | | DMovg + g(uy, v5") =0,
. %1% =0 on 4Q,
k>1



( FORuf + 0% = Mus + Py,

i+j=k—2 s
in QF,
(216) ¢ .DM()’Uk +goﬂ: i+gO:t + _ -D Z M’U +Qk N
i+j=k,i>1
v
\ % =0 on 012,

“where f0* = 2 f(uf, vf), f&* = 2 f(uf,v7), and so on. P, and Qj_, are functions

determined only by ug, v, - u,f_l, 'u,f_l. This expansion is insufficient because the layer
part is not represented. For example, uf and uy are discontinuous on I'’. So we need
new variable £ = 7/¢ that rescale a neighborhood of interface. Also we note that the
boundary conditions of v,:f are determined by matching conditions.

INNER EXPANSION
We introduce the stretched variable £ = 7/¢ and let

e,

- Ul + 3 0t(S(a), 7 0
(2.17) -

vt = V;(.’L‘, €)+ g? i 1/12:(5(:5)’ Y_g{;l);k’

where ¢ = ¢F(s,€) and ¥ = ¥if(s,£). Since the definition domain of ¢ and ¥ is

‘semi-infinite, these functions and the inhomogeneous terms of their equations listed below

must have some decaying property for solvability. An approprlate function space for this .-
purpose is the following.

DEFINITION Let £ be the set of functions E*(s, &, €) defined on Ty x I* X [0,&0) with -
the property that for each C™ linear differential operator D of any order in the variables
s and &, there exist positive constants Cx and K ( possibly depending on D and E*, but
not on s, £, and € ) with |DE*| < Ke=C%lél. Here I~ ='(—00,0) and I = (0, 00).

Substituting (2.17) into (2.13).. and equating like power of &*, we obtain the following

equations:
k=0
¢ + f(hs(v") + 67, v%) =0, |
) telIT, sel",
Dy = g(hs(v*),v*) — g(hs(v*) + 5,%),
¢0:t(3a :FOO) =0, ¢(:Jt(3’ q:oo) =0= "/}(:Jt(s’ :FOO)7
k=1



([ GF + fO2of = — Mg — foE{uf(s,0) + ui(s, 0)¢}
— f&{vi (5, 0) + v5 (s, 0)€3,
EeIF,sel",
Dyf = —DM¢ + QF,

| ¢ (s,F00) =0, ¥i(s,Foo) = 0= i(s,Foo),

((GE+f0%¢E=— Y. Mf+PE,
i+j=k,i>1 :
) » £elIv,sel?,
¢ DEf=-D 3 MyF+Qi,,

i+j=k,i>1

| 6 (s,Fo0) =0, ¢i(s,Foo) =0 =i(s, Foo),
where - = £’ fox = 2 f(ha(v*)+¢F,v*), and so on. P | depends on uf, v, -, uf, v,

b, Wy ¢k_1, ¥ , and Qf_, does moreover on ¢ ,. We define the right-hand sides of
the first two equation of (2.16) are equal to zero when & = 1 and ¢¥_; = 0. The solvability
of the above equations in the space £ can be shown in a similar way as in [2], so we
leave the details to the reader. M is the representation of M€ in variables s and &, and
expanded as

ME = l Zé‘kMk..

g2 k>0

Here M, (k > 0) are at most second order dlfferentlal operator in s and £. The precise -
forms of Mj, is presented at the end of this section. - :

BOUNDARY CONDITIONS AND C!-MATCHING CONDITIONS-

Now we describe the boundary conditions of v and ¢i on I'. Then uf, v, qﬁk , and ¥
are determined recursively. These conditions are given by

i sOs—i—Z(bksO

k=0
m m m—2
v+ Y B(8)eF =D vii(s,0)eF + €2 3 i (s, 0)€F

k=1 k=0 k=0
Equating like power of £*, we have the following boundary conditions:
k=0
(2.18) ¢5(s,0) = o* — uF(s,0), v =v"on I°,
k>1

¢f(5a 0) = _ui(s’ 0), vl:ct = ﬂk(s) - 1/),?_2(8,0) on I°.



In this way, we obtain the formal asymptotic solution of (2.13)+. In order that (U*®,V®)
become a formal stationary solution of (2.6), (U%, V) must satisfy the C*-matching con-
ditions, that is,

oUe oue  ovi 68Vf
681/ _681/’ 881/ Y

After some computation, we have

on T°,

k=0
| ovg _ Ouy g g 0
(2.19) 5 (s,0) = —37(5’ 0), ¢g(s,0) = ¢y (s,0) on I'".
k>1
o n Oy -
E(S’ 0) + Q»blc—l(s’ 0) = —5;'(3’ 0) + wk—l('S’ O)’
(2.20) on I
. ou . ou;
+ k-1 g k=1
o7 (s,0) + 5 (5,0) = ¢ (s,0) + B (s,0).

The second equation of (2.15) with the boundary and C'-matching conditions (see -

(2.18) and (2.19)) is called the reduced problem, namely

[ DAvE + g(hx(vE),vE) =0 in QF,
s : Ovg Ovg :
+ _ 0 _ 0 0
(2.21) S w =Y, =7 on I
Ovy
{ % =0 on 89

This is a free boundary problem for I'® which determines the asymptotic configuration of
stationary interfacial patterns. ’

We close this section by presenting a lemma on the representations of M., which will
become useful in the next section. The proof is delegated to [6].

LEMMA 2.1. My, My, and M have the following form:

. 5? - 0
Mo = @, M]_ = (N bt l)Ho(S)EE,
(2.22) M,= A" — (P (s)—FP(s))2+P(s)—af—
. 2= 1 2 € 3 Py
0 0
—Ds'a—é — Hy(s)(£+ 71(8))6_5’

10



where

1 N-1 N-1 .
Ps) = — 3 Gy 3 GU,m,
2G i=1 j=1
N-1N-1 . :
PZ(S) = [stjiasj’)'l + szasisj71]’
i=1 j=1
N-1N-1 B
Py(s) = GY0sm0im > 0,
i=1 j=1
N-1N-1 9 o
D, = G (0,m =2 + 8m -2,
=1 j=1 ( 71631 + 171331)
N~-1
Hi(s) = Ki(s)?
=1

Hy(s) ( resp. ki(s) ) are the mean ( resp. principal ) curvature of I® at s € T, G¥ is the
contravariant metric tensor for the manifold T of dimension N — 1, G = det(G¥), and

. . . J .
AT’ Laplace-Beltrami’s operator defined on I°. Particularly coefficients of 557 in D; are
independent of €.

11



3.Instability result for stationary patterns as ¢ |0

In this section we prove that the internal layered patterns in the previous section must
become unstable when & tends to zero. For this purpose, we show that the following
linearized eigenvalue problem around (u®,v°) :

Mw = e?Mew + fiw + fiz,
(3.1)
Az =DM¢z + g;w + g;2,

has an unstable eigenvalue where )\ is the eigenvalue parameter, f; = 9 f(uf,v%) and so

— du
on. Our main result is the following.

THEOREM 3.1. Suppose that (1.1) has an e-family of stationary matched asymptotic
solutions whose interface is smooth up to e = 0. Then, (3.1) has a positive ( i.e., unstable
) eigenvalue of O(g) for small €.

Apparently (3.1) is not a self-adjoint problem, since f # g;. We first consider the
following auxiliary problem.

Mw = e2Mew + fiw + fz,
(3.2) o
nz = DM*®z + giw + g; 2,

where 7 is an auxiliary parameter. For the proof of the above theorem, we show two
lemmas related to (3.2) : the first one deals with the case 7-= 0 where, by solving the
second equation with respect to z (see assumption (A.6)), and substituting it into the-
first equation, we have a self-adjoint problem of w; the second one shows the existence -
of positive eigenvalue of O(g) of (3.2) for each n # 0. The proof of Theorem 3.1 is an
immediate consequence of these two lemmas. Note that linearized instability implies a
nonlinear one for the class of evolutional systems like (1.1).

Step 1 n = 0 case.

Solving the second equation of (3.2) with n = 0 with respect to z as
(33) 2 = (V) g,

where (N¢)~! = (= DM¢ — g5)~*, which is well-defined from (A.6), then substituting (3.3)
into the first equation of (3.2), we obtain a scalar problem for w:

(3.4) M = e2Mfw + fow + fE(N°)'giw.
From (A.1), (3.4) becomes a self-adjoint problem.

LEMMA 3.2. (3.4) has a positive ( i.e., unstable ) eigenvalue of O(e) for small €.

PROOF.

12



In what follows, for simplicity of notation, we can assume that f, = —1 and g, = 1
without loss of generality. Since the linearized operator (3.4) is self-adjoint, we shall prove
that the largest eigenvalue A5 of (3.4) becomes positive for small €, which is characterized
by

J A=V arewf® + fw® = (V) 2uf?}de
(3.5) A= sup =2 :
weH(Q) /wzd:z:
Q

- where Ve is the representation of V with respect to the coordinate & (see §2). Recall
that we write z instead of £ and hence Y(z) = 7 and £ = 7/e. Now we construct an
suitable test function for our purpose. Let

o($)ve o sl
a0 =
0 for |¢] >

?

where U is a solution of
U+ f(U,v*) =0,
- (3.6) ‘
U(xoo) = hz(v*), U(0) =o*.
We define w(z) by the following product with © € L*(I'°) and || © ||z2roy= 1
_ . | .
(Yo, weuur
w(z) = © |
0, z € Q\Uy(T'?).
For this w(z), £2|Vew|? is computed as
N_1 N . . e )
3.7 EVawP =Y Gu{d. G*(Ub:0 — 8,:7,0U)} + U?0? + O(e?)
k=1 i=1

in Uy(I'%), where G;; is the covariant metric tensor for I''. The remainder term O(e?)
depends only on I'* and the L?-norm of ©. Here we used the fact that

VM!:'& = V(s,y)ﬁ'(sj T(87 y7 E))

for & = 4(s,7), where

N ; 6U, ou
(Vu)kzgg“‘ ek 5 (k=1,---,N=1), (Vu)NEa—y,
and , ,
= N e 0u Ou
2_ ik Y% ou
IVisyul” = kgl (\/gkk;g asi> + <8y>
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for u = u(s,y). Hence, for a function ¢ = (s, 7(s,y,€)/e), we have 5—;"; Qs+ LoeTy,

—‘2 = 2pey, T4 = —€03m + O(€?), and 7, = 1 in a neighborhood of 7 = 0 (see (2.5)).
Integratlng (3.7) over €, the first term of numerator of (3.5) becomes

(3.8) /Q | Vaewlds = /F O /|g,<¢{52U2|VF0@|2 + e202P (5)02 + U202} dEdS + O(e?),

where
. N-1 N 2
V"o = Z Gk (2 G”“as,-e)
k=1 =1
and
N-1 N 2
S) = Z Grk <Z G‘k63i71> > 0.
k=1 =1
In order to compute the second term of numerator of (3.5), first note that
FOt 4 eFM 4+ 2F2 + O(e%) in Qf NU4T0)
(3.9) fa=y _ N i
FO~ +eF}~ +e2F2 + 0(e®) in Qp NU,(TO)
where

FJ* = fu(he(v™) + 65, 07),

Fi* = foEE(ui)-(5,0) + uif (5, 0) + 61} + for{€(vi)- (5, 0) + 05 (5,00},

(-)r = Z, and the remainder term O(¢®) depends only on the stationary pattern (U*, V*). -
The O(1) term of (3.9) multiplied by w? combined with the third term of (3.8) vanishies,
which is easily seen by differentiating (3.6) with respect to £. Hence we only focuson the
contribution of (3.9) coming from the O(e)-term and higher. The next quantity is a key
ingredient for the proof.

0 ... o . dve| d
14772 1-772 3¢ _ 0
(3.10) /_wFu Ud§+/0 Rrvtdg =301 2I6) >0,

where J(v) = :_*((v")) F(t,v)dt. In order to show (3.10), we note that U = ¢F, U = ¢
for ¢ € IT (so we omit the superscript + of q'SO and q.i;o), and p* = ¢1i satisfy the next
equation (see §2):

(3.11) 7+ FEpt = QF

where
O%(s,€) = HE(s, ) — {(ud)-(5,0)f3% + (v3)-(5,0) f7*}

and

(312) Hi = —(N - 1)H0¢0 — ngéo.
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Multiplying ¢o on both sides of (3.11) and using the following relations

Foo

/0 ~3i<50(2)dz = —o(0), [_:oo Fotdo(2)dz = /f::(v*) fo(u,v")du,

we obtain by integration by parts

A"w H (s, 2)¢o(2)dz = 7 (5,0)0(0) — o (0) {7 (s,0) + (u)+(s,0)}
(3.13) |

+(v5)+(s,0) (o) Folu, v*)du.

On the other hand, multiplying ¢; on both sides of (3.12) and using (3.13), we have
0 . . 0o . . 0 . oo . .
[ Fiirae+ [T RUtde= [ Rl Gde+ [T R gha
—00 0 ~00 0

' S . 0 .. .
= —~(N=DHo [ _dodods = (N = 1)Ho [ dodude

*

=61 (5,0)90(0) + do{ 7 (5,0) + (ud)r (5,0} = () (5,0) [ fulw,v")du -

hy(v™)

+67(5,0)30(0) = Go{d7 (5,0) + (U)o (3,00} + (4)r(5,0) [ folwv7)d

G 81;0

hy(v*) .
““ E / f,,(u,'u )dua

h_(v*)

o

which is the reduired result ‘(3.10). Here we used the fact that ¢j (s,0) = {Zl_‘(s, 0) and
the C'-matching condition of ¢F (see (2.20)). Using (3.8), (3.9), and (3.10) and the Hopf
boundary Lemma for v° on ' (see (2.15)), we obtain ’ :

m, d
€ ok *
A5 > C [EK1 va(v )
1 A .
(3.14) + /F 2 {_|VF°9|2 - (KR (s) - Pz(s))ez} ds

1 :
~ 5= [ IV Pufds| + 0(e),

where 5 % -
m.=min 2L <0, K = / Ue, K,= / 02de,
ro 31/ -—00 —00

0 - . [o <IN .
Bos) = /_ BrUg+ /0 U2,
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and C is a positive constant. The objective is to choose an appropriate test function in
order to make the first term of [-] of (3.14) dominant, which is positive and O(e). First
we choose © as the k-th eigenfunction © of the following eigenvalue problem

1 ) o
ATe, — —K—l(KzPl(s) — Py(5))®, = ;O on TP

Then the second term of (3.14) is equal to €*u;. Note also that ©y converges to 0 as
k — oo in weak L%(I'°)-sense. As for the third term of (3.14), which comes from the
- nonlocal part, we first note that when ¢ tends to zero,

Q 1.7 7

(3.15) - = —g-U(g)w(E) — ¢od(T) in H™'((—d,d))-sense,

where §(7) is a Dirac’s d-function at 0 and ¢y a positive constant. Let Kj be

= o () o= o (2)] (2)ee

In view of (3.15) and that (N¢)~! is a uniformly bounded operator mapping from H*(Q)
to H'()) with respect to €, we see that K} is uniformly bounded with respect to € and &,
and that [%,(Q(7/¢)/e)edr converges to the trace operator on I'® from H*(2) to H/2(I"°)
in operator norm sense. Therefore, by using the fact that ©, converges weakly to 0 as
k — oo, we see that for any given small ¢* > 0, there exists an ¢ and kp such that -

(3.16) K;<c for 0<e<Leg, k> k.
Substituting © = ©; and w = wy, into (3.14), we have

m, d 1
€ > A N . K¢ 3
‘)\0 Ce 7 vJ(v) KlKk—{—auk + O(e%),

where C'is a positive constant. Using (3.16) and taking & smaller, if necessary, we see

that
m, d

. 1
K, pred (v*) — 7
Therefore the right hand side of (3.5) becomes positive for sufficiently small € > 0, which
is greater or equal to O(e) quantity. In the rest of the proof, we show that the upper
bound of (3.5) is also order . Since the first and the third terms of the numerator of

(3.5) is nonpositive, it holds obviously that

K; > 0.

£,,02
X< sup ffi’ds
weHI(Q) Jow?dz

In view of the expansion (3.9) and the assumptions (A.2) and (A.4), f; has a positive
sign only in the e-neighborhood along the normal direction of I'°. Therefore we have the
estimate

X < Ce|T),
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where C is a positive constant and | - | denotes the area, which completes the proof.

Step 2 1 # 0 case

Rewriting (3.2) as
Mw = e2Méw + fiw + fez,
(3.17)
0=DMz+ g¢w + (g5 — 1)z,

“and noting that g5 — 7 < 0 for > 0 from (A.6), we see that all the computation in Step
1 is also valid for (3.17) with n > 0. Therefore we have the following lemma.

LEMMA 3.3. (3.17) has a positive eigenvalue A = Xé(n) for n > 0. Moreover, there
ezist positive constants Cy and Cy (Cy < C1) which are independent of n and € such that

(3.18) Coe < X¥(n) < Cie
holds for n > 0.

Proor oF THEOREM 3.1. It follows from Lemma 3.3 that A°(n) is a continuous
function of n for n > 0. Since A°(n) has lower and upper bounds like (3.18), we see that -
1 = X*(n) holds at least at one point 7 = 7* (0 < 1*) by the intermediate value theorem.
This n* is a requiered unstable eigenvalue for (3.1). ' - C
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4. Concluding remarks

As was mentioned in §1, Main Theorem strongly suggests that stable patterns becomes
very fine and/or complicated in the limit of ¢ | 0 in higher dimensional spaces. What
we discuss here is to find an appropriate scaling in space and time by which the resulting
singular limit dynamics could have stable patterns of finite size. Such patterns are usually
maintained by the balance of two competing forces as described below. In the course of
~ the following formal analysis, it turns out clear intuitively why the stable patterns of (1.1)
must become fine in the original scale.

Suppose there is a sharp transition layer (interface) I'" connecting two stable bulk
states, there are two forces that drives the interface: one is the bulk force causing the
translation of interface with certain speed W (v|r) which depends on the value of v at T,
the other is a geometric force, i.e., mean-curvature effect.

In one word, the characteristic size of stable patterns is determined by the balance
between the above two forces, and turns out to be proportional to €1/3. It should be noted
that the scale €'/3 coincides with the fastest growing wavelength of the planar front of
(1.1)(see [7]). In what follows we consider a smooth subdomain Q. (t) (C §2), and assume
that both u and v satisfy the Neumann boundary conditions on 8 (t) and the diameter
of Q.(t) shrinks to zero as ¢ | 0 with order £*. Here @ (0 < o < 1) is an unknown
exponent. Typically Q. (t) is a unit cell of some periodic structure in RY.

Applying a change of variable with unknown exponent o ‘ '

y== 0<a<l)
to (1.1) (D =1 for simplicity), we have
uy = 21N Ayu + f(u,v)

(4.1) - in Qe(t)
vy = e 2*Ayv + g(u,v)

where Ay stands for the Laplacian in y-variable and Q.(t) is the stretched domain of
Q. (t). It is more convenient to rewrite (4.1) in the following form.

e-1-ely, = g1y 1 =079 f(u,0),
(4.2)
g2y, = Ayv + e2g(u, v).

Suppose () (¢) has a smooth limit Q(t) as € | 0, and taking a limiting procedure similar
to [3], we obtain the following interfacial dynamics. :

g=(=a), = {W(v|p) — ek} N on T'(t),
(4.3)
eeuf = Ayv* +e2g(ht(v¥),v%) i (),

where I'(t) stands for the limiting configuration of the interface, x denotes the mean
curvature of I'(t), N is the unit normal vector at I' pointing from QF to Q= , W(:) is the
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travelling velocity of the first equation of (1.1) with € = 1 for a fixed v and typically a
monotone decreasing function of v, the domain Q(t) is divided into two parts Q=(t) by
I'(t) where u = h*(v) on each subdomain, respectively, and v is matched in C'-sense at
I'(¢). In view of the second equation of (4.3), v* may be expanded as

(4.4) v¥ =05 (y, 1) + 701 (¥,1) + O(*?).

Substituting (4.4) into (4.3), and equating like the powers of ¢, we easily see that vF = v*,
where v* is the equal area level of f(u,v) (see (A.3)) with W(v*) = 0. Expanding W (v|r)
“into Taylor series, the principal part of the next order of (4.3) becomes

=0~ = {22 W'(v")uy|r —°k}N  on D(t),
(4.5)

0 = Ay + g(h*(v*),v*) in QE(2).

The first term of the right-hand side of (4.5) is the bulk force and the second one is the
mean curvature effect. In order to make these two terms comparable, namely, in order
that the bulk force is balanced with the curvature effect, the exponent oz must be taken
as a = % Suppose a # %, then either the bulk force or the curvature effect becomes
- dominant as € | 0, hence there is no chance to have nontrivial stationary patterns of finite
size in such a e*rescaled domain. Employing this exponent-a = 1 3 and introducing a new

time scale 7 = ¢%/3¢, the rescaled 1nterfa01al dynamics is given by
Iy = {W'(@w*)v|r — k}N on I'(t),
0=

= Ayof + g(h*(v*),v*) in QF(t).

(4.6)

Suppose €, is unit cell of a periodic structure such as hexagonal lattice and that Q . Je?
has a definite limit € as & | 0, then the stationary problem of (4.6) :

0= {W'(v")n|r — k}N on T,
(4.7) 0 = Ayvi + g(h*(v*),v*) in QF.
vE are matched in C' -sense at T,

is expected to give a stable morphology of unit cell. We call (4.7) the morphology equations
of (1.1). Note that (4.7) is exactly the same as (2.19) in [6] where he used the matched
asymptotic method to obtain it. However little is known about the richness of the solutlon
set of (4.7) as well as their geometric profiles.

There is another observation due to [4] for a related system to (1.1) from a different point
of view, which claims that the global minimizer of the following functional must oscillate
rapidly with frequency being proportional to €'/3. The functional is given by

1 1
2 1 L ~1/2, 12
| (4.8) /Q{eIVul +5W(u)+s|( A+ )~ ul* Yz,
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where W (u) is a double-well potential like u?/4 — u2/2. This is related to our problem
in the following sense. Suppose the relaxation time of v is much shorter than u (i.e., the
quasi-static assumption for v is valid), then (1.1) can be replaced by

= eAu+ Hou) - bo, |
~ (z,t) € Q x (0,00),
(4'9) ¢ 0 = DAv +u - yv,
L%:o:%’l (z,) € 99 x (0, 00),

where fo(u) = u — u®. Solving the second equation with respect to v and substituting it
to the first equation, we have a scalar equation for u with nonlocal term

1 1
uy = eAu + Efo(u) - g(—A + D)7 u,
which is the L2-gradient equation of the functional (4.8). Suppose that Q = Q = (0,1)N
(N-dimensional cube) with periodic boundary conditions, we see by employing the argu-
ments of [4] that the global minimizer u. of (4.8) has to satisfy the following inequality:

[ IVH@)ldz

) (410) . 018—1/3 < < 026—1/3,

|ue|dz

where H(z) = [f W'/2(s)ds and C;,C, are positive constants independent of €. Roughly
speaking, the middle term of (4.10) counts the number. of interface, and hence, (4.10)
means that the global minimizer has to take a fine structure, although we do not know
whether wu, is spacially periodic or not. Finally it should be noted that the estimate (4.10) .
is valid only for the global minimizer and not for the other local minimizers.
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