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VERTEX-FACE CORRESPONDENCE IN ELLIPTIC
SOLUTIONS OF THE YANG-BAXTER EQUATION

Youichi SHIBUKAWA
Department of Mathematics, Hokkaido University,
Sapporo 060, Japan

In this review, we introduce an elliptic R-operator, which is a solution of the Yang—
Baxter equation on some function space, and show the vertex—face correspondence
for the eliiptic R-operator. As a result, the factorized L-operators for the elliptic
R-operator are constructed. Moreover we explain that Belavin’s R-matrix, the
vertex—face correspondence and the factorized L-operators for it are produced from
the elliptic R-operator.

1 Introduction

In 1992, we found a new solution of the Yang-Baxter equation, which is called
an elliptic R-operator 121314, Tt is an operator on some function space, and is
defined by means of the elliptic theta function. Roughly speaking, we obtain
the elliptic R-operator by taking the limit n — oo of Belavin’s R-matrix i.e. the
completely Z, symmetric R-matrix, but we couldn’t get Belavin’s R-matrix
again from the elliptic R-operator. In 1994, Felder and Pasquier 3 solved this
problem. They succeeded to show that Belavin’s R-matrix is obtained by
restricting the domain of the modified version of the elliptic R-operator to a
suitable finite-dimensional subspace. We can regard the elliptic R-operator as
a generalization of Belavin’s R-matrix.

It is well-known that Belavin’s R-matrix satisfies several important proper-
ties. In particular, the vertex—face correspondence!'” is the one of the most im-
portant properties. Recently the author! showed that the elliptic R-operator
has the vertex—face correspondence which produce that of Belavin’s R-matrix.

In this review, we will introduce the results above, and will apply the
vertex—face correspondence to get the factorized L-operators of the. elliptic
R-operator!! and Belavin’s R-matrix +:6:10,

2 Elliptic R-operator

2.1 Definition

We fix 7 € C such that Im 7 > 0 and define an open subset D C C by
D={2€C; |imz <™} Let V* and V- be spaces of all functions f
holomorphic on D and such that f(z + 1) = £ f(2) for all z € D, respectively.

1



Similarly let V"‘@)V"‘ and V'éV’ be spaces of all functions f holomorphic
on D x D with the property f(z; +1,2;5) = f(21,22 + 1) = (21, 22) for all
21,22 € D, respectively. We put V := V¥,

Now we define an elliptic R-operator ﬁ(u) on vév. Let K be a complex
number such that & ¢ Z + Zr and let 9;(2) = 9;(2,7) be an elliptic theta
function; 91 (2) = -,z exp[rv/=1(m + 1)’ + 2nv/=I(m + 1) (2 + 1)].

Definition 2.1.1 (Elliptic R-operator) For f € vév, we define

(ﬁ(u)f )z, 2) = 01&2:)1;?2(,::)@ fz2,21) + ____191;??;2:)11) f(21,22),

where 231 := 23 — 21. The complex number u is called a spectral parameter.
As the elliptic theta function 9, () has simple zeros at z € Z+Zr, the function

v
R(u) f has the singularities at the points (21, 22) € D x D such that 2; —2, € Z.
But we can show that all singularities are removable by the Riemann removable

v A
singularity theorem. Hence R(u) 1s an operator on V®V.

Let V*@V+@V* and V-@V-&V- be spaces of all functlons f holomor-
phic on D x D x D and such that

f(zl + 1,22,23) = f(z1’22 + 1,23) = f(zh 22,23 + 1) = :Ef(2’1,22,23)

for all 21,292,235 € D, respectively. By the three term equation of ¥;(z)
(cf. Whittaker and Watson 10 p.461), we get the following theorem 12:13:14,

Theorem 2.1.2 R(u) satisfies the Yang-Bagter equation on V®V®V.

(1® R(u12))(R(urs) ® 1)(1 ® R(uzs))
= (1\%(“23) R1)(1® é(uw))(é("lz) ®1),

where u;; = u; —u;.

2.2 Vertex—face correspondence

In what follows i € R\Z, and let A be a set of sequences A = ();) (i € Z)
such that

)\,'ED,
Aiji=M— A €Z+Zh Vi£j€L.
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We note that the set A is not empty for any A. For A € A and i € Z, let A\ + ke;
denote the sequence

AJ' J#1,

(z\+ﬁ»s¢)j={,\,.+h, j=i.

We note that A + lie; € A for all i € Z by the definition of A.
Definition 2.2.1 (Boltzmann weight of the face model 1457:10) For ),

v u
', v € A, Boltzmann weights W |\ «u V:l € C of a face model are given
1

u
as follows. For A € A, we put

A+ fig; i
Wix  w A+ 2me :=‘9—11§3‘;;—h),
A+ lig; i 1( )
[ A+ he ]
v ; i - .
WA u A+ Fi(ei +€5) :=%’£L—;'Lj) (i # ),
| A+ ] 1(A)
[ A+ e 1
v : D (u)d (R + X5 ..
WA U A+ hfeite5)| = 1’; z)‘.l.()ﬂ (h)J) (i # ),
/\+ﬁ€j i 1\ /01

v [
otherwise we set W |[A u v :=0.

!

Next we define incoming intertwining vectors of the elliptic R-operator.
Definition 2.2.2 (Incoming intertwining vector ') For \,u € A, define
an incoming intertwining vector ¢5 € V* as follows.

f = ), FeZst. u= A+ he;,
A 0, otherwise.

The incoming intertwining vectors are the Dirac delta functions essentially.
By Definition 2.1.1 we can get a vertex—face correspondence for the elliptic

R-operator. .

Theorem 2.2.3 (Vertex—face correspondence ') For A\, u,v € A

- v v [ - o
¢z®¢§R<u>=zwlA v u]qszlw&,

weEA M
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A
where both sides are the opérators VYV — C.

v

Since R(u) satisfies the Yang—Baxter equation (Theorem 2.1.2), we can
show that the Boltzmann weights of the face model satisfy the star-triangle
relation.

2.3 Factorized L-operator

First we define the dual of the incoming intertwining vector of the elliptic R-
operator, which is called the outgoing intertwining vector!. Let k; and k; be
integers such that k1 < ky, and we set k := (ki,ke) and k= ko — k; +1. In
what follows, the following notation will be in force.

Vo= Vt, if kis even,
1y, ifkisodd.

Definition 2.3.1 (Outgoing intertwining vector !') For A,u € A and
u & Z + Zt, an outgoing intertwining vector dx(u)y € V of the elliptic R-
operator is defined as follows. For A € A and ky < i < ky, we set

R = | R o

N i 1)

otherwise we put di(u)s(z) =

These outgoing intertwining vectors satisfy the equation below, which is the
dual of vertex—face correspondence (Theorem 2.2.3).

Proposition 2.3.2 For \,u,v € A and uy,uy € Z + Zr,

(R(t12)dre(w)’, ® (1)) (21, 22)

1] \4 ‘ll"
=D d(ua)i(21) ® Puc(ur)} (22)W [A U1z V] .

HEA I

Now we are in the position to construct factorized L-operators for the
elhptlc R-operator Let W be a space of all C-valued functions on A, and let

V®W (resp. W®V) be a space of all functions g:D xA = C (resp. AXD = C)
such that g(-,A) € V (resp. g(),:) € V) for any A € A. We define a factorized

v
L-operator Ly (u) : Vé\)W - W@V as follows. For g € V&W and u € Z + Zr
I ZH
(Li(w)g) (1, 2) := Y dr(w)(2)(Bha(: N)).
AeA
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We define VQ%V&W (resp. wévéw by a space of all functions g : DxDxA —

C (resp. A x D x D — C) such that g(-,-,A) € VeV (resp. g(A,-,-) € V&V) for
any A € A. By means of Theorem 2.2.3 and Proposition 2.3.2, we immediately
obtain the following theorem:

Theorem 2.3.3 (Factorized L-operator ') For uy,us ¢ Z + Z7

(1® B(usa)) (i) ® 1)(1 @ Ly (uz))
= (Li(uz) ® 1)(1® Li(ur))(B(uns) @ 1),

where both sides are the operators VéVQ%W - WQ%V%V.

3 Belavin’s R-matrix

3.1 Method to obtain Belavin’s R-matriz from the elliptic R-operator

For n € Zy, let V,(u) be a space of entire functions f of one variable such
that '

f(z+1)=(-1)"f(2),
f(z+7) = (-1)"exp(—2nv/=1(kz —u + B f(2).

We note that V,(u) C V* if n is even and that V,(u) C V= if n is odd.
Theorem 3.1.1 (Felder and Pasquier 3)

v
R(u12)(Va(uy + h) ® Vi (u2)) C Vi (uz + ) ® Vi (uy).
The space V,,(u) is of n dimensions and a basis is given by
1_ i o
{es)(2) 1= 9 2 %] = nz, 7)) sz
2

For n € Z5,, define a translation operator T}, () on the space of all holomor-
phic functions on C by

(Ta(w)f)(2) = f(z - 2).

T (u) maps isomorphically V,, := V,,(0) onto V,(u). We modify the elliptic
R-operator as

A\ \"
R (u12) := To(us + ﬁ)_‘l ® Tn('“fl)_1 o R(u;2) o To(u1 +B)® T (u2)
. Vn®Vn



v
Theorem 3.1.2 (Felder and Pasquier?®) R,(u) preserves V,,®V, and obeys
the Yang-Bagter equation (Theorem 2.1.2).

Let {e’};ez/nz C V;! be the dual basis of {e; := e;(0)} C Vy;

e'(ej) = bi5.

\' v
Now we define an operator R,(u)* on V;} ® V;!, the transpose of R,(u) on
Vo ® Vi

(Ra(u)*e’ ® ) (ex ® ) = (¢ ® e*)(ﬁ,.(u)ez ® ).

Theorem 3.1.3 (Felder and Pasquier 3) The R- matnz R,,(u) is Belavin’s
R-matriz®*5,
3.2 Vertex—face correspondence

We use the notation defined in Section 2.3. For A\,u € A, we put ¢(u)y =
&4 o Ti(u+ |A|k)|v € Vg, where |Alx = Mg, + )\k1+1 + -+ 4+ Ag,. Then

k-1
$u)s = D B4 o Tu(u + |Alk)(e5)e’
=0
_{ DAl F I = BX, B, i = Aok s (b S 3 < B),
0, ‘ otherwise.

Hence the vector ¢(u)} is nothing but the outgoing intertwining vector of
Belavin’s R-matrix %5, which was first discovered by Baxter !, Jimbo, Miwa
and Okado?. Theorem 2.2.3 leads us to '
Theorem 3.2.1 (Vertex—face correspondence '”) For A, u,v € A,

v ' v K
R (u12)*$(u1)y ® d(uz)ls = Y d(ua)y ® p(wr)sW [A Uur2 V:I .

ueA p
3.3 Factorized L-operator
v
First we define the operators Ly (u)} as follows. For f € V,
v -
(L) £)(2) = duc(u)}(2) B4 f.
6



~ v
We put Ly (u)y := Ti(u + [Ali) " L (u)iTr(u + |Alx)| and denote its trans-
) )

Vi
pose as Ly (u)} : V¢ = V. Theorem 2.2.3 and Proposition 2.3.2 imply

\% ~ ~ ~ - \
> Ru(ura) Li()} ® Li(ua)t = 3 L (ua) @ L (wr), R (uga)*.
HEA HEA
We define an operator L (u): V; @ W -+ W® Vi by
Lw(ded) =) & e Liuie.
A€A

Here, for A € A, we set 6* € W as §*(u) = dy,.
Theorem 3.3.1 (Factorized L-operator 51°) For u;,u; ¢ Z + Zr

(1® Ru(u1)") (i () @ 1)(1 ® Ef (un)

- - v .
= (Lic(u2) ® 1)(1 ® Li (u1)) (R (u12)" ® 1).
Here both sides are the operators Ve @ Vi @ W 5 WV @ Vi,

4 Conclusion

In this review, we introduce the elliptic R-operator which induces Belavin’s R-
matrix and the several important properties of it. We can regard the elliptic
R-operator as an infinite-dimensional generalization !? of Belavin’s R-matrix.
So we need to study the structure of Belavin’s R-matrix making use of the
properties of the elliptic R-operator. What properties of the elliptic R-operator
induce the crossing symmetry and the gauge factor of Belavin’s R-matrix?

Another important problem is to construct elliptic algebra. This is our
motivation to investigate the elliptic R-operator. The quantum groups and
the quantum homogeneous spaces are useful for a geometric interpretation of
Macdonald’s symmetric polynomials 8%, Macdonald’s symmetric polyno-
mials have two parameters, but, in this case, we only dealt with the case of
specializing these parameters. Further it is more natural to consider Macdon-
ald’s symmetric functions rather than Macdonald’s symmetric polynomials.
Roughly speaking, Macdonald’s symmetric functions are the polynomials of
infinite variables. Then we wanted to construct new algebra which controls
Macdonald’s symmetric functions directly. One candidate is the algebra de-
fined as the L-operator of the elliptic R-operator. In this review, we construct
the factorized L-operators of the elliptic R-operator, which can be regarded as
representations of the elliptic algebra, but we don’t have succeed defining the
algebra yet.
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