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PREFACE

This volume, together with the last, is intended as the proceedings of
expository lectures in Special Months “Nonlinear Dispersive Equations. ”

Nonlinear dispersive equations, such as nonlinear Schrodinger equations,
KdV equation, and Benjamin-Ono equation, are of mathematical and physi-
cal importance. Expository courses in September 2004 are intended to cover
a broad spectrum of the issues, especially the Cauchy problem and related
topics.

We wish to express our sincere thanks to

- J. Bona, H. Koch, F. Planchon, P. Raphaél, and N. Tzvetkov for excellent

lectures.

- M. Ikawa and A. Ogino for efficient arrangements.

T. Ozawa and Y. Tsutsumi
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ILL-POSEDNESS ISSUES FOR NONLINEAR DISPERSIVE
EQUATIONS

N. TZVETKOV

ABSTRACT. These notes are devoted to the notion of well-posedness of the Cauchy
problem for nonlinear dispersive equations. We present recent methods for prov-
ing ill-posedness type results for dispersive PDE’s. The common feature in the
analysis is that the proof of such results requires the construction of high fre-
quency approximate solutions on small time intervals (possibly depending on the
frequency). The classical notion of well-posedness, going back to Hadamard, re-
quires the existence, the uniqueness and the continuity of the flow map on the
spaces where the existence is established. It turns out that in many cases a
stronger form of well-posedness holds. Namely, the flow map enjoys better con-
tinuity properties as for example being Lipschitz continuous on bounded sets. In
such a situation we say that the corresponding problem is semi-linearly well-posed
in the corresponding functional setting. Our main message is that for dispersive
PDE’s, contrary to the case of hyperbolic PDE’s, the verification whether an
equation in hand is semi-linearly well-posed in a given functional framework re-
quires a considerable care. Our examples are KdV type equations and non linear
Schrédinger equations.

1. INTRODUCTION

We will discuss here the Cauchy problem for nonlinear PDE’s which can be written
in the form

(1.1) u(t) = Lu(t) + F(u(t)), u(0)= uo,

where u(t), t € Ris a function defined on a Riemannian manifold (M, ¢g) with values
either in Ror in C. In (1.1), L is a linear map acting as an isometry on the Sobolev
spaces H*(M) while F'(u(t)) represents the nonlinear interaction. The initial data
ug is supposed to belong to H*(M). This choice is natural because, for the models
we are interested in, the equation (1.1) enjoys conservation laws providing a uniform

control on (low regularity) Sobolev norms of the solutions of (1.1). An important
aspect of the analysis of the Cauchy problem (1.1) is to understand the impact of
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2 N. TZVETKOV

the interplay between L and F on the behavior on the solutions of (1.1). Here we
will study this issue only for small times t. As far as the Sobolev spaces H*(M)
are chosen for phase spaces, the local in time behavior of the solutions is naturally
linked to the notion of well-posedness of the Cauchy problem (1.1) that we recall
now.

Definition 1.1. We say that the Cauchy problem (1.1) is well-posed for data in
H?* (M), if for every bounded set B of H*(M) there exist T > 0 and a Banach space
X continuously embedded in C([-T,T); H*(M)) such that if ug € B then there
exists a unique solution w of (1.1) on [=T,T] in the class Xr. Moreover :

1. The flow map ug — u is continuous from B to C([-T,T]; H*(M)).
2. Higher smoothness is propagated by the flow. More precisely, if ug € H° (M),
o> s thenue C([-T,T; H°(M)).

Let us notice that in the above definition, the time of existence T" depends only
on the bounded set B, i.e. on an H® bound of the initial data. There are several
important examples of the so called critical problems when the time of existence
existence is depending in a more complicated way on the initial data. It is worth
noticing that “usually”, if a problem in hand is critical for data in H? then it is
well-posed in the sense of Definition 1.1 for data in H?, ¢ > s. It is also “usual”
that the well-posedness in H*, implies the well-posedness in H*', s’ > s.

A very common way to prove the well-posedness of (1.1) is to solve by a con-
traction principle an equivalent integral equation, exactly as we do in the proof of
the Cauchy-Lipschitz theorem in the theory of the ordinary differential equations.
More precisely, the problem (1.1) can be rewritten, at least formally, as an integral
equation (Duhamel formula)

(1.2) u(t) = exp(tL)ug + /075 exp((t — t)L)F(u(t))dt’".

The well-posedness of (1.1) is reduced to finding a functional spaces X, 7 > 0
continuously embedded in C'([—7,7]; H*(M)) such that for every bounded set B of
H? (M) there exists T > 0 such that for every ug € B the right hand-side of (1.2) is
a contraction in a suitable ball of A7. In some cases, the space C'([—7,7]; H*(M))
can give the contraction properties. However, in these cases the assumption on s is
quite restrictive. In order to include a larger possible values of s, the whole difficulty
in making work the above approach is to find functional spaces X, 7 > 0 which
are adapted in the best way to the equation in hand. This problematic has now
a long history and remains and active research field. Once the existence and the
uniqueness in A7 is established, it is natural to look for a larger uniqueness class,
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for instance one may ask whether the uniqueness holds in C'([-1,17; H*(M)) (cf.
e.g. [42]).

It turns out that if we are able to show the well-posedness of (1.1) by the above
procedure then the flow map enjoys better continuity properties, for example it is
Lipschitz continuous on B, and, in the case of polynomial nonlinearities it is a C'*
map from H*(M) to C([-1,T]; H*(M)). These properties seem to be related to
what we call a semi-linearly well-posed problem. The following definition seems to
be natural (cf. e.g. [5, 6, 12] ...).

Definition 1.2. We say that the Cauchy problem (1.1) is semi-linearly well-posed
for data in H*(M), if it is well-posed in the sense of Definition 1.1, and, in addition
the flow map ug — u is uniformly continuous from B to C([-T,T]; H*(M)).

The notion of well-posedness of Definition 1.1 is invariant under changes of vari-
ables in the phase space which are continuous on H®. Similarly the notion of semi-
linear well-posedness is invariant under uniformly continuous changes of variables.
Therefore, it is not excluded that, by a change of variables (gauge transform)

u(t) — v(t)

in (1.1) which is continuous on H? but not uniformly continuous, the equation for
v(t) to be semi-linearly well-posed even if the equation for u(t) is not semi-linearly
well-posed.

Another and quite different way to solve (1.1) is to apply a compactness argument.
Roughly speaking, it means to solve the equation by passing to a (weak) limit in a
family of approximate solutions. Usually this method can provide the well-posedness
of (1.1), but it does not give directly the semi-linear well-posedness as the contraction
method does. A natural question is whether there exists PDE’s which are well-posed
but not semi-linearly well-posed in H*(M). Probably the simplest example of such
a PDE is the Burgers equation

(1.3) U + uuy =0,

posed on H*(R) for real valued w (if u is not real valued the situation is quite
different, as it is shown in [27]). It turns out that (1.3) is well-posed in H*(R),
s > 3/2 but not semi-linearly well-posed in this same space. Let us explain how we
prove the well-posedness of (1.3) for data in H*(R), s > 3/2. Let u be a smooth
solution of (1.3) which belong to all H?, ¢ € R. Our purpose is to establish a priori
bounds for u. Denote by D? the Fourier multiplier with symbol (1 + 52)5/2, ie.

Deu(€) = (1 +€3)*%a(¢)
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where the Fourier transform is defined as follows

u(é) = / e u(z)de .
Notice that ||u||gs = |[D®ul|f2. Applying D?® to (1.3), multiplying it with D*u and
an integration by parts gives,

L utt, M = |t aiea)ae =2 [ (0% ) o) Dot )ds
Using the Kato-Ponce (cf. [43]) commutator estimate
(1.4) D%, Agllze < C(1 el 1D gllzz + 11D fllz2llgllzo)
with f = v and ¢ = u,, we obtain that
d

ol e < Cllua(ts Yleellut, Iz -
Thus the Gronwall lemma yields that for every 0 <t < 7T,
(1.5 e, Ml < 10,z exp (Clluallzr go.z1, ) -
If s > 3/2, the Sobolev embedding gives,
(1.6) ltallLr (o175 20y < C Tlul| poo o, 1y %) -

Combining (1.5) and (1.6), using a continuity argument, we deduce that there exist
¢ > 0 and ' > 0 such that if

T < e(1+luollme)™

then

(1.7) luellLr o1y < C

and

(1.8) lullpoo 0,775 715y < Cllw(0, ) |lms -

The priori estimate (1.8) is the key to perform a classical compactness argument
(cf. e.g. [55]) which provides the existence. The uniqueness is easily ensured by the
Gronwall lemma. The propagation of the higher Sobolev regularity readily follows
from (1.7) and (1.8).

The continuous dependence is a slightly more delicate issue and can be obtained
for instance by the Bona-Smith argument [7] (cf. also [40]). Let us briefly recall this
argument. Fix a bump function p € S(R) such that p € C§°(R) and p(§) =1 for £
in a neighborhood of 0. For £ > 0, we set p.(z) := e !p(x/c). Let u be a solution
of (1.3) with data u(0) € H*(R), s > 3/2 which belongs to a fized bounded set of
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H?(R). Denote by u® the solution of the Burgers equation (1.3) with initial data
pe *u(0). One can easily check that

lpe % u(O)lr+ < Clluollzre, = €]0,1]

and therefore we can assume that u® enjoys the bounds (1.7) and (1.8) on the time
of existence of u. For e > ¢’ > 0, we set v := u® — u*’. Then v is a solution of the
equation

(1.9) 20, + (u 4 uS Yo+ (u° 4+ u)v, = 0.
It is easy to check that
(1.10) [0(0) [z = o(1),  [lo(0)]|2 = O(”)

as ¢ — 0. Multiplying (1.9) with v and applying (1.7) (with u® and u*" instead of
u) gives the bound

(1.11) lo(t, Yz < Ce°
for ¢ in the time of existence of u. Applying D* to (1.9), multiplying it with D*v
and using the Kato-Ponce estimate (1.4) yields the estimate
(1.12) %HU(# Mire < C (1l ae + 11 (4 ) ot ) s +
+ C (Il (1 gess + 1w (8 M ges) ot )= ot ) e
Using (1.8) gives
(1.13) 0, Mlgzosn < (0, o < Co-
On the other hand, thanks to (1.11),

1 1-1 1-1
(1.14) lo@, M= < [lot, ) allo@, g < Cello(t, g

Using (1.12), (1.13), (1.14), a variant of the Gronwall lemma, and (1.10) gives

(1.15) [l (¢,-) = ' (¢, ) e = [Jo(t, )]l = o(1)

as € = 0. We can now easily obtain the continuity of the flow map. Indeed, let
(wo,n) be a sequence converging to ug in H*(R) with corresponding solutions (u,,).
Then p. x ug, — o, as € — 0 in H*(R), uniformly in n, and, exactly as above, we
can show

(1.16) [z (t, ) = u=(t, ) |re < Clluon — wollms + o(1),
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where o(1) — 0 as ¢ — 0. It is now a routine procedure to show that (1.15) and
(1.16) imply the continuity on H*(R), s > 3/2 of the flow map of the Burgers equa-
tion (1.3).

At this point, it is worth to notice that the argument based on a priori esti-
mates for proving the well-posedness that we have just presented is less perturbative
(“more nonlinear”) than the contraction method explained after Definition 1.1. It
has the advantage to have a larger scope of applicability compared to the contraction
method, but, at the present moment, to make it work one should require consider-
ably more regularity on the initial data.

Let us next describe an argument providing the lack of semi-linear well-posedness
of (1.3). We first observe that if u solves (1.3) then so does

(1.17) v(t,z) =u(t,z —wt) +w, weR.

The shift in the spatial variable in (1.17) is “responsible” for the failure of uniform
continuity of the flow map. The constant w in (1.17) can be replaced by a function
which is zero at infinity, thanks to the finite propagation speed of the Burgers equa-
tion. More precisely, inspired by (1.17), we look for an approximate solution of the
Burgers equation of the form

(1.18) u‘:;Z;A (t,z) = w/\_lﬁ(x//\é) + /\_5/2_599(36//\5) cos(Az — wt),

where s > 3/2, A € [-1,1],w € R, 1 < § < 2 and ¢, @ are non zero C§°(R) functions
such that @ is equal to one on the support . We can then show that there exists
€ > 0 such that

(1.19) |0vuss + w0 us M paey < C AT

Thanks to (1.19) and the well-posedness analysis in H®, s > 3/2, we obtain that

1.18) is indeed a good approximate solution, in H?, of the Burgers equation. Consid-
g g

ering the sequences (us;') and (ugy™), A > 1 gives the failure of uniform continuity

on H*(R), s > 3/2 of the flow map of the Burgers equation.

However, the Burgers equation (1.3) does not fit in the class of dispersive PDE’s
and one may think that the above described property of (1.3) is only related to its
the hyperbolic nature. It turns out that the Benjamin-Ono equation

(1.20) g + Hgy + uuy, = 0,

posed on H*(R) (in (1.20) H denotes the Hilbert transform which is a “zero order”
operator) is well-posed in H*(R), s > 3/2 but not semi-linearly well-posed in this
same space. The equation (1.20) fits in the class of the dispersive equations because



ILL-POSEDNESS ISSUES FOR NONLINEAR DISPERSIVE EQUATIONS 7

of the presence of the term Hu,,. We use the term “dispersive equation” since any
solution of

issued form L!(R) initial data disperses as ¢t — oo, more precisely,
Jim {lu(t, )| e) = 0.

However this property is for large times, and, since we are concerned with a small
time analysis a more relevant property related to the dispersive nature of the equa-
tion (1.21) is the (small time) Strichartz inequality (cf. e.g. [60]). More precisely,
there exists C' > 0 such that for every T > 0, every uy € L*(R) the solution u of
(1.21) with data ug satisfies,

2 1 1
(1.22) lullze o171 2a(my) < Clluollze ). PRI
Estimates of type (1.22) are usually very useful to apply the contraction strategy
but in the case of (1.20) they are not sufficient to make it work.

We next consider the KdV equation
(1.23) Uy + Ugpe + Uty = 0,

posed on H*(R), which have a higher order dispersion compared to (1.20). It turns
out that, in sharp contrast with the Burgers and the Benjamin-Ono equations, the
KdV equation (1.23) is semi-linearly well-posed for datain H*(R), s > —3/4. There-
fore, the notion of semi-linear well-posedness makes a natural classification in the
class of KdV type models, i.e. equation (1.1) with F'(u) = wu, and L = |Dy|*0,,
depending on the order of dispersion « > 0.

Another set of models where the notion of semi-linear well-posedness is naturally
involved (but less understood) are the nonlinear Schrédinger equations (NLS). Let
(M, g) be a compact smooth boundaryless Riemannian manifold of dimensions d =
2,3. Denote by A the Laplace-Beltrami operator associated to the metric g. We
consider the nonlinear Schrodinger equation

(1.24) g + Au + |u|2u: 0,

posed on M. In (1.24), u is complex valued function on M. Let us first consider
the case d = 2, i.e. the case when M is a surface. If M is the flat torus T? then the
Cauchy problem associated to (1.24) is semi-linearly well-posed for data in H*(T?),
provided s > 0. This result is essentially sharp, since for s < 0 the problem is
not semi-linearly well-posed for data in in H*(M) for an arbitrary (M, g). On the
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other hand if M is the standard sphere S? then the Cauchy problem for (1.24) is
not semi-linearly well-posed far data in H*(S?), s < 1/4, in sharp contrast with the
case of the torus T2, Hence the same equation (1.24) behaves quite differently with
respect to the semi-linear well-posedness depending on the geometry of the spatial
domain. Tt is an interesting open problem whether (1.24) posed on S% might be
well-posed for some s € [0,1/4]. Let us next consider the case d = 3. If M is the
torus T? or the sphere 53 then the Cauchy problem for (1.24) is semi-linearly well-
posed for data in H*®, s > 1/2. It turns out that this result is essentially sharp even
regarding the classical notion of well-posedness. More precisely, for 0 < s < 1/2, the
Cauchy problem for (1.24) posed on an arbitrary M is not well-posed for data in H?.

One may ask for the critical threshold in the scale of H? for the well-posedness of
(1.1). It means to find a real number s. such that for s < s, (1.1) is not well-posed
for data in H*(M), while for s > s, (1.1) is well-posed for data in H*(M). Similarly,
one can define a critical threshold for the semi-linear well-posedness. In this context,
the discussion around (1.24) above simply affirms that, for d = 3 and M = T3, the
value s, = % is the critical threshold for both the well-posedness and the semi-linear
well-posedness, as far as positive values of the Sobolev regularity s are considered.
It is a natural question whether the critical threshold for the well-posedness and the
semi-linear well-posedness may be different. The answer of this question is positive
as shows the following example. Consider the following version of the modified KdV

equation
(1.25) Up + Uy + (u? — / u?(t, 2)dz)u, = 0,
T
posed on the torus T = R/Z. The equation (1.25) can be obtained from the modified
KdV equation
(1.26) Vg + Vs + 020, = 0,

by the gauge transformation uw — v defined as

v(t,x):u(t,x—/ot/jruz(r,y)dydr).

The Cauchy problem for (1.25) is semi-linearly well-posed for datain H*(T),s > 1/2
(cf. [10]), it is not semi-linearly well-posed for data in H*(T), 3/8 < s < 1/2 (cf.
[62]), but ... it is still well-posed for data in H*(T), s € [3/8,1/2] (cf. [62, 38, 39]).
Hence the critical threshold for the well-posedness and the semi-linear well-posedness
can be different.
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Let us complete this introduction by noticing that, in the last years, gauge
transformations were an important tool in the study of dispersive PDE’s, cf. e.g.
[10, 34, 56, 62, 64, 65, 66] ...

2. KDV TYPE PROBLEMS
Consider the Cauchy problem for the Korteweg de Vries (KdV) equation
(2.1) U + Upgy + uuy =0,  u(0) = ug.

The best known result regarding the well-posedness of (2.1) is due to Kenig-Ponce-
Vega.

Theorem 2.1 (cf. [46]). For s > —3/4 the Cauchy problem (2.1) is semi-linearly
well-posed for data in H*(R).

To prove Theorem 2.1 one uses the contraction method as explained after Defini-
tion 1.1 of the previous section. The spaces X7 where one performs the argument are
the Fourier transform restriction spaces introduced by Bourgain [8, 9, 10], equipped
with the norm

lul|x, = inf{||lw||x, weX with w|_77=u},
where

ol = [ (1 = €F) (L4162 latr, O Pards

with b > 1/2 sufficiently close to 1/2. The spaces of Bourgain are very useful to
recover the derivative loss in the nonlinearity. We refer to [13, 32] for an introduction
to the Fourier transform restriction method of Bourgain. There has been a number
of works preceding Theorem 2.1 where the well-posedness for bigger values of s were
established (cf. e.g. [61, 44, 45, 10]). A particularly important step was done in [45],
where it is realized for the first time that the KdV equation can be semi-linearly
well-posed. The value s = —3/4 in Theorem 2.1 is optimal, as far as the semi-linear
well-posedness is concerned (cf. [24]). But it is a priori not excluded (2.1) to be
well-posed for some s < —3/4.

Next we consider the Cauchy problem for the Benjamin-Ono (BO) equation

(ef. [3)
(2.2) w + Hugye + wuy, =0, u(0) = ug.
In (2.2), H denotes the Hilbert transform, namely,

(Hf)(z) :=2lim Mdy.

e—0 |x—y|26 r—Yy
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It is easy to check that - R
Hf() = —isign(§)f(§) .

Therefore the Hilbert transform is acting essentially as a zero order operator. The
presence of H in (2.2) is important to establish some monotonicity properties of
the local mass of the solutions of (2.2), but it will not play an essential role in our
discussion here.

There has been many works regarding the well-posedness of (2.2) (cf. [61, 1, 36,
60, 38, 48, 66]). The best result in the present moment is due to Tao.

Theorem 2.2 (cf. [66]). For s > 1 the Cauchy problem (2.2) is well-posed for data
in H*(R).

One may ask whether, similarly to the KdV case, we also have the semi-linear
well-posedness in Theorem 2.2. It turns out that the answer is negative.

Theorem 2.3 (cf. [50]). In Theorem 2.2, one can not replace the well-posedness
with semi-linear well-posedness.

Therefore in the well-posedness analysis of (2.2), it is not a question to find a
suitable space to perform the contraction method, simply this method for proving
the well-posedness does not work, as far as the classical Sobolev spaces H® are
considered as a space for the initial data. This fact was first detected in [58].

A related to Theorem 2.3 result is obtained in [4] where it is shown the lack of
semi-linear well-posedness for (2.2) with data in H*(R), s < —1/2.

Interestingly, the modified Benjamin-Ono equation

w + Hugy + vu, = 0, u(0) = ug

turns out to be semi-linearly well-posed for datain H*(R),s > 1/2 (cf. [56]). Hence,
even if the dispersion is the same, the semi-linear well-posedness may also be sensi-
tive to the “degree” of the nonlinearity®.

It is clear that Theorem 2.3 is a consequence of the following statement.

Theorem 2.4 (cf. [50]). Let s > 0. There exist two positive constants ¢ and C' and
two sequences (u,) and (u,) of solutions of the Benjamin-Ono equation such that
for every t € 0, 1],

sup [un (£, )| r=r) + sup [ (¢, ) gy < '

!The example of KdV and Benjamin-Ono equations is an instance when the the semi-linear
well-posedness depends on the degree of the dispersion.
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(un) and (uy,) satisfy initially

lim Hun(07 ) - ﬂn(07 )HHS(R) = 07

n—0oo

but, for every t € [0, 1],

larri)ig(l)f lwn (t, ) = tn(ls )| oy > € sint.
In the proof of Theorem 2.4, we will make use of the following well-posedness
result for (2.2).

Proposition 2.5. Fiz s > o > 3/2. Then for every ug € H*(R) there exists a
unique global solution u € C'(R; H*(R)) of (2.2). Moreover

lu(t, @) < Clluollusw)
provided |t| < CHUoH;ﬁ;(R)-

Sketch of the proof. The proof of Proposition 2.5 is based on the compactness ar-
gument explained in the introduction in the context of the Burgers equation (1.3).
One first proves the result for s = 6. The nature of the restriction |¢| < CHU()H;{%,(R)

is related to the scaling of (2.2). It turns out that one can reduce the matters to
the problem of existence on the time interval [0, 1] with initial data with small norm
in H?(R). Suppose that there exists a positive constant 4 such that if the initial
data of the Benjamin-Ono equation satisfies ||ug||ge < v then we can find a unique
solution on the time interval [0, 1]. We now prove that for ug € H? of arbitrary size
we can solve (2.2) for time of order ||ug||5;5. Indeed, given ug € H? we choose A < 1
such that

(2.3) 0 < A2 (1+ A\7)|uol| e < 7-

Set ug(z) = Aug(Az). Then due to (2.3), ||uol|ms < v and we can apply our
assumption to ug. Let u(t, ) be the solution of the Benjamin-Ono equation with
data g up to time one. Then one can easily verify that u(t, z) := A~ u(A=2t, A~1a)
is a solution of the Benjamin-Ono equation up to time A? which in view of (2.3) is of
order ||ug||775. Hence we may reduce the matters to the existence on [0, 1] for small
data.

Let u be a sufficiently smooth in the scale of the Sobolev spaces solution of the
Benjamin-Ono equation (2.2). Then, as in the case of the Burgers equation, one
gets the bound

(2.4) 1Dl Les (0,175 12) < w(0)[| o exp(Clluall Ly (fo,77; 20)) -
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Notice that the key quantity fOT ||z (t)|| oo dt is invariant with respect the scaling of
the equation. More precisely if u(¢,7) = A7 u(A72%¢, A=1z) then

A2 1
/0 Hugg(t)HLoodt:/o 72 (0) | oo dt

With
F(T) = [Juell gy pee + [[D7ullpger2, T €[0,1]

we can deduce from (2.4) and the Sobolev inequality (here we use that ¢ > 3/2)
that

F(T) < Cllu(0)]| e exp(cF(T)).
Now a straightforward continuity argument shows that there exist positive constants

v and C such that if ||u(0)||gs < v (and hence F(0) < ) then F(1) < C, and in
particular

(2.5) | ol <

Using (2.5) and (2.4) (with 7' = 1) we obtain that if u is a smooth solution of the
Benjamin-Ono equation, then

(2.6) D% ull oo (o,13:22)) < Cllu(0)]] e,

provided ||u(0)||zs < 7. Moreover the solution satisfies (2.5). The bounds (2.5) and
(2.6) enable one to perform a standard compactness argument for the proof of the
existence. As for the Burgers equation, the uniqueness follows from the Gronwall
lemma, the assumption o > 3/2 and the Sobolev embedding. Let us next show the

bound for the higher Sobolev norms. Let s > . Then we clearly have an analog of
(2.4) on the H? level. Namely,

1
D%l L~ (o,13:22) < [[w(0)[] 7 eXP(C/O [tz ()| Lo dt) < Cllu(0)]|are,

where in the last inequality, we used (2.5). Finally the global well-posedness follows
from the conservation lows enjoyed by the solutions of the (2.2). Indeed one has
controls (cf. e.g. [1]) on [|u(t,-)||zr2 for & = 0,1,2,... Hence the assertion of
global existence is straightforward for s > 2. For s < 2 one may use the H3/2
well-posedness result result of Theorem 2.2 and the H3/2 control. This completes
the discussion on the proof of Proposition 2.5. U

Next, we pick a usual bump function ¢ € C5°(R) such that ¢(z) = 1 for |z| < 1 and
e(z) =0 for |z| > 2. Let ¢ € C§°(R) be equal to one on the support of ¢. Notice
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that @@ = ¢. For 0 < 6 < 1, we set

(2.7) (@) = wl(5ims)s Pa(@) = P g)

The assertion of Theorem 2.4 is a corollary of the following statement.

Theorem 2.6. Let max(l —5,0) < § < 1 and |w| < AT Let Uy, be the unique
global solution of the Benjamin-Ono equation subject to initial data

U, 2 (0,2) = —w AT 3y (2) — AT272 75, () cos Az
Then the identity

min{d,1—4

¥ —
uu A (t, z) = —A_%_5_599/\($) cos(=A*t + Az +wt) + O (/\_ O 5] /\_176)

holds in HZ(R), uniformly int € [0,1].

Let us notice that if w = 0, the solution propagates as a high frequency linear
Benjamin-Ono wave while when w # 0, the solution propagates as a high frequency
linear dispersive wave with modified propagation speed which is the crucial nonlin-
ear effect.

Let us now show why Theorem 2.6 implies Theorem 2.4. Apply Theorem 2.6 with
w==+land A =1,2,... We thus obtain two families (u; )) and (u_; \) of solutions
to the Benjamin-Ono equation. Notice that

1-4
[Jur A0, ) = u—y A (0, )[me < CAT3
and moreover due to Theorem 2.6, setting kK = —A?t 4+ Az, we arrive at

lura(t,) = woa (b e = [ATCEF) o (@) (cos(k + £) — cos(r — 1))z + o(1),

if ¢t € [0,1] and where o(1) — 0 as A — oo. At this point we need the following
elementary lemma whose proof will be omitted.

Lemma 2.7. Fiz s >0,0<d<1, a € R and ¢ € C5°(R). Then
1
Jim AT @) cosOw + @)l = e
where @y is defined by (2.7).
Using Lemma 2.7, we get
lim [[A~CEH) 0, (2) (cos(x + ) — cos(rn — 1)) l| s = V2 sint] ||l
—+00

Therefore Theorem 2.6 implies Theorem 2.4.
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Proof of Theorem 2.6. Let uy,(t, z) be the solution of (2.2) with initial data
(2.8) U (0,2) = —wA7o0(2), 0<d<1, weR.
In the next lemma, we collect several bounds for uj.,(t, z).

Lemma 2.8. Let k > 0. Then the following estimates hold :

(2.9) 105t (1, |2y < Clw| A7 O+,
(2.10) 10pttt0w (8, )| L) < Clw| X7272,
(2.11) | tow (t, +) = 0w (0 7')HL2(R) < Clwl A0,

if |t <1 and |w| < AE

Proof of Lemma 2.8. Rescale by setting

(2.12) v(t, z) = Aoy, (N2, N1y,
Then v is again a solution of the Benjamin-Ono equation. Since v(0,2) = —wA’3()
we obtain

[0(0, s = [l A1 &1+
and therefore by Proposition 2.5
(2.13) ot i < Cle] A,
if |t] < Jw|™*A™* and s > 3/2. But since the right hand-side of (2.13) does not
depend on s, we conclude that (2.13) is valid for any real s. The Sobolev embedding
and (2.13) now give
(2.14) lJog(t, )| pee < Clw] A,

if [t < |w] A%,
Using (2.12) and the restriction on |w|, we deduce from (2.14) by scaling back
that

(2.15) 100 ttiow (£, ) || < C' ] X725,
if |t] <1 which is (2.10).
We now turn to the proof of (2.9) and (2.11). Differentiating (2.12) and using
(2.13) (with s = k) yields
(2.16) 105 o (£, Y2 < Cloo] A= 50+ p=0,1,2,. ..

if [t] < 1. Estimate (2.16) is indeed (2.9). Next, using (2.15), (2.16) and the equation
satisfied by ., gives

19¢tut0w (t, 12 < C 107100 (t, )|z + 10 thons (t, )| [Juton (8, )1 12) < C o] A7272,
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if [t| < 1. We now observe that (2.11) can be deduced from the above bound via
the fundamental theorem of calculus, applied to wj,, in the time variable. This
completes the proof of Lemma 2.8. U

WenowsetforA21,0<5<1and|w|<<A12;§7

é

(2.17)  wgp(t, @) i= wpou(t, ) — _%_5_599/\($) cos(— A%t + Az — At upw(0, 7).

The above function is an approximate solution of (2.2) for A > 1 and s > 0 as shows
the next statement.

Lemma 2.9. Lets>0,0<0 < 1, |w| < AT and |t] < 1. Set
F:= 0+ H@g)uap + Ugp OpUgp.

Then there exist positive constants C' and Ay such that for A > Ag one has
-5
1E(E ) rze) < C (/\‘5—5 + /\17—25) ‘

Proof. Set ® := —A\?t + Az + wt. We observe that

é

Ugp(t, @) = o (t, ) — AT27 27 ) (2) cos ®.
Furthermore, we define the high frequency part of wu,, by setting
up(t, ) = —=A7272 7%y (2) cos .
Next, we can write

(8t+H8£)uap+uapaxuap:F1+F2+F3+F4‘|’F57

where
Fy = (0 + HO®Ugw + WowOrtiion
P o= AT cos O (ulow w)
F3 = updyuy
by = B {H3£7 @A} cos ¢
Fy = _A_Hzﬁ_sc,oA(é?t—l-Haz—l-wowax) cos .

Since uy,,, is a solution of the Benjamin-Ono equation, we deduce that F; = 0. Using
that @x@y\ = @), we readily obtain that

s = /\12;6_5(u10w(t7 T) — Ul (0, 2))pr(2) sin ®.
Using Lemma 2.8, we get
(2.18) IEs(t, ) lpe < CNT = Jw|]A27% < ¢ A~12s,
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It remains to bound Fy, F3 and Fy. Let us expand Fj as
(2.19) Fy= AT *[H,pr]cos® + 247 Srsipy ((¢")rsin @) —

S XEE T () cos @)

where

x x
(#)r= ‘PI<W)7 (@")r = 99”</\1+5> ‘
The first term in the right hand-side of (2.19) is controlled in L? by the estimate
I[H, 2] cos ]2 < CnA™Y

which follows easily from the definition of the Hilbert transform. The L? norm of
the other terms in the right hand-side of (2.19) are readily estimated by eA=7%.
Therefore

(2.20) | Fa(t, )| < C A0
Expanding d,uy,, the L? norm of Iy is controlled as follows
(2.21) | F5(t, )| 12 <C/\_5___25—|—C/\2___25 <C/\ 5 —2s

Next, using Lemma 2.8 and the assumption on |<,u|7 we obtain

(222) [1F2(t:)llpe € COT 10sttonn(t, )l + 2775~ uou(t, llz2) <
< oA
Collecting (2.18), (2.20), (2.21) and (2.22) completes the proof of Lemma 2.9. O

Let us now finish the proof of Theorem 2.6. The first step is to bound wu,  in high
Sobolev norms. We distinguish two cases : s > 3/2 and 0 < s < 3/2. In the second
case we will need to exploit the higher conservation laws for the Benjamin-Ono
equation while in the first case we use Proposition 2.5 instead.

Let s > 3/2. Observe that for 3/2 < 0 < s

7 (0, Y[ < CAT* + [w]A~F),
Therefore for £ > s, it follows from Proposition 2.5 that
(2.23) it M aze < Clltn (0, e < CA=, 1] < 1.

Let0 < s < % Using the conservation laws associated to the Benjamin-Ono equation
(cf. [1, Lemma 3.3.2]), we get the following bound uniformly in ¢t € R

(2:24) [ Mz < C (w0, zz + uan (0,)1152) < C(1+X27),
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and therefore we obtain
(2.25) luwa(t Mg <CA5, teR, A>1.

Let ug, be as in (2.17). Set
Uy \ 1= U\ — Ugp -
The aim is to show that v,  is small comparing to ug, in the H* norm.

Due to Lemma 2.8, we get
[ttt e < Cloof A5
if [t| < 1. Next, using Lemma 2.7, we obtain the bound

[uap (8, ) |y < C A2,

if t| <1and k> s.
Therefore using (2.23) and (2.25), we get the bounds for the high Sobolev norms

(2.26) lvwa(t, Nl ge < C A2,
if [t| <1and3/2<s<k, and
(2.27) llvwn (t, )2 < CA*T5,

ifte Rand 0 < s < 3/2.

Further, we prove a good bound of the L? norm of v, ). Clearly
(2.28) (O + HO2) vy + vyn 0py ) + Op(Uap vy r) + F =0, v,,(0,2) =0
with
= (87,‘ + Hag)uap + uapaxuapv

which satisfies
mln{él 4}

[E( )2 < CA” -

by Lemma 2.9 and the assumption 1 —s < § < 1.
The second endpoint in the bounds for v, ) is the L? estimate

mln{é 1-4}

(2.29) lvwa(t, )|z < CA™ ot < 1.
To prove (2.29), we multiply (2.28) by v, \ and we integrate in z

d
Tllvwn(t e < C(0muap(t, Yrellvwa @ iz + oot el B )lz) -
Hence7 since we have for 1 —s < d <1 and A > 1,

102ttap(t, Nz < ClOattion(t, )| + CXF ™ < Clo\ 270+ AT~ < 1,
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we readily get the bound (2.29).
We now complete the proof by an interpolation argument. Let first s > 3/2.
Choose k € [s+ %, s+ 2] and interpolate between (2.26) and (2.29) as follows

k—s S _ min{d1-4}
low () rrs < Jlvw (@5 Tvw () e < A 5052

If s < 2 we obtain the same estimate by using k¥ = 2 in the interpolation and (2.27)
instead of (2.26). This completes the proof of Theorem 2.6. O

We end this section by a series of remarks.

The method of proof of Theorem 2.6 can be generalized to many other equations.
For example the corresponding to Theorem 2.6 result in the context of the KdV
equation provides a family of essentially linear KdV waves (w — 0) as approximate
solutions and thus no instability property of the flow is displayed.

The proof of Theorem 2.2 is based on a gauge transform reducing (2.2) to a prob-
lem which, despite the lack of semi-linear well-posedness displayed by Theorem 2.3,
shares many features with a semi-linearly well-posed problem.

One may consider the higher dispersion versions of the (2.2)
(2.30) wy — Lug + uuy =0,  u(0) = ug,

where L is Fourier multiplier with symbol |£]7, 1 < v < 2. The KdV equation
corresponds to v = 2, and, thanks to Theorem 2.1 in this case (2.30) is semi-linearly
well-posed in H*(R), s > —3/4. On the other hand, in view of the result of [58], it
seems reasonable to conjecture that for 1 < v < 2, the Cauchy problem (2.30) is not
semi-linearly well-posed in all H*(R).

Another instance when the notion of semi-linear well-posedness is naturally in-
volved is the analysis of the Cauchy problem for the Kadomtsev-Petviashvili equa-
tions. The Kadomtsev-Petviashvili (KP) equations are natural two dimensional
generalizations of the KdV equation (cf. [37]). There are two KP equations, the
KP-I equation

(2.31) (ut + Yooz + Ulig)s — uyy =0,
and the KP-II equation
(2.32) (Wt + Uppy + UUg) g + Uyy = 0.

It is known that the Cauchy problem for the KP-II equation (2.32) is semi-linearly
well-posed in H*(R?), s > 0 and even in Sobolev type spaces of negative indices
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(spaces of distributions), cf. [11, 63, 35]. On the other hand, in view of the result
of [59], it seems reasonable to conjecture that the Cauchy problem for the KP-I
equation (2.31) is not semi-linearly well-posed in all H?*(R?).

3. NONLINEAR SCHRODINGER EQUATIONS (NLS)

3.1. Nonlinear Schrodinger equations on R?. Consider the Cauchy problem
for the nonlinear Schréodinger equation

(3.1) i+ Au+ |ul*u =0, u(0) = uo,

posed on the Euclidean space R? d > 1. Equation (3.1) is a focusing model. The
defocusing model

(3.2) iy 4+ Au — |u|*u =0

is also of interest. The long time dynamics of (3.1) and (3.2) are quite different.
But for our discussion here (small time analysis) it will be relevant to concentrate
only on (3.1). There has been a large number of articles studying (3.1), (3.2) and
their generalizations, when |u|?u (which is the term involved in many applications)
is replaced by a more general nonlinear term f(|ul?)u (cf. [29, 30, 31, 41, 42, 23,
67, 68] ...). The equation (3.1) is an infinite dimensional Hamiltonian equation with
canonical coordinates (u, ) and Hamiltonian

1 1
H(u,u):§/ |Vu|2—1/ lult .
Rd Rd

The Hamiltonian is formally preserved by the flow of (3.1). So is the L? norm of
u. Therefore the space H!(R?) is a natural phase space? for (3.1) and (3.2) at least
for d < 4 when the second term of the Hamiltonian is dominated by the first one
and the L? norm of u. Fortunately, we can achieve this regularity for d < 3 in the
context of the well-posedness theory of (3.1). More precisely, we have the following
result regarding the well-posedness of (3.1).

Theorem 3.1 (cf. [23]). Let s > 952, d > 2. Then the Cauchy problem (3.1) is

semi-linearly well-posed for data in H*(RY).

Proof. We will give the proof because it is “typical” for a semi-linearly well-posed
problem. It is worth noticing that such a proof is indeed quite different from the
reasoning in the proof of Proposition 2.5 above. To simplify a little the notations we
will only consider the case d = 2, the proof in higher dimensions being very similar.
The proof is based on the following Strichartz inequality for the free evolution.

*In this space the well-posedness of (3.2) is actually global in time. For (3.1) the well-posedness is
global as far as the data is small in a suitable sense, for large data solutions developing singularities
in finite time appear.
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Proposition 3.2. Let (p,q) such that, ]l)—l— % = %, p > 2. Then there exists a
constant C' > 0 such that for every T > 0, every ug € L*(R?),

e uol| Lo (o, 17; Lagr2)) < Clluollr2(r2) -
Proof. The proof of Proposition 3.2 can be found in [22]. O

Let us now show how Proposition 3.2 implies Theorem 3.1. Consider the integral
equation corresponding to (3.1)

(3.3) u(t) = € ug + i / eI (Ju(r) [Pu(r))dr.
0
Let us fix a real number o satisfying
) 1
0<U<m1n{s,§}.

The value of o being fixed, we define ¢ € [2,4] by the identity

1 1 o

piabiaics
Next, we define p such that

11 1

p T

Set
Xp = L([0,7]; H*(R*))NYr N Zr,
where Y, Zr are equipped with the norms
lld = 3 NZIAN @I apey Tuld = 3 NZIAN(E s
N —dyadic N —dyadic

The sums over N are running over all dyadic values of N, i.e N =2" n > 0 and
u= Z AN (u)
N

is a Littlewood-Paley decomposition® of u. More precisely, Ay are the Fourier
multipliers defined by

e

An(u)(§) = p(NTIa(§), N=2", n>1

and

e

Ai(u)(§) = p(&)a(§)

% Actually we do not need to use the precise from of Ay here, cut-off projectors would also make
work the argument.
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with ¢ € C§°(]1,2]) and
PO+ T =1

n>1

Notice that if u € S'(R?) then Ay (u) is localized at frequencies of order N. It is
also useful to see the norm in Y7 as |[N*An(u)||2 17 -

Next, using Proposition 3.2, we get
1€ An (wo) | g pagazy + 1€ An (wo) |l pa.par2y < CllAN (o)l p2(2)
and therefore
(3.4) e ugllxy < Clluolla

Similarly, using the Minkowski inequality, we get the bound,

(3.5) H/Ot D (u(r) Pulr)dr || < C/OT

In order to bound the right hand-side of (3.5), we will show that there exists C' > 0
such that for every uy, ug, us in X,

(3.6) /0 !

By duality, to show (3.6), it suffices to obtain that for every w € H~*(R?),

A (u(n)Pu(r))|dr.

e~ (un () us()|, 4 < €17 Tl

J=1

3

T .
a0 [ ] wnmeue e m) dr < el Tl

i=1

Notice that if uy (1), w3(7), us(7) are localized at frequencies Ny, Na, N3 respectively
then only frequencies of order < C'(Ny 4+ Nz + N3) of e'™A contribute to the left
hand-side of (3.7). Writhing down the Littlewood-Paley decompositions of u;(7),
Uz(7), uz(7) et w, using the Holder inequality and Proposition 3.2 to bound "2,
we deduce that we can bound the left hand-side of (3.7) by

(38) AN, (w)ll s za I AN, (u2)l| 2 pa [|A N (us) [ £g, s | An (w) || 22
N<C(N1+N;+N3)

By symmetry, we can suppose that in (3.8) the summation is restricted to

Ny > Ny > N3.
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Next, using the Sobolev embedding W74 (R?) C L*(R?), and, the Hélder inequality
in the time variable, we get the bound

AN, (u2)ll s | AN, (u2) || ps 14 < CT7(N2N3) | A, (u2) | 12 pall A (us) [ 12 10 -
Set
(V) = Nl Aw, (un)llgg o s (V) = NoAN(u) g = 2,3,

and d(N) = N7°||An(w)||r2. We obtain that (3.8) is bounded by

(3.9) DS (Nﬁl)S&V%cl(zvm(m)cgwg)d(m.

N<CN; Na,Ns
Summing geometric series in Ny, N3, we obtain that (3.9) is bounded by

N

(3.10) CTuallx, sl Y. (5) 1NV
N<CN; 1

To bound (3.10), we use the following lemma.

Lemma 3.3. For every A > 0, every s > 0 there exists C > 0 such that if (cn,)
and (dy,) are two sequences of nonnegative numbers indexed by the dyadic integers,
then,

N\ s 1 1
Z (V) CN, le SC(ZC?VO)2(Zd]2\H)2'
No<AN, 1 No N1
Proof. Let us set
. N§
K (]\707 Nl) = ]INOSANl Fg .
1

Summing geometric series imply that there exists C' > 0 such that

S]l\lprI((No, Ny) 4+ S]l\lprI((Ng, Ny) < C.
o N 1 No

Therefore the Schur lemma implies the boundedness on ljz\,0 X ljz\,1 of the bilinear form
with kernel K (Ng, N1). This completes the proof of Lemma 3.3. O

Using Lemma 3.3, we bound (3.10) by the right hand-side if (3.7) which completes
the proof of (3.6).

Estimates (3.4), (3.5) et (3.6) yield that for every bounded set B of H*(R?) there
exists 7' > 0 such that for every ug € B the right hand-side of (3.3) is a contraction
in a suitable ball of X7.

Let us finally explain how we obtain the propagation of regularity property for
data in H?, § > s. Denote by X7 the space X7 use above associated to the H?
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regularity. It is easy to observe that the preceding analysis also gives the tame
estimate

o 2 .
xS [l [lull x5

| [ et utmutryr]

which implies the propagation of the H® regularity in a straightforward way. This
ends the discussion on the proof of Theorem 3.1. U

The indice d_TQ appeared in Theorem 3.1 is closely related to the scaling of the
equation (3.1). More precisely if u(¢, ) solves (3.1) then so does

un(t, z) = Au(A%, A\z).

The norm of u) in the homogeneous Sobolev Heis independent of A only for s = d;—Q.

At this point, it is worth noticing that the scaling invariance is responsible for
the existence of solutions of (3.1) which concentrate in a point. Such kind of con-
centrations may give ill-posedness results only below the scaling norm. As we will
see later concentration on higher dimensional objects as curves are responsible for

ill-posedness above the scaling exponent.

It turns out that the result of Theorem 3.1 is essentially sharp, i.e. the point
concentration coming from of the scaling invariance are the worst possible.

Theorem 3.4 (cf. [25]). Let d > 2. Then :

1. For d = 2, the Cauchy problem (3.1) is not semi-linearly well-posed for data
in H*(RY), s < 0(= 452). Morcover, it is not well-posed for data in H*(R?),
s<—1(=—9).

2. For d > 3, the Cauchy problem (3.1) is not well-posed for data in H*(R?),
0<s< @2 ors< —%. Moreover, it is not semi-linearly well-posed for data

2
in H*(R?), -4 <s<0.

Proof. In order to simplify the exposition, we will give the proof of Theorem 3.4,
for d > 5 and s a positive integer. This will cover the most interesting case s = 1,
i.e. the ill-posedness of (3.1) in the “energy space” H'(R?), d > 5. The proof of
Theorem 3.4 in the other cases has a very similar flavor.

Let us first observe that it suffices to prove the following statement.

Proposition 3.5. Let d > 5 and s 6]07515—2[ be a positive integer. Then there
exist a sequence (t,) of positive numbers tending to zero and a sequence (u,(t)) of
C>(RY N H*(RY) functions defined for t € [0,t,], such that

(10r + Ay + |un|*u, =0
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with
T [0, )z = 0.
and

i (b, ) -y = o
Proof. Let us consider an initial data concentrating in the point z =0

4_s

u,(0,2) := Kkon2 Pp(ne), n>1,
where ¢ is a non identically zero smooth compactly supported function and
kin = log ™1 (n)
with §; > 0 to be fixed later. Remark that
0 0, gy ~ P

The function

: d_,
v (t, ) = Hnng_s@(nx)e”[“"m o(na)]?
is the solution of the equation
(3.11) 10ty 4 |vn*v, =0, v,(0,2) = u, (0, ).

It turns out that for very small times v, is near the actual solutions* of (3.1).

Next, for a fixed integer [ > d/2, we define quantity,

[T

Eu(w) i= (02 |ulla oy + 00l )
which can be seen as a semi-classical energy of u. Notice that, uniformly in n,
(3.12) |u|lgrs < CE,(u) .
The main point in the proof of Proposition 3.5 is the next statement.

Lemma 3.6. Fiz §; € R such that

1
0<dg < i
Then the solution u,, of (3.1) with initial data
uo(2) = ans ~p(na)
exists for 0 <t <t,, where
t, = 10g52(n)n_2(§_5).

*A similar idea was used, in a different context, by Kuksin [51].
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Moreover, there exists € > 0 such that fort € [0,t,],

Eo(u,(t) — v, (t) <Cn™*.
Proof. Since the initial data are in H', [ > d/2, we know that wu, () exist on small
time interval [0, ¢,]. Consequently, to prove Lemma 3.6, we simply prove the a priori

estimates which ensure, by a classical bootstrap argument, both the existence and
the control on E, (u,(t) — v,(t)) for t € [0,t,]. Let us set

Wy 1= Uy — Uy .

The a priori estimates involved in the proof are energy inequalities in the equation
satisfied by w,,

(i + Aw, = —Av,— V2T, — 20v,Fw, — 20, |wa|? — Tpow? — Jw,|*w,
= —Av, + A(vy, wy) .
Using the explicit formula for v,, we have that for 0 <t < ¢,,

(3.13) [[0n (5 )| oo (R < CnEs
and for o > 0,0 <t <t,,
(3.14) [on (t, M proay < Cn7~ *1og®27 (n) .

Let us now estimate E,(A(v,(t), w,(t))) for 0 < ¢ < t,. Using the Gagliardo-
Nirenberg inequality

11 pee ey < CHfHLz_ HfHHz gay > d/2,
we infer that
d_s
(3.15) 1l mey < Cn2 7 En(f).
Coming back to the expression for A(v,, w,), we get
1A (vn, wa)llre < C([|vallzoe + lJwallfee ) [[wall 2 -
Using (3.13) and (3.15), we obtain that for 0 <t <t¢,,
R A (0n (1), wa(t) |2 < Cn*E=) (B (wa(t)) + Bl (wa (1))

Next, using several times the classical bilinear inequality

£l < CUI ANz llgll e + Nlgllze Nl Fll i)
we deduce that

1A (wn, wi) Lzt < C(loallEo lwnll e + llonllzoe llonllgellwallz +

+llonllnllwallEoe + llalles lwnllzellwnll e + [wnllEo lwall ) -
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Using (3.13), (3.14) and (3.15), we infer that for 0 <¢ <t,,
a5
0 A (1), wa ()| < C0*E log®! () (B (wa (1) + B3 (wa (1)) -

Summarizing the above discussion yields that for 0 <t <,
d

B (A(0a(0), wa(1))) < CrPE= log™ () (o (wa (1)) + B (wa(1)))
Next, we estimate the source term —Auw,. Using (3.14), we obtain that for 0 <t <¢,,
180 (8, )2 < Clloa(t, Mz < Cn®~*log? (n) .
Similarly,
120, (¢, )t < Clloa(t, ) < Cn' T2 1ogH2% ()
Therefore, for 0 <t < t,,
En(Ava(t)) < Cn?log+2%2(n) .
Coming back to the equation solved by w,,, we deduce that for 0 <t < ¢,,
LB (0(0)) < Cn2E=) log (n) (B2 (wa 1) + EX(wa(1) +
+ Cn?log 2% (n) B, (w, (1)) .

Suppose first that £, (w,(t)) < 1 which is clearly the case at least for ¢ < 1 since
w,(0,2) = 0. Using the elementary inequality

d

2

202 1og %2 (n) B, (w,) < n*(579) log®! (n) E?(w,) + pi=2(5-9) log (4% ()
we obtain that for 0 <t <t,,

d
dt

Integrating between 0 and ¢ yields,
Eﬂ(wn(t)) < Cn2—2(§—s) ]Og252 (n) €Clog(l+1)52(n) ‘

The assumption s < (d — 2)/2 implies 2 — 2(% — s) < 0. Moreover &, is such that
({4 1)d3 < 1. Therefore there exists € > 0 such that

E,(w,(t)) <Cn™F.

(—Ctn2(E o™ () 12 (1, (1)) | < C'n?=2(579) og(1+9)52 (1) ¢=Ctn” 57101 (n)

Finally, a bootstrap argument allows to drop the assumption
E,(w,(t)) <1.
This completes the proof of Lemma 3.6. U
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Let us now finish the proof of Proposition 3.5. We need to make a proper choice of
the number §; involved in the definition of x,,. Using the explicit formula for v,,, we
easily obtain that for s € ZT,

d

[0 (ta, Mirrs 2 Chin(talkanz="1%)",
provided tn[mnng_s]Q > 1, ie. logh~2% (n) > 1. The first assumption on ¢ is thus
5
0<d < 52
Therefore, using Lemma 3.6 and (3.12), we obtain that for n > 1,
[ttt e > Cllvn(tn, lme = Cn™= > Chy (ta[n =) = Cn* =
— ClogSSQ—(H—Qs)Sl (n) —Cn~c.

The proof of Proposition 3.5 is completed by choosing é; € R such that

852
1+ 2s°

0<51<
|

The ansatz with v, as an approximate solution still holds for —% < s <0 and very

small times of order ~ logé(n)n_z(g_s) with a suitable § > 0. Unfortunately, we can
no longer bound from below ||v, (¢, -)||z: as above. For that reason one can not get
the failure of well-posedness for data in H*(R?), —% < 5 < 0. One can however still
obtain the lack of semi-linear well-posedness, by an argument very similar to the
one that we presented in the context of the Benjamin-Ono equation. This ends the
discussion on the proof of Theorem 3.4. U

Remark 3.7. The approach to Theorem 3.4 we present here may seem more in-
volved than in [25] but it has the advantage to avoid the scaling considerations of
[25]. In particular it works for variable coefficients second order operators instead
of A or for (3.1) posed on a curved space.

Let us next consider (2.1) posed on the real line R. In this case the critical threshold
for the semi-linear well-posedness is shifted with respect to the scaling regularity.

Theorem 3.8 (cf. [23, 24, 67]). Ford = 1 the Cauchy problem (3.1) is semi-linearly
well-posed for data in H*(R), s > 0, and, it is not semi-linearly well-posed for data
in H*(R), s < 0.

It is worth noticing that in the proof of the lack of semi-linear well-posedness
for s < 0, one uses a family of solutions which concentrate on the line {t = 0} of
the space time (¢, 2). This family of solutions is related to the Galilean invariance
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of (3.1).

Notice that for d < 4, the space H! is essentially covered by Theorem 3.1. For
d > 5, the result of Theorem 3.1 is far from the regularity H', and moreover as we
have shown, for d > 5 the Cauchy problem (3.1) is not well-posed for data in H'(R?).

In order to have an H'! theory in dimensions d > 5, it is reasonable to replace
(3.1) with the equation

(3.16) (20 + A)u = F(u),

where the nonlinear interaction F'is supposed to satisfy F'(0) = 0 and is supposed of
the form F = 2% with a positive V € C°°(C; R) satisfying V(e?z) = V(2), 6 € R,
z € C, and, for some o > 1,

051922V (2)] < Cpy o (14 |21 Ho 775

The number « involved in the second condition on V corresponds to the degree of
the nonlinearity F'(u). The Hamiltonian associated to (3.16) is

(3.17) /Rd|vu|2+/RdV(u).

which controls the H' norm. If a < 1+ -, the second term in (3.17) is controlled
by the first one and the L? norm of u. It is therefore reasonable to expect that for
a <14 % the Cauchy problem for (3.16) is well-posed for data in H'. It turns
out to be the case at least for d = 5, 6.

Theorem 3.9 (cf. [29, 40, 18]). Let o < 1 + ﬁ and d < 6. Then the Cauchy
problem associated to (3.16) is semi-linearly well-posed for data in H'(RY).

Remark 3.10. The proof of Theorem 3.9 relies crucially on the Strichartz inequal-
ities for the non-homogeneous linear problem (recall that in the proof of Theorem 3.1
we only used the Strichartz inequalities for the free evolution). For d > 7 one can
still prove the existence and the uniqueness. Since the nonlinearity in (3.16) is
not polynomial, the propagation of of the regularity is a nontrivial problem in the
analysis of (3.16) (cf. e.g. [33]). In addition, even if one can prove the regularity
propagation, the semi-linear well-posedness of (3.16) for d > 7 remains a non trivial
issue.

3.2. Nonlinear Schrodinger equations on compact manifolds. Let (M, g) be
a compact smooth boundaryless Riemannian manifold of dimension d > 2. Denote
by A, the Laplace operator associated to the metric g. In this section we consider
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the analog of (3.1) on (M, g)
(3.18) iug+ Agu+ |ulfu =0, u(0)=ug.
We have the following well-posedness result for (3.18)

Theorem 3.11 (cf. [15]). The Cauchy problem (3.18) is semi-linearly well-posed
for data in H*(M), s > &L,

The proof of Theorem 3.11 is based on the following Strichartz inequality with
derivative losses for the free evolution

| exp(itAg)uollLe(o,17; Le(m)) < CTHUOHH%(M)v
where
2 d d
3.19 - — =5 p227 psq 2700 .
(319 2+2-1 (b.0) # (2,0)

Then the contraction argument is performed in the space
Xp = L2((0,7); H*(M)) N L7([0,T]: W5 (M),

with suitable (p, ¢) satisfying (3.19).
Notice that there is a gap between the regularity d_Tl of Theorem 3.11 and the

regularity d_TQ of Theorem 3.1. It is natural question what happens for data in H?,

5 € [51—727 d_Tl] It turns out that in the case of the flat torus T¢ we can recover the

result of the case R<.

Theorem 3.12 (cf. [8]). Let M be the flat torus. Then (3.18) is semi-linearly well-

posed for data in H*(TY), s > d_TQ.

As in the case of the KdV equation of the previous section, the proof of Theo-
rem 3.12 uses the Fourier transform restrictions spaces. An important additional
element in the analysis is the use of bilinear improvements of the Strichartz inequal-
ities.

The spaces of Bourgain and bilinear Strichartz estimates can also be used in the
case of the sphere to get the following result.

Theorem 3.13 (cf. [19, 20]). Let M be the standard sphere S®. Then :
1. If d =2 then (3.18) is semi-linearly well-posed for data in H*(5?), s > L.
2. If d > 3 then (3.18) is semi-linearly well-posed for data in H*(S9), s > d_TQ.
It is worth noticing that the ill-posedness result of Theorem 3.4 still applies in

the setting of the Riemannian manifolds (cf. Remark 3.7). Therefore, for d > 3,
the indice s = 51—727 turns out to be the critical one for both the well-posedness and
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the semi-linear well-posedness of (3.18) posed on the flat torus or on the standard
sphere.

We observe that in the case d = 2 the assumption s > 1/4 in Theorem 3.13 is
more restrictive then in the case of the torus T2. It turns out that this assumption
is sharp, as far as the semi-linear well-posedness is concerned.

Theorem 3.14 (cf. [16]). Let M be the standard sphere S*. Then (3.18) is not

semi-linearly well-posed for data in H*(S?), s < i.

Proof. The assertion of Theorem 3.14 is a consequence of the description of the
evolution by the flow of (3.18) of the highest weight spherical harmonics.

Proposition 3.15. Let T > 0, s €]55, 1[, & €]0,1[. Take M = S? with the canon-
ical metric in (3.18). For n € N, we denote by 1, : S* — C the restriction to S?
of the harmonic polynomial (1 + ix2)". Then there exists ng such that for n > ng,

the solution w,(t) of (3.18) with initial data ke, where @, = n%_szbn is globally
defined, and, for t € [0,T] it can be represented as

(320) un(t) — He—it(n(n+1)_ﬁ2wn) (@n _I_ rn(t)>7
where w, ~ n2~% and rn(t) satisfies

Irn (Ol ss2y < Cr n=’

where § > 0 and Cr depends on T but not on n. Moreover there exists C' > 0,
independent of T and n such that

(321) HunHLoo(R;Hs(SQ)) S Ck.

Proof of Proposition 3.15. Recall that 1), is and eigenfunction of —A, associated to
and eigenvalue n? +n. An easy computation shows that

1
|nllee =n" 22, n>>1.

Therefore ||¢,||ms = 1 and ||¢,||rz < Cn™*. Similarly to the Euclidean case, the
solutions of (3.18) enjoy the conservation laws

(3.22) / lu(t, z)|*dz = Const
M
and
(3.23) / Vu(t, 2)|?de 1/ lu(t, «)|*dz = Const .
M 2 /M

The well-posedness result of Theorem 3.11 applies for the initial data up = k¢, and
we obtain a local solution u,(¢). But since ||¢,||fz < Cn~™*, using the conserva-
tion laws (3.22), (3.23) and the Gagliardo-Nirenberg inequalities, we deduce that for
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n > 1 the H' norm of u,(t) is bounded uniformly with respect to t. Therefore, we
can reiterate the well-posedness results and to obtain that for n > 1, the solutions
uy,, (t) are globally defined.
For every o € R, we denote by R, the rotation of R? defined by
R, (x1,29,23) = (cosaxy — sina g, sin wzy + cosa zy, ¢3)
and by R’ the associated unitary operator of L?(S5?%),
Riu(z) = u(Ry(2)).

Observe that R% 1, = exp(ina)i, for every a € R. The following elementary lemma
will be useful in the sequel.

Lemma 3.16. Let n € Z and u € L*(S?%) be such that for every a € R,
(3.24) Riu = exp(ina)u.

Then the decomposition of u in spherical harmonics reads
= c, + Zgj
J

where ¢ € C and each g; is a spherical harmonic of degree > n.

Proof. Since the family (R}).er is a one-parameter group of unitary operators leav-
ing invariant the space of spherical harmonics of degree [, one can find an orthonor-
mal basis (hg) of L?(S?) such that, for every k, hy is a spherical harmonic satisfying,
for some ny € Z, for every o € R,

(3.25) R} by, = exp(inga) hy.
Comparing (3.24) and (3.25), the decomposition of u in the basis (hy) reads
(3.26) u= Z crhg.

k:np=n

Let h be a spherical harmonic of degree [ satisfying property (3.24) for every o € R.
Denote by P the [-homogeneous polynomial on R® such that h = Ps2. Then (3.24)
is equivalent to

(3.27) Va € R®, P(R.(z)) = exp(ina)P(z).
Let us decompose P according to the powers of z = z; 4+ t29 and z = 21 — 129

(3.28) Py, 22,23) = Z lpq Zpngé_p_q
ptq<l
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where a,, € C. In view of (3.27), (3.28) and
(3.29) P(Ry(2)) = Z apq exp(i(p — q)oe)zpéqwé_p_q,
p+a<i
we conclude that a,, = 0 unless p — ¢ = n. As a consequence,
l2p+qgzp—qg=n
and, if [l = n, then p = n and ¢ = 0, so that P = ¢z", i.e. h = b, for some ¢ € C.
Coming back to decomposition (3.26) completes the proof of Lemma 3.16. U

Using Lemma 3.16, we can write

|9971|299n =Wn¥n + Ty,
where r,, contains only spherical harmonics of degree > n in its spectral decompo-
sition and
_ HS‘QnH4L4 o
lenll72
Observe that that R%u, is a solution of (3.18) with data ug = ke"™p,. On the
other hand ¢"”u,, is also a solution of (3.18) with the same initial data. Therefore,

using the uniqueness assertion of Theorem 2.6 (in spaces invariant under the action
of RY) for the Cauchy problem (3.18), we obtain

n

Riu, = e"™u, .
Using Lemma 3.16, we deduce that u, () is a linear combination of v, and spherical
harmonics of degree > n.
Let us give the heuristic argument which permits us to find an ansatz for w,(¢).
In view of the above discussion, we may hope that u,(t) can be written as
u, (t) = kep ()@, + “small error” .

Substituting this in the equation (3.18), neglecting the “small error” and projection
on ¢, yields the equation

ik, — n(n + ke, + 57w, |en|?cn =0, ¢,(0) =0

which gives
a(t) = e )R n)

In order to make the above formal discussion rigorous, we set

wy(t) = ke AN (142 (6) 0 + 40 (8)),
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where z,(0) = 0, ¢,(0) = 0 and ¢, (t) contains only spherical harmonics of degree
> n in its spectral decomposition. Proposition 3.15 is clearly a consequence of the
following statements.

Lemma 3.17. There exists a constant C' > 0, independent of T and n such that
_1_
o (B2 < Cn42,

Lemma 3.18. There exists a constant C't > 0, which depends on T but not on n
such that

sup |z, (t)] < C’Tn%_?’s.
te0,T]

Proof of Lemma 3.17. Let us first rewrite the conservation laws (3.22), (3.23) in
terms of z,(f) and g, (t). Since g, is orthogonal to ¢,(t) in L?(S?) as well as Vi,
to Vg, (t), we can rewrite (3.22) and (3.23) as

(3.30) 1L+ 20Ol enllze + lgn(ONIZ2 = lleallZ2,

1
(3:31) 14 2P IVenllzz +1IVa (Ol = 55 llun®)llze =

2
KR
IVeenllze = < llealls:

Observe that
HVS‘%H%? = (¢n, —Ap,) =n(n+ 1)“9‘971”%27

where (-, -) denotes the L%*(S?) scalar product. Therefore multiplying (3.30) with
—n(n + 1) and adding it to (3.31) gives

(3:32) IVaa(®)ll72 = n(n + Dllan ()72 =
1 K? 1

gl (s — Slleallts < 5o lua(Olths

Let us bound the right hand-side of (3.32) as follows
lun(®lI7s < C(leallzs + llan(®)l7s) <
14 14
<O 4 lga(®)llze) < C2™ + a1y,

where we used the Sobolev inequality in the last estimate. We can decompose

() = > ¢uilt)

>n+1
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where ¢, ; € Ker(Ag2 4+ (I+ 1)). Hence

IV an ()17 = n(n+ Dllga )17 = D (0+1) = nln+1)lgnit)][Ze-
>n+1

If il >n+1, we have [({+ 1) — n(n+ 1) > and therefore
IVgn ®)1172 = n(n+ Dllaa()llz2 = O, -
Coming back to (3.32),
14 (1)

Since ¢,(0) = 0 by a bootstrap argument,

1_

12y <COF 4+ ol )

5 =

(3.33) lgn(B)]] 4 < Cni72.
On the other hand, we also have that if [ > n 41 then [(I+1) — n(n+ 1) > n and
thus
wllgn ()2 < C (378 4l 75).
Since s > 3/20, we get the bound

(3.34) gn ()| 12 < Cn™ 372

Using (3.33) and (3.34), we finally arrive at
lgn )l < Nl 12 lan By <

This completes the proof of Lemma 3.17 U

Proof of Lemma 3.18. Let us set w,(t) := z,(t)pn + ¢.(t). By projecting the equa-
tion

(10r + Ay + |un|*u, =0

on the mode ¢, we get that z, solves the equation

H2

Zé’n — sznzn = —W
nilr2

({ln + w2 (en + wa) s @0) = (pnl*0n s 90)) =

H2

=~ ([ e P CReEmw wgr Pl P, 70).
ie3 L2



ILL-POSEDNESS ISSUES FOR NONLINEAR DISPERSIVE EQUATIONS
Next, the equation for z,(¢) can be rewritten as

. K2
12, — Kz, = —2w, K22, —wp k2, + 72(’)(|zn|2 / |c,on|4 +
HS‘QnH]ﬁ

4 |zn|3/|son|4+/|qn|3|son|+/|qn|2|son|2+|<qmrn>|>-

Let us estimate the source terms. Write using Lemma 3.17

J 1 Plen]

lonlZs = Cn®llgullzs llealle < Cn*llgullz2llgn
nily2

12 ylialle <

_L_ L_ 1_ 1_
§C’n25n I 25n2 45n4 SICTL2 55‘

Further we have

f|Qn|2|S«9n|2 < C 2s 2 2 < C 2s _%_45 %_25 _C s
W < Cn?|lgnllz2llenllie < Cn™n n — s
L
and
W < Cn?||gull i lIralle < Cn =2 nd=5s — Cpi=5,
ie3 L2

Therefore, if s > é, the equation for z,(t) can be written as

35

(3.35) 1012, = —2w, k2 Re(2,) + O(wn |20 + wnlza|® + ni—:)’s)
with z,(0) = 0. Moreover using once again the L? conservation law (3.30), we have
n (D117
L= |14z, = L )!” = O(n~57%).
HS‘QnH]ﬁ

Therefore X
12Re(z,) + |2, ] = O(n™27%)
and the equation (3.35) takes the form

. 1_
’Lath = O(wn|zn|2 ‘|’wn|zn|3 + na 35)7

with w, = (’)(n%_%). Hence if we set

M, (T) = sup |z.(t)];
0<t<T
we obtain
(3836)  Mu(T) < CT (2 [My(T) 4 2 (M (T)] + 0 7>).
In view of (3.36), we set

M, (T) = n®~5 M, (T)
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and therefore (3.36) yields

My (T) < CT (14 ns = [N (T)] 4 0!~ [, (7)),
Since M, (0) = 0 and s > 25, we obtain that M, (T) < CT uniformly with respect
to n. This completes the proof of Lemma 3.18. U
This proof of Proposition 3.15 is now completed. U

Notice that the assertion of Theorem 3.14 is new only for 0 < s < 1/4. Indeed for
s < 0, we can apply Theorem 3.4.

Let us now show how Proposition 3.15 implies Theorem 3.14 for 3/20 < s < 1/4.
The main point is that for s < 1/4 we have w,, — oo as n — oo. Let us fix T' > 0,
k €]0,1] and let (k,) be a sequence of positive numbers such that

(k2 = kDw, =0", 0<p<1.
Since s < 1/4 and w,, ~ n%_%, we have that for § < 1, k, — k. Let (u,,) and
(Ur,,n) be the solutions of (3.18) with data e, and s, @, respectively. Then
[t (05 ) = Uiy (0, )|z < Cl6 = in| — 0
but thanks to Proposition 3.15, for ¢ € [0, 7],
itn? -

[t (s ) = (s ) s > €™ = 1] = Cpn™°
with § > 0. The proof of Theorem 3.14 for 3/20 < s < 1/4 is completes by observing
that for all » > 1,

sup |eim’6 -1 =2.
0<t<T

When 0 < s < 3/20, we need to perform a slight modification of the argument.
Indeed, in this case is suffices to remark that in fact we need to justify the ansatz
only on a a small interval [0,T,] with T, satisfying

lim n%_QSTn = 00.
n— 0o

The bound of Lemma 3.17 is uniform in time. We only need to slightly modify the
proof of Lemma 3.18. In the case 0 < s < 3/20, we define

M, (T) =T 0 5 M (T), 0<T<T,,
and, the argument of Lemma 3.18 yields the bound
M, (T) < C(14 T3 [M,(T))> + T3n' =3[ M, (T)]) .

5Recall that a similar idea idea was used in the discussion around Theorem 3.4.
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If we set
5s_3_,
T, :=n2"38

with 0 < ¢ < 1, a bootstrap argument gives

M, (T)<C
and therefore
|2 (1)] SCni_Ssn%_%_E:Cn_é_g_s, 0<t<T,.

Therefore the ansatz is valid on [0, 7},], which is a sufficiently large small interval to
get the instability property of the flow map. Indeed

which gives the big oscillations needed to assure the lack of uniform continuity of
the flow map. Let us finally mention that in the case s = 0, to assure the global
existence one also has to impose a smallness assumption (independent of n) on the
parameter k. This completes the proof of Theorem 3.14. U

We end this section by several remarks.

The result of Theorem 3.14 is another instance when we see that the critical indice
for the semi-linear well-posedness is shifted from the scaling one because of concen-
tration on a curve (a closed geodesic). It would be interesting to develop a notion of
critical exponent associated to curve similarly to the one associated to a point via
the scaling invariance.

It would be interesting to decide whether for some 0 < s < 1/4, the Cauchy
problem (3.18) is well-posed (probably after a suitable gauge transform) for data in
H?#(5%). Recall that such a phenomenon is not excluded as shows the experience
with the modified KdV equation.

We do not know for an analog of Theorem 3.9 in the setting of compact manifolds.
Moreover, it is known that in case of the sphere S® the assertion of Theorem 3.9
fails. More precisely the Cauchy problem

iug + Agu = (1+ [u>)2u, u(0)=uy, 0<a<l,
posed on S® is not semi-linearly well-posed for data in H1(S%) (cf. [16, 18])
We refer to the work of Banica [2], where the ansatz used in the proof of Theo-

rem 3.14 is justified up to time one for 0 < s < 3/20. Let us also mention the work
[17] where the approach of Theorem 3.14 is extended to (3.18) posed on the unit
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disc of R? with Dirichlet boundary conditions. We also refer to [26] for ill-posedness
results for the cubic NLS posed on the circle S*.

4. FINAL REMARKS

There has been a number of works, closely related to the discussion in these notes
for nonlinear wave equations (cf. [14, 25, 28, 54, 52, 53] ... ). In the context of
the nonlinear wave equations, again, families of solutions concentrating at a point
contradict the well-posedness (or semi-linear well-posedness) below the scaling ex-
ponent. The finite propagation speed of the wave equation is exploited in [53] to
construct a single solution, concentrating in an infinite number of points, which stays
bounded in H* (for some suitable s) and becomes instantaneously very large in H,
o > s. It would be interesting to prove the analogue of Lebeau’s result in the context
of the NLS. Despite the lack of the finite propagation speed for the Schrodinger op-
erator, the reasoning in the proof of Theorem 3.4 above is of a semi-classical nature
(cf. also [15]) and thus finite propagation speed considerations could be employed.
It is worth noticing that, again, in the case of nonlinear wave equations ill-posedness
above the scaling is closely related to concentrations on curves, for instance the
Lorenz invariance provides families of solutions concentrating on light rays.

The problematic discussed in these notes fits naturally in the context of parabolic
PDE’s. There has been some first results in that direction (cf. [21, 57] ...), and, we
believe there is further progress to come.
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Dispersive estimates and applications

Herbert Koch, Dortmund

Strichartz estimates are one of several basic tools in the study of linear and
nonlinear dispersive equations. They quantify the limitations of the extent
to which waves can be focussed over a certain time interval. Analytically
they extend estimates which are valid for elliptic operators to certain non

elliptic operators.

The lectures series will focus on Strichartz estimates for equations with
rough coefficients, which are motivated by strong wave interactions for non-

linear equations.

The first talk will give a survey on Strichartz estimates for equations with
rough coefficients and their applications. The second lecture will describe
the technique of wave packet decomposition leading to a calculus based on

the FBI transform.

This wave packet decomposition is applied in the third lecture to linear dis-
persive equations, leading to a representation of the fundamental solution.

This wave packet decomposition implies dispersive estimates.

Finally these techniques are applied to nonlinear dispersive equations and

to spectral projections.
Most of the lecture series is based on the joint paper with D. Tataru:

Dispersive estimates for principally normal pseudodifferential operators,
aiXiv:math.AP /0401234

and on joint work with N. Tzvetkov:

On the local well-posedness of the Benjamin-Ono equation in Hs(R), Int.
Math. Res. Not. (26), 1449-1464(2003).



