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THE PRIMARY APPROXIMATION TO

THE COHOMOLOGY OF THE MODULI SPACE OF CURVES

AND COCYCLES FOR THE STABLE CHARACTERISTIC CLASSES

NARIYA KAWAZUMI and SHIGEYUKI MORITA

"~ Abstract

The purpose of the present note is to announce our recent results on the cohomology
of the moduli space of curves or equivalently (over the rationals) the cohomology of the
mapping class group of orientable surfaces.

Our main results are twofold. First we construct explicit group cocycles for any of
the known stable characteristic classes (the Mumford-Morita-Miller classes) of the moduli
spaces. Secondly, by combining our result with that of Hain in [H2|, we show that the
“continuous part” of the cohomology of the moduli space (see §5 for the definition) is
exactly equal to the subalgebra generated by the above stable classes. This second result
may be considered as a supporting evidence for the conjecture that the stable cohomology
of the moduli spaces would be equal to the polynomial algebra generated by the Mumford-
Morita-Miller classes.

The details of the results sketched in this note will appear elsewhere.

1. Statement of the main results

Let ¥4 be a closed oriented surface of genus g > 2 and let M be the mapping class group
of ¥y. Namely it is the group of isotopy classes of orientation preserving diffeomorphisms
of ¥y. Also let M, , and M, 1, respectively, be the mapping class group of X, fixing the
base point and an embedded disk D? C ¥, pointwise. M, acts on the Teichmiiller space
7, of &, properly discontinuously and the quotient space My, = 7,/ M, is the moduli
space of genus g curves. This induces a natural isomorphism H*(M,; Q) = H*(M,; Q)
and by virtue of a fundamental result of Harer [Hal, we can speak of the stable cohomology
algebra

lim H*(Mg;Q) & lim H*(M,; Q)
g—+oco g—©

of the moduli spaces or the mapping class groups, which can also be written as lim,_,oc H*(M,,1; Q)
We have similar stable cohomology algebra for the moduli space C; = 7y »/ M, . of genus
g curves with one distinguished point and M, ..

In the following, we formulate our results in the context of group cohomology of the
mapping class groups rather than the rational cohomology of the moduli spaces. In par-
ticular, we denote e; € H2(My;Z) (i = 1,2,...) for the Mumford-Morita-Miller classes
introduced in [Mu][Mol]. Also we write e € H*(M, ,;Z) for the Euler class of the central
extension M, ; — M, .. These characteristic classes induce the following commutative
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diagram

Qle,e1,€2,...] —— lim H*(M,.;Q)

g—co

I I

Q[ela €2,.. ] — gll)IEOH*(ng Q)
where the two horizontal homomorphisms are known to be injective by Miller [Mi] and
Morita [Mol], independently, for the lower one and by Morita [Mol] for the upper one. It
is a basic problem to determine whether these homomorphisms are surjective (and hence
bijective) or not.

We write simply H for the first integral homology group H;(X,;Z) of the surface X,.
The mapping class group M, acts on H naturally and if we fix a symplectic basis of H,
then we obtain the classical representation py : My — Sp(2¢; Z). By making use of natural
actions of the mapping class groups on the lower central series of the fundamental groups
of surfaces, in [Mo4][Mo5] the second author constructed a series of representations of the
mapping class groups. The first one is nothing but the classical representation py above
and the second one can be expressed as

M, . LN %A3H X Sp(2¢;Z)

! !

M, ——-p1—> 1A*H/H % Sp(2g; Z).

Here A% H denotes the third exterior power of H which admits a natural action of Sp(2¢; Z)
and H is considered as a submodule of ZA3H by the embedding H 5 z — z Awg € A’ H
where wy € A%H is the symplectic class. The representation p; is explicitly given by
p1(p) = (k(©), po(9)) (¢ € Mg ), where kM, — 2A%H is a crossed homomorphism
which extends Johnson’s homomorphism of the Torelli group 7 : Z, « — A®H given in [J1].

Now let Hom(A*(3A%H), Q)P be the set of all Sp(2¢;Z)-invariant homomorphisms
from the exterior power of the abelian group %A‘Q’H to Q. It is easy to see that any
element of this module can be naturally considered as cocycles of the semi-direct product
$A*H x Sp(2g; Z) (see §4) so that we obtain the following commutative diagram

Hom(A*(3A%H), Q)P A, Z¥(My4;Q) —> H*(M,,.; Q)

I I I

Hom(A*(AAH/H), Q) —— 2 (MyQ) —— H(My;Q).
21

Here and throughout this note we denote by C*(G; M) the normalized standard cochain
complex of a group G with coefficients in a G-module M and by Z*(G; M) the set of
cocycles in C*(G; M).

As was already shown in [Mo8], the images of the homomorphisms p} contain the Euler
class e and the characteristic classes e; for all ¢ > 1. Our main result is
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Theorem 1. The homomorphisms p} factor through the subalgebras generated by the
characteristic classes e, e;(i = 1,2,...). More precisely, we have the following commutative
diagram

o

Hom(A*(3A%H), Q) —— Qle,e1,¢,...] —— H*(M,;,.;Q)

[ I I

Hom(A*(3A°H/H), Q) —— Qles,er,...] —— H'(MyiQ)

so that the images of the homomorphisms p} are exactly equal to the subalgebras generated
by the Euler class and the Mumford-Morita-Miller classes. Moreover we have explicit
formulae for p3.

2. Th(_a_generalized Mumford-Morita-Miller classes
Let M, . be the fiber product M, , X am . M, . induced from the forgetful homomor-

phism M, , — M,. It is easy to see that the correspondence M, » 3 (¢,%) — (Y™, ) €
1Ly X M, . defines an isomorphism. As in [Mo3], let us consider a mapping

k‘o I—M_—g,* — H

defined by ko((,%)) = [p~1] € H. Since 1p¢~! is contained in the kernel of the forgetful
homomorphism M, , — M, which is naturally isomorphic to 7,%,, we may consider its
abelianization [t)¢~] € H. Then it is easy to see that ko satisfies the cocycle condition

ko ((01,%1)(02,%2)) = ko ((1,%1)) + (01)xko (2, ¥2)).

Hence it can be considered as an element of Zl(—./—\/l_g,*;H ). Let = : Wg,* — M, . and

T Mg,* — M, ., respectively, be the first (resp. the second) projections so that we have
the fibre square

ﬂgi* -——ﬂ-_-) ng*

Mg’* — Mg-

Now we write simply & for (7)*(e) € H 2(M.4;Z) and we consider the cohomology class
ek’ € H2i+f(ﬂg,*;AiH). We define

my ;= W!(éikoj) € H2i+j—2(Mg’*; A]H)

for i,7 > 0 and ¢ 4+ j > 2, where m : H¥(M, ;M) — HF"?(M, ,; M) is the Gysin
homomorphism (or the integral along the fibers of the map 7). We call them the generalized
Mumford-Morita-Miller classes. In fact, when j = 0 and ¢ > 1, we have m;11,0 = e;.
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On the mapping class group M, ; these classes are nothing but the cohomology classes
(—1)Ym; ; introduced by the first author in [Kal] (see also [Ka3)).

Recently Looijenga [L1] obtained a remarkable result that the rational stable cohomol-
ogy of M, with coefficients in any finite dimensional irreducible representation M of the
algebraic group Sp(2¢;Q) is isomorphic to a free module over the stable rational coho-
mology of M, together with a description of its free basis. His computation is based on
geometric considerations on the moduli orbifold of complex algebraic curves including, in
particular, a theorem in Hodge theory. Here it is noteworthy that his results uses only the
Harer stability theorem [Ha] with trivial coefficients.

Following Looijenga [L1], the first author has deduced the following result from the
Harer stability theorem with trivial coefficients: the stable integral cohomology of M, ,
with coefficients in H®" is a free module over the stable integral cohomology of M, 1,
and certain algebraic combinations of the (modified) generalized Mumford-Morita-Miller
classes can serve as its free basis [Ka2]. However geometric considerations including Hodge
theory do not fit this situation because the surface is not closed here. We use the Lyndon-
Hochschild-Serre spectral sequence for a pair of groups introduced in [Kal] instead.

Since it has been found out that the generalized Mumford-Morita-Miller classes can be
defined also on M, ,, all the results obtained in [Ka2] hold for the mapping class group
M, «. For example, we have

Theorem 2. For x < ¢g/2, we have
H* (M AH ©1Q) = H*(My,1:@) @ (@ Qms )
i,J

where the indices (i,7) run over the set {t > 0,5 > 1 and i+ j > 2}.

The above results show that we have obtained explicit basis for these free modules in
terms of the generalized Mumford-Morita-Miller classes defined above.

3. Description of the Sp-invariant cocycles
In this section, we describe the spaces of Sp-invariant alternating cocycles

Hom(A*(%A?’H), Q)°», Hom(A*(%A?*H/H), Q)°®
of the abelian groups %Ag‘H , %AQ’H /H. For any positive integer r, let Go, denote the set
of isomorphism classes of connected trivalent graphs with 2r vertices and let GJ, be the
subset of Gy, consisiting of those graphs without loops. Here a loop means an edge whose
two endpoints are attached to the same vertex. We set G (resp. G°) to be the disjoint
union of Gy, (resp. G3,) for all r > 1 .

G=[[%» 9°=]]%
r>1 ’ r>1

Now let
Qlar; I' € G]
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be the polynomial algebra over Q generated by ar for each element I" € G. We define the
degree of ar(I' € Ga,) to be equal to 2r. We also consider a similar polynomial algebra
Q[Br; I' € G°).

Let I' be a graph belonging to G3,. We put a vector of the module A3 H on each vertex
of I. Each edge indicates that two vectors on its terminal vertices should be contracted
by the intersection pairing u : H ® H — Z. This means that each homogeneous element
of degree 2r in Q[ar; ' € G] defines a way of contraction

ar: Azr(ASH) —Q

which is a linear combination of the restrictions of various iterated contractions on H®6"
~ induced from the intersection pairing yu. Thus we obtain a natural homomorphism

Qlar; I € 6] — Hom(A*(;A*H), Q)°".

A result of Weyl in the classical representation theory implies that the above homomor-
phism is surjective and is an isomorphism for degrees < 3g Also let ¢ : A3Hgq — A*Hq
be the homomorphism defined by ¢(¢§) = — 5gm 72=C¢ Awo (€ € A3H), where Hq = H® Q
and C : A*H — H is the contraction. It is easy to see that ¢ is Sp-equivariant and that
q(H) = 0 so that it induces a homomorphism A’Hq/Hq — A*Hq. Now we define a
homomorphism

Q[ﬂF; I'e go] — Hom(A*(%A:’H/H),Q)SP

by setting Br : A2"($A3H/H) — Q to be equal to the composition arog : A>"(A*Hq/Hq) = |
A?"(A3Hg) — Q. Weyl’s result again implies that this homomorphism is also surjective
and bijective in the same range as above. Moreover we can define a twisted inclusion
Q[3r; T € G°] — Qlar;I' € G] so that all the above constructions are compatible with
each other. In view of the above description, Theorem 1 follows from

Theorem 3. For any I' € G or I € G°, we have

p1*(ar) € Qle,ex,e2,...], p1*(Br) € Qles, ez,...]
which gives explicit group cocycles for any of the Mumford-Morita-Miller classes e;.
Similar result holds for M, ; and it is remarkably simple. Namely we have

Theorem 4. Let I' € Gy; be any element. Then the cocycle ar € Z* (M, 1; Q) represents
the i-th Mumford-Morita-Miller class e; (up to signs).

4. Outline of the proof of the main result

As was stated at the end of the previous section, Theorem 1 follows from Theorem 3.
Here we give an outline of the proof of Theorem 3.

In general, let @ be a group, N a @Q-module and M an N X @-module. For an r-cochain
c € CT(N; M) of N, we define its (natural) extension ¢ € C"(N x Q; M) by setting

E((nl? QI)a (le, Q2)7 vy (nra QT)) - C(Tll, QI (n2)a QIq2(n3)7 cer9qiqe - qT—l(nr))
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for n; € N,q; € Q. It turns out that the restriction of this extending operation to the
invariants C*(N; M)? 5 ¢~ ¢ € C*(N x Q; M) is a cochain map. Suppose that there is
given a homomorphism p : G — N x @ from a group G to the semi-direct product N x Q.
Then p can be expressed as p = (f,p). Here f : G — N is a 1-cocycle of G with values
in the G-module N where the action is given through the homomorphism p: G — Q. For
the trivial module Q, we have a linear map

p* : Hom(A*N, Q)% — Z*(N; Q)% — Z*(N % Q; Q) — Z*(G; Q).
The cocycle p*c € Z7(G; Q) induced from ¢ € Hom(A™N, Q)€ is explicitly given by

(p*c)(91,92,- - - 7@") = C(f(g1)a p(91)f(g2)---,p(g1- - gr—1)f(gr))
= (cuf")(91,92,--+,9r) (9i € G),

where f7 € Z"(G;A"N) means the r-th power of the l-cocycle f, with respect to the
Alexander-Whitney cup-product, and ¢, : C*(G;A"N) — C*(G; Q) denotes the cochain
map induced from the G-homomorphism ¢: A"N — Q. Consequently we obtain

[p*c] = ci[f]" € H'(G; Q).

Now we apply the above procedure to the homomorphism p; given in §1. As was stated
in §3, any connected trivalent graph I" € G, defines an element ar € Hom(Azr(%A:"H ), Q)°P I
Hence the cohomology class pfar € H2"(M, +; Q) is obtained from the cohomology class
k" ¢ H 2"( My x; A ($A%H)) by applying the contraction, associated with the graph I,
on the coefficients.

Besides the introduction of the generalized Mumford-Morita-Miller classes m; ; de-
scribed in §2, the key to the proof of Theorem 3 is

Lemma. mg3 = 7r;(k03) = —6k € H'(M,.; A3H).

In view of the above Lemma, it suffices to show that the generalized Mumford-Morita-
Miller classes of surface bundles m; ; are stable under any contractions of coefficients which
are derived from the intersection pairing y: H @ H — Z.

As was shown in {Mo2] Theorem 1.3, we have

pa(ko?) = 2v — m*e — Tre € HX (M, .; Z).

Here 7 (resp. 7): My« — M, . denotes the first (resp. the second) projection as before.
The class v is the “Poincaré dual” of the image of the diagonal map s : M, . — M, . [Mo2].
Thus any contraction of a single generalized Mumford-Morita-Miller class is expressed by
an algebraic combination of other such classes. On the other hand, let M; and M, be two
M, .-modules. Then we consider the contraction map C : (M1 ®H)Q(H®M;) — M;QM,
which is given by Rz Qy QR n — pu(z @ y)é ®n.



7

Contraction Formula. For any two elements u; € H*(M, .; M;) (i = 1,2), we have the
equality

Cu(m(uy @ ko)mi(ko @ ug)) = —m(uiuz) + s*(uq)m(uz) + m(ug)s*(usz) — em(uy )m(uz)
as an element of H*(M .; My ® M2).

This implies that any contraction of two generalized Mumford-Morita-Miller classes
can be expressed by an algebraic combination of other generalized Mumford-Morita-Miller
classes. Consequently the cohomology class pfar € H*(M, .; Q) is an algebraic combi-
nation of the classes m;y1 9 = ¢; and e.

- 5. Further implications of the main results
Here we mention further results which can be obtained by combining our main theorem
with Hain’s fundamental results in [H1][H2]. We have a natural filtration {M,1(k)}x>0
on the mapping class group M, 1, which is induced from the lower central series of the
fundamental group of &, \ D?. Namely M, (k) is defined to be the subgroup of M, ;
consisiting of elements which act on the (k—1)-st nilpotent quotient of =1 (Z,\ D?) trivially
(see [Mo4] [Mo5] for details). We can also consider another filtration {M§ ;(k)}x>0 where
My 1(1) = My 1(1) is the Torelli group Z,; and {Mg 1(k)}x>1 is the lower central series
of Zy,1 = My1(1). Johnson [J2] proved that M (k) C My,1(k) for all k. Now let us

consider the direct limits
Hi(My1;Q) = klin;o H*(My,l/Mg,l(k)3 Q)
:’(Mg,l; Q) = kl_iﬁ{.lo H*(Mg,l/M, ,1(k)3 Q)

of the cohomology of the successive quotients and, following Hain, we call them the contin-
uous cohomology of the mapping class group. We have a natural forgetful homomorphism
from the continuous cohomology of M, ; to the usual cohomology and its image may be
called the continuous part of H*(M, 1; Q). In these constructions, we may further pass to
the limit as ¢ — oo.

We have extensions

1— Iy /Mga(k) — Mg/ Mga(k) — Sp(2¢9;Z) — 1

where Z; 1/ Mg 1(k) turn out to be nilpotent groups. If we use here the affirmative solution
by Hain [H2], to a conjecture made by the second author in [Mo5], which claims that the
above extension splits over the rationals, then we can conclude that there exists a natural
isomorphism

lim HY(My3;Q) 2 lim (H*(Sp(2632);Q) ® lim H*(T,1/Mya(k); Q).

Borel [B1][B2] proved lim, ... H*(Sp(2¢;Z); Q) = Q[c1,¢3,...]. Moreover, in view of a
result of [Mu][Mol][Mi], we may choose ¢;—; so that it pulls back to es;—; under the
natural homomorphism M, ; — Sp(2¢;Z). On the other hand, Theorem 4 defines an
element b; € limg_, o Hzi(Ig,l [ Mg 1(k); Q)P for all i such that b; pulls back to e; on the
mapping class group. With these terminologies, we have
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Theorem 5. The stable continuous cohomology limy_,.c H¥(M,1;Q) of M, contains
the polynomial algebra Qci,cs,...,b1,b2,...]. It follows that the natural homomorphism

Poo gl_i_{{.loH:(My,ﬁ Q) — gli_{{.loH*(MgJ; Q)

from the continuous cohomology to the usual cohomology has a big kernel because it
contains the ideal of this polynomial algebra generated by the elements b; — c; for all odd
i

It seems to be reasonable to conjecture that the stable continuous cohomology of M, 1,
with respect to the filtration { M, 1(k)} x>0, is isomorphic to the polynomial algebra given
above. This theorem also shows that, for all odd i, the two canonical cocycles for e;,
namely one coming from Sp(2¢;Z) and the other expressed as an Sp-invariant cocycle on
the Torelli group, are never cohomologous to each other at any finite level My 1/ M, 1(k).
This fact is closely related to the secondary characteristic classes of surface bundles which
were introduced by the second author in [Mo7].

Now in a recent paper [H2], Hain proved the following remarkable result. Namely if we
fix a complex structure on the reference topological surface, then it induces a mixed Hodge
structure (MHS for short) on limg—.oo H*(Zy,1/Mg1(k); Q)°P and moreover the natural
homomorphism

dm B (Ty1 /Mo (k); QFF — H*(My1;Q)

is a MHS morphism. It follows that, the induced homomorphism over C between their
associated gradeds preserves the gradings and also that limg—co H*(Zy1/ M, 1(k); C)SP is
canonically isomorphic to the continuous cohomology of the graded Lie algebra

@ Mg,l(k)/Mg,l(k + 1)-
k>0

This graded Lie algebra can be described as follows. Let £ = @32, L be the free graded
Lie algebra generated by H and let H = @32, Hi be the graded Lie algebra consisting of
derivations of £ which kill the symplectic class wy € A2H = L. H, is nothing but the Lie
algebra.of Sp(2¢; Q) and Hy for k£ > 0 can be explicitly written as

Hk = Ker(H ® £k+1 — £k+2)

where the mapping H ® L4+1 — Li+2 is given by the bracket operation of the Lie algebra
L (see [Mob5] for details). Now, for all k > 1, we have injective homomorphisms

T - Mg,l(k)/Mg’l(k + 1) — Hp

which are called Johnson homomorphisms (see [J2][Mo5] for details). The direct sum
Im 7 = @4 Im 7 can be naturally considered as a Lie subalgebra of Hy = @r>oHi. Hain’s
result above can now be stated as an isomorphism

lim H*(Z,,1/Mga(k); C)%® = H (Imr; C)°
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where the right hand side denotes the Sp-invariant part of the continuous cohomology of
the Lie algebra Im 7.

Now Im 7 is contained in H4 by the definition and it is known that Imm = H; =
Hence we have a series of homomorphisms each of which preserves the weight gradings

H*(A*H; C)*® — H}(H4; C)*P — H(Im; C)*® — H*(M,;;C).

Kontsevich [Ko] described lim,_,, H*(H4)5P in terms of the cohomology of the outer
automorphim groups Out F}, of free groups F;, of rank n > 1. In particular he constructed
homomorphisms

Hi(Out Fp; Q) — 11m Hn—2- k(Mg,Q)

~ for all k and n > 1 and asked the geometrlcal or “physical” meaning of these maps. Looi-
jenga [L2] (see also [HL]) informed us the following argument which answers this question
completely. He first applies the purity theorem of Pikaart [P], which says that the MHS
of H¥(M,; C) is pure of weight k for 2k + 1 < g, to conclude that the above map is the
zero-map for all £ > 0. This is because the weight of any element of Hy(Out Fy; Q) C
limy_, oo H2"~2%(H,; Q) is strictly bigger than the degree 2n —2 — k. Then our main the-
orem, Whlch determines the homomorphism H*(A3H; Q)P — H*(M,1;Q) completely,
implies that it sends 1 € Ho(Out F,,; Q) to the class e,—1 € H?""2(M,;Q). Thus the
homology of various Out F,, does not contribute to the stable cohomology of the mapping
class group except for the degree zero parts where they correspond to the stable classes e;.
The results of [Mo6] and [N] already show that the quotient H4/Im 7 is very big. In
particular, the continuous cohomology of the Lie algebra Im 7 should be much closer to
the cohomology of the moduli space than that of Hy which was described by Kontsevich.
Now if we combine our main theorem with Hain’s result [H2] together with Looijenga’s
argument as above, then we can conclude

Theorem 6. The continuous part of the stable cohomology of the mapping class group,
namely the image of the homomorphism p : img_.oo HY(Mg,1;Q) — limy_ooc H*(M,1;Q)
is exactly equal to the subalgebra generated by the Mumford-Morita-Miller classes.

In the above discussions, we can also consider another filtration {M] ;(k)}; on the
mapping class group which is induced from the lower central series of the Torelli group.
Using another fundamental result of Hain in [H1], we can obtain similar statements to
Theorem 5 and Theorem 6 for the continuous cohomology associated with this filtration.
However here we omit the details.
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