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FIRST VARIATION OF HOLOMORPHIC
FORMS AND SOME APPLICATIONS

BAHMAN KHANEDANI AND TATSUQ Suwa

ABSTRACT. We study various local invariants associated with a singular holomorphic
foliation on a complex surface admitting a possibly singular invariant curve. We
establish the relation among them and prove/reprove formulas relating the total sum
of these invariants to some global invariants of the foliation and the invariant curve.

For a holomorphic vector field v on a complex surface leaving a non-singular
curve C invariant, C. Camacho and P. Sad [CS] introduced the index of v relative
to C and proved an index formula, which says that the total sum of the indices is
equal to the Chern number of the normal bundle of C. After the work of a number
of authors, the theory has been generalized to the case of singular invariant curves
in [S], and further, to the higher dimensional case in [LS]. In [S], the index formula
was proved by taking desingularization of the curve and reducing to the case of non-
singular invariant curves, while the proof in [LS] involves the Chern-Weil theory,
the vanishing theorem and so forth. In this article, we first give a direct proof of the
index theorem for a singular foliation F on a complex surface leaving a (possibly
singular) compact curve C invariant by explicitly computing the Chern class of the
normal bundle of C (Theorem 1.2).

We then consider exponent forms” for holomorphic 1-forms defining the
foliation F and define the “variation” of F relative to C at a singular point as
the residue of an exponent form along the link of the singularity in C. This turns
out to be a localized class of the (co)normal bundle of the foliation (Theorem 2.2).
We extend the notion of the “multiplicity” of a vector field v along a (locally)
irreducible invariant curve [CLS] to the case of possibly reducible curves so that it
coincides with the “Schwartz index” [SS] of the restriction of v to the curve. After
establishing the relation among these invariants in Lemma 2.3, we give a formula -
for the total sum of the (Schwartz) indices in Theorem 2.6, which is the “Poincaré-
Hopf theorem” for a singular foliation, with poss1bly non-trivial tangent bundle, on
a singular curve.
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In the final section, we discuss the geometric meaning of the variation and
give an alternative proof of the fact that the index of F relative to C represents the
first order term of the holonomy along the link of the singularity in C, which was
shown earlier in [S].

The first named author would like to thank S. Shahshahani for encourage-
ment and advice and the Institute for Studies in Theoretical Physics and Mathe-
matics for financial support. The second named author would also like to thank S.
Shahshahani for useful conversations.

1. The index formula

We generally use the notation and the definitions in [S]. First we consider
everything in a neighborhood of the origin 0 in C? = {(z,y)}. Let v be a germ of
holomorphic vector field at 0 with (at most) an isolated singularity at 0 and w a
germ of holomorphic 1-form with an isolated singularity at 0 which annihilates v.
More explicitly, if v = aga-x- + ba% with a and b germs of holomorphic functions at 0,
we may set w = bdr — ady. Also, let C' be a germ of reduced curve with defining
function f. We quote Lemma (1.1) in [S]:

Lemma 1.1. The vector field v leaves C invariant if and only if there exist germs
of holomorphic functions g and h and a germ of holomorphic 1-form n such that h
and f are relatively prime and that

(1.1) gw = hdf + fn.

The lemma is proved in [Li] when f is irreducible. Note that if w is non-
singular at 0, C is also non-singular at 0 and, by a suitable choice of f, we may set
n = 0. Denoting by F the foliation defined by v (or w), we define the index of F
relative to C at 0 by

V=1 [n
Indo(F;C) = o | W
where L denotes the link of the singularity 0 in C with natural orientation. When
f is irreducible, this coincides with the one defined in [Li]. See [S] Proposition (1.4)
for their relation in the general case.

Now let X be a (non-singular) complex surface. Recall that a (co)dimension
one (singular) foliation F on X is defined by a system {(Ux,wx,¢au)}, where
(i) {Ux} is an open covering of X,
(ii) for each A, w) is a (not identically zero) holomorphic 1-form on Uy and
(iii) for each pair (A, 1), ¢, is a non-vanishing holomorphic function on Uy N U,
with w, = PApW. .

The singular set S(F) of F is defined to be the union of the singular sets of
the wy’s. We assume that S(F) consists of isolated points hereafter.

2



Theorem 1.2. For a (co)dimension one foliation F on X and a compact reduced
curve C' in X which is invariant by F, we have

Y Ind,(F;C)=C-C,
PES

where S denotes the set of singular points of F on C and C - C the self-intersection
number of C.

This is proved in [S] Theorem (2.1) and the higher dimensional case is in
[LS]. Here we give a simple direct proof.

Proof. We let S = {p1,...,p,} and take a system {(Ux,wa,®r)} as above so that
it further satisfies: _ :
(iv) C is defined by fy on Uy, ‘
(v) for each p;, there is only one Uy, with p; € Uy, and Uy, N Uy, =9,ifi # 3.

If we set fy, = % on UxNU,, then the cocycle {fi,} defines the line bundle
Lc on X associated with the divisor C. We compute ¢1(L¢) ~ [C] = [;eci(Le) in
two ways. First, since c¢;(Lc¢) is the Poincaré dual to the homology class [C], we see
that it is equal to the self-intersection number C - C. Next we compute it directly.
If we let {px} be a partition of unity subordinate to {U,}, we have

a(Le)lu, = iz_:_l Z d(pu dlog fun).
"

On each U,, we have a decomposition

(1.1,) g wx = hadfy + fama

as (1.1). We may assume that ) = 0 for A # );. Evaluation of the both sides of
the identity (1.1,) at each point of Uy N C gives .

(1.2) gawx = hy dfx.
Also, from dgx A wy 4 gadwy = (dhy — nx) A dfa + fadna and (1.2), we have, at
each point of Uy N C, -

(1.33) dwy, = (—l’i+dlog ﬁ) Awy.
_ ko 9r

From (1.2)) and (1.2,), we have, in UxNU, N C,

h ha
1.4 il Oxny—.
( ) v 9u f)‘” Aw gx



Also, from (1.3)) and (1.3,), we have, in UxN U, N C,

: ™ hy hA
1.5 A dlo = £ 1+ dlog =% _ d1
(1.5) B =3~ h 8 g -

Hence from (1.4) and (1.5), we have, at each point of Uy N U, N C,

MM
(1.6) dlog fux = T

Let C' = C — Sing(C) be the set of regular points of C' (note that Sing(C) C S).
Then, from (1.6), we have

i

A u

Since 1y = 0 for A # );, we have

/C a(Lo) = / cl(LC)_Z /U L ato)

We denote by Dy, a disk in Uy, with center p; such that p), = 1 on D,,. Note that
0Dy, N C = Ly,, the link of C at p;. Then we have

v-1 M
a(leg)=——— dpx; N —
/l.f)‘g.ﬂC' 1( ) 27 U;\‘.nC' P hAi
V-1
= —— dpx; N —— LS
2T (UA‘.—D,\‘.)nC' ) hAt
21 J(Uy,-Dy,)nC “ha;
_v-1 oY
2 Ji,, i hn
V-1 X
= — — =Ind,.(F;C). O
o LA" hA._ el Po(fy C)

2. Exponent forms

Suppose F is a germ of foliation at 0 in C? with defining 1-form w (or vector
field v) and C a germ of reduced curve with defining function f which is invariant
by F. In a neighborhood of a non-singular point, there exists a holomorphic 1-form

4



a such that dw = a Aw. If @' is another such 1-form, we have o' = « on every leaf.
Thus in a neighborhood of 0 (away from 0) there exists a holomophic multi-valued
1-form a such that dw = a A w and that its restriction to each leaf is single-valued.
- We call a an ezponent form for w. We consider the residue of a along C;

: 1
R = ,
eso(alc) /T /L o
where L is the link of 0 in C as before.

Lemma 2.1. The residue Reso(a|¢) is an invariant of the foliation.

Proof. Suppose w' = pw with ¢ a non-vanishing holomorphic function. We have
dw' =dp Aw+pdw =dp Aw+ paAw = (a+dlogp) Aw'.

Since ¢ is non-vanishing, we obtain f;(a +dlogy) = [, a. O

In view of the above lemma, we set
Varo(F; C) = Reso(alc)

and call it the variation of F relative to C at 0. Note that if C = Ui_,C; is the
irreducible decomposition of C at 0, F leaves each component C; invariant and we
have

(2.1) Varo(F;C) = ZVaro(f; Ci).
=1
Now we go back to the global situation as in Theorem 1.2 and suppose the
foliation F is defined on a complex surface X by a system {(Uy,wx, ¢an)}. Let T*X

denote the (holomorphic) cotangent bundle of X and F the line bundle defined by
the cocycle {¢x,}. Then we have a bundle map on X;

F 2 T*X,

which is injective on X — S(F). We call F the conormal bundle of the foliation F.

Theorem 2.2. In the above situation, if C' is a compact curve in X invariant by
F, we have

) Vary(F;C) = —cs(F) ~ [C].
PES

Proof. Take a system {(Ux,wn,pan)} defining F so that it satiesfies also (iv) and
(v) in the proof of Theorem 1.5. Let a) be an exponent form for wy. For A # ),
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we may set a) = 0, since we may choose a closed form as w). As in Theorem 1.2,
we have :

V=1
a(Flo, = 55— Y d(pu dlogpp).
®

InUxnU,NC, we have
dlogpr, = ay —a,

and the rest is done similé,rly as for Theorem 1.2. O

Let C be a germ of reduced curve at 0 in C? invariant by a foliation F
defined by v. If C is irreducible, according to [CLS], one defines the multiplicity
of v along C' at 0 to be the topological index of v|c at 0, where C is seen as
being homeomorphic to a two dimensional disk. Since it is also an invariant of the
foliation F, we denote it by Indo(F¢). In general, let C = UT_, C; be the irreducible
decomposition of C at 0. We define Indy(F¢) by

(22) Indo(]'-c) = Er: Indo(j:ci) - 7’"+ 1

i=1

and call it the index of the restriction of F to C at 0. Note that it coincides with
the “Schwartz index” of v|¢ at 0 in the sense of [SS]. Recall that the Milnor number

po(C) of C at 0is given by [g—f, %5] o the intersection number of the curves defined
by %5 and %-yﬁ at 0.
Lemma 2.3. We have

Indo(fc) = Va,l'o(]'_, C) - Indo(f; C) -+ ,lLo(C).

Proof. First we prove the lemma when C is irreducible. If we take a, decomposition
as in Lemma 1.1, at each point of C we have (see (1.3))

_(_n h
dw = ( 7 +d10gg> Aw.
Hence we get
(23) Varo(}-§ C) = IndO(]:; C) + [h,f]O - [g, f]O

Now, by a suitable choice of coordinates (z,y) of C%, we may set ¢ = %5 and
h = —a, when we write v = “a—az + b% (see the proof of Lemma (1.1) in [S]). By

[CLS] Proposition 3, Indg(F¢) is computed as follows. Let 7 : (D,0) — (C,0) be
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a Puiseux parametrization. Then the vector field V in D = {t} with 7,V = v|¢c is
given by V = %%, z = %. Thus

(2.4) Indo(Fo) = [h, flo = [z, flo + 1.
On the other hand, we know from [Li] (8) that

(2.5) 4o(C) = [-ggf] [ flt1

and the formula follows from (2.3), (2.4) and (2.5). Next, in general, if C = UI_,C;
is the irreducible decomposition of C, we have ([S] (1.11))

Indo(F; C) — po(C) = Z(Indo(f; Ci) — puo(Cy)) +r—1.

i=1

Hence the lemma follows from the formula for the irreducible case together with

(2.1) and (2.2). O

Remark 2.4. Let F° be the foliation defined by df. Then, since we may set a =
0 we have Varo(F°;C) = 0. Also, since we may set n = 0 in (1.1), we have
Indo(F°; C) = 0 and Indo(F°; Ci) = — 3°,.:(Ci - C)o ([S] Proposition (1.4). Note
that Indo(F°; C, C;) = 0 in the notation used there). Thus, by Lemma, 2.3, we have

Indo(F&) = o(C) and Inde(FE,) = no(Ci) + ) (Ci - Cj)o.
it

The first equality also follows from the fact that the vector field defining F° is
tangent to the nearby Milnor fibers of f and has no singularities on the fiber ([SS]
Proposition 5.3). The second equality shows that Indo(Fg, ) coincides with ¢o(C, C;)
in [S] (1.8). If we set ¢o(C) = Y ._, co(C, C;), it is related to the Milnor number by
co(C) = po(C) +r — 1 ([S] (1.9)).

The above remark may be used to prove the “adjunction formula” as follows,
although we should note that the argument is essentially equivalent to the one in
[K]. Let C be a compact (reduced) curve in a surface X. We take a covering {Ux}
of X by coordinate neighborhoods with coordinates (z,yx) so that C is defined by
fa=0inU,. Let F3 be the foliation on Uy defined by dfx. Then it is defined by the
vector field vy = %1%-52; — -g%a—‘Z—;. By computation, we see that, in UxNU, NC,

Uy = fku";)‘uvua
where £, = det -g%’;:—z‘;—;, the Jacobian of (:c”,yu) with respect to (zx,yx). Thus, -
if we let 7 : C — C C X be a resolution of C, the collection {v)|c} determines
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a section of the line bundle 7*(Le ® Kx) ® ?C’ , where K x denotes the canonical
bundle of X and T'C the tangent bundle of C. Hence from the second equality in
Remark 2.4, we have the adjunction formula

X(€)=-Kx-C-C-C+) ¢(C),
PES

where x(C) denotes the Euler number of ¢ and K x - C = a(Kx) ~ [C]. Since
the Euler number x(C) of C is given by x(C) = x(C) - ZpGS(rP — 1) with r, the
number of local branches of C at p, we have

(2.6) X(C)=-Kx-C-C-C+> p0),
. . . . _pES

which is a special case of the formula in [SS] Theorem 5.5.
From Theorem 1.2 and (2.6), we have the following formula, Whlch is a
modified form of the one in [S] Theorem (2.5). '

Theorem 2.5. Let X, F and C be as in Theorem 1.2. We have

Z(Indp(f§ C) — up(C)) = —Kx - C — x(0).
PES

Now we recall that a foliation F on a complex surface X is also defined by
a system {(Ux,vx,€x,)}, where
(i) {Ux} is an open covering of X,

(i)' for each A, vy is a (not identically zero) holomorphic vector field on Uy and
(iii)’ for each pair (A,p), €, is a non-vanishing holomorphic function on Uy N U #
with v, = ex,va.

A system {(Ux,wa,papu)} of 1-forms and a system {(Ux,va,ex,)} of vector
fields define the same foliation F if, for each A, wy and v have isolated singularities
and they annihilate each other. Suppose this is the case. Then the singular set
S(F) of F coincides with the union of the singular sets of the vy’s. Let TX denote
the tangent bundle of X and E the line bundle defined by the the cocycle {e,,}.
Then we have a bundle map on X;

E > TX,

which is injective on X — S(F). We call E the tangent bundle of the foliation F.
By a straightforward computation using the explicit relation between the forms and
the vector fields defining F, we have

F=EQ®Kx.
Therefore, from Lemma 2.3 and Theorems 2.2 and 2.5, we have
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Theorem 2.6. For a foliation F on a complex surface X leaving a compact curve
C invariant, we have

> Indo(Fo) = X(C) — e1(E) ~ [C].

pES

In particular, if F is defined by a global vector field, then, since E becomes trivial,

> Indo(Fc) = x(C).

pPES

The second formula above is a special case of the Poincaré-Hopf theorem
for singular varieties ([SS] Theorem 5.4). Also, when C is non-singular, the right
hand side of the first formula above is equal to the Chern number of the normal
sheaf of the foliation induced from F on C (cf. [BB]).

We finish this section by giving a remark on the topological invariance of
some invariants associated with holomorphic foliations. Recall that the Milnor
number is a topological invariant [Lé] and that the local intersection number of two
analytic curves is also a topological invariant [GH]. We say that two foliations are
topologically equivalent if there is a homeomorphism between the ambient spaces
preserving the singular sets and the leaves. Let F be a foliation on a surface leaving
a curve C invariant. If C is irreducible at a point p, it is shown that Ind,(F¢)
is a topological invariant of holomorphic foliations [CLS]. Hence, by (2.2), it is a
topological invariant in general. Thus, from Theorems 1.2, 2.2 and 2.6 and Lemma
2.3, we have;

Proposition 2.7. For a foliation F on a surface X admitting a compact invariant
curve C, ¢;(F) ~ [C] and ¢,(E) ~ [C] are topological invariants.

Note that, in [GSV], it is already shown that c;(E) is a topological invariant
of a dimension one foliation.

3. Relation with holonomy

Let F be a foliation on a complex surface and v a loop in a leaf of F.
Suppose for the moment that F is defined by a closed multi-valued 1-form w in a
neighborhood of 7. Fixing a point py on 4, let wy be the restriction of a branch of
w to a neighborhood of py and let w; be the branch obtained after one revolution
around 7. Then there exists a holomorphic function ¢ defined in a neighborhood of
o so that pw; = wy. Recall that the multiplier of F relative to -y is the derivative
of the holonomy mapping at its basepoint.

Lemma 3.1. In the above situation, the multiplier is given by ¢ (po).
Proof. Let p be a point in 4. Since w is assumed to be closed, there is a bi-

holomorphic map (,, by the Frobenius theorem (or simply by ‘straightening out’),
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from an open neighborhood U, of p onto a neighborhood of 0 in C? = {(z,y)},
¢p(p) = 0, such that (pdy = w|y,. By compactness of v, there is a finite set of
charts {(U;, (i)}, 1 =0,--- ,n, with pp € Up N U,, U; N Uiy1 # 9, (§dy = wy, and
(¢dy equal to the restriction of the branch of w to U; obtained by analytic continua-
tion along . We have (}dy = C:‘+1 dy in the common domain, from which we deduce
that the second coordinate of (¢i+10¢;)(z,y) is y. Now (Fdy = wo = pwr = e(rdy,
and writing (o 0 {71 = (2',y'), we see that @ o (7! is equal to %%I and %%l =0. O

Suppose F is defined by a holomorphic 1-form @ in a neighborhood of .

Then one can write dw = a Aw, where o is a multi-valued 1-form in a neighborhood
of 7, and the restriction of a to every leaf is single-valued.

Theorem 3.2. The multiplier of F relative to v is given by exp ( f,y a) .

Proof. We have dw = a A w as above. Let T be a local transversal at a point pg
of 7. Denote by h the backward projection on T' along the leaves, defined in a
neighborhood of «. For p in a neighborhood of 7, define:

9(p) = P (— /h :,,) a) ;

where integration is performed along a curve from h(p) to p on the leaf going
through p which defines the holonomy. Since any two such curves are homotopic,
the integration is well-defined. We have

P

d(gw)=dg/\w+gdw=—-g-d</’; a)/\w+ga/\w.

(»)

Now we take a biholomorphic map ¢ from a neighborhood of p, onto a
neighborhood of 0 in C?> = {(z,y)} such that (*dy defines the foliation F in a
neighborhood of py. Writing a = ¢*(kydz + kody), we have, for p in a neighborhood

of po, f,‘:’(p) a= foz(p) ki1dz so that:

P . z(p) e z(P) Ok,
d(/}z(p)a>—<d(/o kldm)—C (kldm+</0 aydm)dy).

Therefore using analytic continuation we obtain:

P
d(/ oz)/\w=a/\w.
h(p)

d(gw) = —ga Aw+ga Aw = 0.

Then

10



Applying Lemma 3.1 to the closed multi-valued 1-form gw, we obtain that the
multiplier is g(po)~" = exp(/. ., @), as desired. [

Now let F be a germ of foliation at 0 in C? and C a germ of reduced and
irreducible curve which is invariant by F. Since Indo(F¢) and po(C) are integers,
from Lemma 2.3 we obtain the following result, which is proved in [S] Proposition
(3.1) by different approach.

Corollary 3.3. The quantity exp (27r\/ —1 Indo(F, C)) gives the multiplier of F
relative to the link of the singularity 0 in C.

Note: After the preparation of the manuscript, the recent preprint of M. Brunella
[B] was brought to our attention. Theorem 2.2 above together with Theorem 1.2 and
Lemma 2.3 implies the first formula in [B] Lemme 3 and Theorem 2.6 is equivalent
to the second formula there. We note that the formulas in [B] are given under the
assumption that the ambient surface be compact, which is not necessary in this
article.
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