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ON THE STABLE COHOMOLOGY ALGEBRA OF
EXTENDED MAPPING CLASS GROUPS FOR SURFACES

NARIYA KAWAZUMI

Department of Mathematics, Faculty of Sciences,
Hokkaido University, Sapporo, 060 Japan

ABSTRACT. Let X,,; be an oriented compact surface of genus g with 1 boundary
component, and I'g,; the mapping class group of 3g4,1. We determine the stable co-
homology group of I'y,1 with coefficients in H(Z,,1;Z)®", n > 1, explicitly modulo
the stable cohomology group with trivial coefficients. As a corollary the rational sta-
ble cohomology algebra of the semi-direct product T'y,; x Hy(Z,,1;Z) (which we call
the eztended mapping class group) is proved to be freely generated by the generalized
Morita-Mumford classes /m;;’s (i > 0, j > 1, i + j > 2) [Ka] over the rational stable
cohomology algebra of the group I'y ;.

INTRODUCTION

The most fundamental fact on (co)homology of mapping class groups for (com-
pact C) surfaces is the Harer stability theorem [H], which states the cohomology
group of the mapping class group with trivial coefficients is independent of the
genus ¢ and the number of boundary components of the surface, provided that the
degree is smaller than g/3 [H] or g/2 [I1]. Ivanov [I] has generalized this theorem to
those with twisted coefficients in the case when the surface has boundaries, (which
we call the ‘bounded’ case). It should be remarked, as for twisted coefficients, the
existence of boundaries is essential. For example, the first homology group of the
mapping class group with coefficients in the first homology group of the surface
is isomorphic to Z (the ‘bounded’ case), Z/(2 — 2g) (the case when the surface
has no boundary, which we call the ‘closed’case) [Mol]. These theorems enable us
to consider the stable cohomology group of the mapping class groups for surfaces.
When we consider trivial coefficients Z (resp. Q), we denote it by H*(T'o0; Z) (resp.
H*(T'so; Q)). At present the cohomology algebra H*(I'o; Q) (and so H*(Too; Z))
has not determined yet.

Recently Looijenga [L] proved that, in the ‘closed’case, (i.e., the case when the
surface has no boundary,) the rational stable cohomology group of the mapping
class group with coefficients in any irreducible representation of the complex sym-
plectic group was a free module over H*(T'oo; Q), and described its free basis. His
computation is involved with geometric consideration on the moduli orbifold of
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20F'38, 32G15, 5TR20.

Typeset by ApS-TEX



2 NARIYA KAWAZUMI

complex algebraic curves including a theorem on Hodge theory [D]. Here it is re-
markable that his results are based only on the Harer stability theorem with trivial
coefficients. This seems to suggest that the Harer stability theorem has not shown
all its own power yet..

From a topological viewpoint the mapping class groups for surfaces with bound-
ary (the ‘bounded’ ones) seem to play rather important roles than those for surfaces
without boundary (the ‘closed’ones). It is illustrated by the stabilization map in
the Harer stability theorem [H], Johnson’s important results on Torelli groups [J,
J1, 2] [Mo3], Morita’s descriptions of Casson invariants of 3-manifolds [Mo4, 5] and
so on. So we think it would be significant to give a result for the ‘bounded’ case.
Furthermore it is required for an infinitesimal approach to the stable cohomology
of the moduli of complex analytic curves [ADKP] [Ka2,3].

In our previous paper [Ka] we independently constructed a bigraded series of
cohomology classes of the mapping class group with coefficients in the exterior
algebra on the first integral homology group of the surface in the ‘bounded’ case.
This series is a generalizations of the Morita-Mumford classes [Mo] [Mu], and is
easily modified to those with coefficients in the n-fold tensor product of the first
. integral homology group of the surface, n > 1. '

In the present paper we consider only the ‘bounded’ case, i.e., the case when the
surface has boundaries. Our purpose is to prove the stable cohomology group of the
mapping class group with coefficients in the n-fold tensor product of the first integral
cohomology group of the surface, n > 1, is a free module over the algebra H*(T's; Z)
and combinations of the (modified) generalized Morita-Mumford classes give its free
basis (Theorems 1.A and 1.B). These imply the Ivanov stability with coefficients
in any finite dimensional rational symplectic coefficients. Following Looijenga [L]
we deduce them from the Harer stability theorem with trivial coefficients, but
geometric considerations including Hodge theory do not fit our situation where the
surface is not closed. We use the Lyndon-Hochschild-Serre spectral sequence for
a pair of groups introduced in [Ka) instead. This makes our computation purely
algebraic. As a corollary the rational cohomology algebra of the semi-direct product
of the mapping class group and the first integral homology group of the surface
(which we call the extended mapping class group) is proved to be stabilized and
to be freely generated by the generalized Morita-Mumford classes over the rational
stable cohomology algebra of the mapping class group in the stable range (Theorem
1.C).

The author would like to express his gratitude to Prof S. Morita and Dr. Y.
Shibukawa for helpful discussions, and to the organizing committee of the 37th
Taniguchi Symposium, especially to Prof. Mika Seppala. For a part of this work
was achieved during the symposium.

Contents.
§1. Results.
§2. Stable Cohomology with Coefficients in H(Z, ;; )®"
§3. Stable Cohomology Algebra of Extended Mapping Class Groups.
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1. Resulf,s.

We should fix our notations. Let g > 2, r,s > 0 be integers. Let 2] » denote
a 2-dimensional oriented C* manifold (i.e., oriented surface) of genus g with r
boundary components and (ordered) s punctures. The group of path-components
wo(Diﬁ""(E;,,,)) is denoted by I'j . (or M} ) and called the mapping class group of
genus g with r boundary components and (ordered) s punctures. Here Diﬁ""(E;,,.)
denotes the topological group (endowed with C* topology) consisting of all orien-
tation preserving diffeomorphisms of ¥; . which fix all the boundary points and the
punctures pointwise. When s = 0, we drop the indices: &, , = Eg,r, Lor=T%,
and similarly ¥, = Eg,o, r, = I‘gﬂ. Throughout this paper we often denote by
H'(X5 ) the first integral singular cohomology group of the space I ., on which
the group I‘;’q acts in an obvious way provided that ¢ > r and t > s. When s = 0
and r = 1, we often abbreviate '

(11) H = H](Zg,l;Z) = Hl(Eg;Z) = Hl(Eg;Z) = Hl(Eg,l).

The third isomorphism is the Poincaré duality, which is invariant under the action
of the mapping class group T'. : _

In view of the Harer stability theorem [H] there exists an integer N(g) depending
only on the genus g such that the forgetful map Iy r41 — Ty - given by forgetting:
the (r 4+ 1)-th boundary component induces an isomorphism

;7Z)

g,

H*TS 113 Z) = H*(T®

for any * < N(g) and s,r > 0. Harer [H] proved N(g) > ¢/3, and later Ivanov
[I1] proved N(g) > g/2. Substituting this isomorphism into the Gysin sequence
induced by a natural central extension

(1.2) 0-Z—-Ty ., »Titl 51

given by mapping the (r + 1)-th boundary component to the (s + 1)-th puncture,
we obtain a natural decomposition

(L3)  HYT3HN2) = H*(T 5 Z) @ eH*2(D34 Z) = HY (T2 Z)le]

g, ? g, g,7?

for ¥ < N(g), where we denote by e € H*(I's*!;Z) the Euler class of the central
extension (1.2) (cf. [Mo] [H1] [L]).
Our first theorem in the present paper is

Theorem 1.A. If s >0,r > 1 and n > 0, we have

.lg*(].-”J 'HI(E" H Z)®n) = H*(Pg,l;H®n) ®H“(I‘,,1;Z) H*(I‘s ) Z)

g,m? g,m g,

for x < N(g) —n.

As a consequence one deduce the Ivanov stability theorem [I] for the I’y r-module
H(Z 3 Z)®" and those for any finite dimensional rational Sp-modules.

g,m?
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To describe the cohomology group H*(T'y1; H®") we need to introduce some
notions related to the mapping class groups. From the observation that the surface
2};,1 is obtained by glueing the surfaces £, ; and 2(1),2 along the boundaries the
group I'y; x Z is embedded into the group T} ; (cf. e.g., [Is]). Here the infinite
cyclic group Z acts on the surface 2(1,,2 by rotating the puncture and fixing all the
boundary points pointwise. The Lyndon-Hochschild-Serre spectral sequence of the
pair of groups (T'j ;,Ty,1 X Z) introduced in [Ka]§1 induces the fiber integral
(1.4) m: HY(TG 1, Tgn X Z; M) — HI73(Tg,1; M)
for any I'y ;-module M. Here we denote by H? (I‘g 1,091 X Z; M) the g-th coho-
mology group of the kernel of the restriction map

C*(I‘g 1,091 X Z; M) := Ker(C’*(I‘g 1 M) - C*Ty1 x Z; M))

of the normalized standard cochain complexes C*(:;-).

The cohomology class w defined below plays an important role throughout this
paper. Regard the surface E .1 as a subsurface obtained by deleting one interior
point from the surface ¥, ;. The cohomology exact sequence of the pair of spaces
(Z4,1,%} 1) gives a I'} ;-exact sequence

(1.5) 0—>H1(291)=H——+H1(21 )-»Hz(zg,l, 11)=Z——>0

We denote by w the image of 1 € Z = H(T'} 913 Z) under the connecting homomor-
phism §* induced by (1.5): .

(1.6) w:=6*(1) € H'(T; 1; H).

The restriction of w to the subgroup I'y; X Z(C I'j ;) is null-cohomologous. In fact,
choose a simple curve [ inside the subsurface £ ,(C X ;) connecting the puncture
to a point on the boundary of X} ;. The 1-cocycle w; € Z\ (T} ;; H) given by

(1.7) w(y)=yl-1eH, ~eTly,,

represents the cohomology class w € H'(T'} ;; H). Clearly we have wi(y) = 0 for
any vy € I'y1 X Z.
Thus, in view of the cohomology exact sequence

0— H'(T;1,Tg1 x Z; H) » HY(T} ;s H) » H'(Ty1 x Z; H),
we may regard w as a (uniquely determined) element of H(T'} |, Ty 1 x Z; H):
wE Hl(Fg AP x Z; H).
For a finite subset S of N we form the power of w
w® € H¥ (T} ,,Ty1 x Z; H®),

which we multiply in numerical order. Let 7 > 0 be an integer. Under the condition

(1.8) t+4S > 2.
we define the generalized Morita-Mumford class m,-,g by
(1.9)  mysi=m(elwS) € HEHS-2(T, | HOS),

where m is the fiber integral given in (1.4) and e € H%(T; 1;Z) is the Euler class of
the central extension (1.2) (r =1, s =0).
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Definition 1.10. A set P = {(S1,%1), (.S’é, i2)y.-+,(Svy%y)} is a weighted partition *
of the indezx set {1,2,...,n} if

(1) The set {S1,85%,...,5,} is a partition of the set {1,2,. Y

{1,2,...,n} = ]_[Sa, S 40 (1<Va <)

a=1
(2) 41,2,...,1, > 0 are non-negative integers.
(3) Each (S,,1,) satisfies the condition (1.8): i, + S, > 2.

We denote by P, the set consisting of all weighted partition of the index set
{1,2,...,n}. For each weighted partition P = {(S},4;),(S2,12),... y(Suy10)} € Py
we deﬁne the generalzzed Morita-Mumford class

(1 11) mP = m’l,slm12;s2 m’vysu € H2(214)+n—2u(r 9,1 ’H® )
Theorem 1.B. For* < N(g)—n _
H*(Ty; H®) = @ H*(Ty,15Z)mp = H*(Tg,152)%%.
Pep,
By the eztended mapping class group we mean the semi-direct product
Ty, =HxTS =H(Z,;2Z)xI,

The generalized Morita-Mumford classes m;; ; € H* (I‘g 13 Z) are constructed as
follows [Ka). In a similar way to T'y; X Z C I';.1 the group I"g 1 X Z is embedded
into the group F . Using the simple curve ! in (1.7), we define a 2- cocycle wp €
Zz(Pg 1 9,1 X Z; Z) by
(1.12) Gi(uim, uzy2) =yl =) u, wui,us € H, 1,12 € Ty
where - denotes the intersection product on H = H 1(Z4;Z). Its image @& in

H 2(1" 4,13 Z) is equal to the Euler class of the central extension

0— Z — Hy(3)1;2) x T}, — Hy(S,1;2) » T, =T1 |
The forgetful map 7 : I"E; — 1:‘—;; vinduces the fiber integral
(1.13) % HYTL,, Ty x 2;Z) — HI(T, 1, 2).

Thus we can define the generalized Morita- Mumford class

iy = F(e'd’) € H?"“J‘-Z(ITI;Z)
for: >0, j >0 with ¢ + 5 > 2. Clearly m,+1 o is equal to (the image of) the i-th
Morita-Mumford (tautological) class e;(= ;) € H*(T;; Z) [Mo][Mul]:
m,-+1,0 =e; € Hz'(I‘g,l;Z).
Theorem 1.C.
H*(Ty1;Q) = H*(Tg,1 % Hy(Z,152); Q) = H*(Ty,1; Q) ® Qlz 5
for + < N(g), where integers i and j run over the domain
{(4,5) €ZxZ; i>0,;5>1andi+j > 2}.

*We use the term ‘partition of a set’ following Stanley [S] p.33.
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~ 2. Stable Cohomology with Coefficients in H!(Z, ;Z)%".

This section is devoted to the proof of Theorems 1.A and 1.B.
Suppose r,s > 1. We define the forgetful map

Ly, — I‘;:,'_l
by forgetting the s-th puncture, and define
w:ly, — I‘;,l and w@: I‘;,’;l PR

by forgetting the punctures from the first to the (s — 1)-th and the boundary
components except the first. We have a natural commutative diagram

|

(21) =| = |

1 T™
Fg,l - I1y,1

T, Ts—1
Pg:r

We regard the surface X} , as a subsurface obtained by deleting one interior point
from the surface E;;l and numbering the resulting puncture the s-th. The inclusion
homomorphism H*(Z7!) — H 125 ) is equivariant under the forgetful map = :
Lyr— I‘;;l, and so induces a I'; .-exact sequence

(2.2) 0— HY(Z;) - HY(Z) ) — HY(Z,1, 58 ) =Z — 0.

gir

We denote by w = w(,_1) the image of 1 € Z = HO(I'
homomorphism 6* induced by (2.2):

g,r1Z) under the connecting

(2.3) ‘ W = W(g—1) I= 6*(1) € HI(I‘g I Hl(Es 1))
From the commutative diagram (2.1) the homomorphism induced by the forgetful
‘map @

Hl(Fg uH)— HY(T ;H) - HY(T® HI(ES )

g,7m? g,m!

maps w defined in (1.6) to w = w(,_y) defined in (2.3).
The kernel of the forgetful map = : I'st! — T . is naturally isomorphic to
m1(Z;,-) (s 2 0), and so we have a Gysin exact sequence

(24) - — HY(T® ;M) S HITHL M) D

g,r
HIY(T? Hl(E r)®M)—->H9+1(I‘gr, M) —

g

g;T?

for any I'; .-module M. Here we denote the Gysin map (the fiber integral) by my
to know it from the fiber integral m introduced in (1.4).
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Theorem 2.5. Let s> 0,7 > 1 and let I, J be mutually disjoint finite index sets.
Assume s > 1 if I # (. Then the forgetful map w induces an isomorphism

B*(T; 5 B (57)®T @ HY(5;,)®)

g9,m

=(@ w® @ H*(Ty1; HOUVI=5))) @ . T,z H*(Ty 1 Z)
scI1

for ¥ < N(g) — §(I'U J), where w® € H¥S(T'} |; H®S) is the power of the class w
defined in (1.6). :

Especially, if I = § and J = {1,2,...,n}, we obtain Theorem 1.A stated in 81.

Proof. We abbreviate H,) := HY(Z3 )= HY(Z$ ;7). So the 'y r-exact sequence
(2.2) is rewritten to ‘

(2.6) 0-—-—>H(3_1) —)H(s) —7Z —0.

We prove the theorem by a double induction on (I U J ) and §I. When TU J = 0,
the theorem is trivial. Suppose §(I U J) > 1.

(A). The case I = §: Choose an index jo € J and set J_ := J — {jo}. From (1.3)
and the inductive assumption applied to H *(TetL Hy®-) and H *T2 s Hy®)
the forgetful homomorphism

7 H*Ty 5 Hy®7-) — H*(T5H H ,,®7-)

g,m’ g,7 )

has a left inverse over H*(I'% ), and so the Gysin sequence (2.4) decomposes itself
into the H*(T'; ,)-split exact sequences

(27) 0— HYTY s H(®-) —
H*(FS+1' H(s)®J—) _7_"_11) H*—-l(l-\s . H(s) ® H(s)®']‘) — 0,

T [
H ’

for * < N(g) —4§J_. When s =0 and r = 1, we have

9,1

(2.8) 0— H*Ty0; H®-) - HY TS s H®-) B YT, s H @ H®-) = 0,
for x < N(g) — §J_. Compare the exact sequence (2.7) with the sequence given

by applying ®p«(r, ,)H*(T'§ ) to the sequence (2.8). Then the forgetful map w
induces an isomorphism

w": H* (05,03 Hsy @ H®") = B*(Tg1; H ® H®-) @per, ) H*(TS )
for x < N(g) — §J. Here we use the fact the map w induces an isomorphism
@ H*(Ty ) ®n(r,,) HX(T,) = HY(T:H!

from (1.3) and (2.1). Finally label the first H and H(,) the index j,. Thus the
induction proceeds.
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(B). The case I # (: Then s > 1 and so choose an index i io € I. Set I_ :=I—{45}
and Jo := J U {to}. The I'j -exact sequence (2.6) induces a 'y r-exact sequence

(29) 0~ H(o—1)® ® Hy® = H(o)®'~ @ Hy®" - v
Hoony®'- ® 2800} @ H®7 0.

By the inductive assumption applied to the index sets I_ and J,
H*(T§ s He—1)®'~ ® H(»®")

= (@ & @ H* Ly HOUN-—) @peqr, ) HY(TS,.).
SCI-

g,r?

Each element of the RHS is an image of a (uniquely determined) element of H*(T'§ _;
H®U-UJ)) Hence the map

H*(Pg r1H®(I UJO)) - H*(Pg mH(s 1)®I_ ® H( )®Jo)

has a left inverse for ¥ < N(g) — #(I U J). Therefore the cohomology exact se-
quence induced by the I'; -exact sequence (2.9) decomposes itself into a split exact
sequence

wlio}
0— H* l(I\g ‘r,.l%l‘(“3 1)® ®H(3)®J) ol

HYTS s Hio-y®' @ Hy®7) = H* (T2 . Hio—1y®'- ® H(5®7) = 0

g,m? g,m?

for ¥+ < N(g) — §(f U J). Thus we have
H*(T; i Hie-)®' ® Hy®)
_H*(Py ) H(3‘1)® ® H( )®Jo) © (w{zo} ® H*(Fg 7 H(s 1)® T ® H(s)®J))
=( @ w ® H*(Fyyl;H®(JOUI_ S))) ®H"'(I‘_q,1) H*(Pg,r)

scl.
& (P ol @ H*(Ty1; H¥Y-=9)) @pucr, ) H*(TS,)
SCI-
=(P w® @ H*(Ty,1; HE =) @pe(r, .y H*(T2,).
scr

for * < N(g) — #(I U J). This completes the induction. O

We have introduced two sorts of the fiber integrals or the Gysin map induced
by the forgetful map « : T'; ; — I'y 1 in (1.4) and (2.4). These two Gysm maps are
-related to each other in the followmg manner.

Lemma 2.10. For any I'g ;-module M we have
H? (Pg 1 ) -_— HP? (Fg 1 )

] |

HPH(TL  Toq x Z; H@ M) —2— H?(TL ;H @ M).



STABLE COHOMOLOGY OF EXTENDED MAPPING CLASS GROUPS 9

Here we abbreviate H = H' (X, 1;Z) as in (1.1).

Proof. Let G be a group, K a subgroup of G and M a G-module. We define the
cohomology group H*(G, K; M) by that of the kernel of the restriction map

C*(G, K; M) := Ker(C*(G; M) — C*(K; M))

of the normalized standard cochain complexes C*(-;-) [Ka]§l. Let N be a normal
subgroup of G satisfying the condition: KN = G. In [HS] p.118 1.27ff and p.119 1.6
two mutually equivalent filtrations (4;) and (A}) are introduced on the normal-
ized standard cochain complex and they induce the (ordinary) Lyndon-Hochschild-
Serre spectral sequence. The filtration (A}) (or equivalently (A;)) restricted to
C*(G, K; M) induces the Lyndon-Hochschild-Serre spectral sequence of pairs of
groups [Ka]:

E}? = H¥(G/N; HY(N,N N K; M)) = H*(G, K; H).

In our situation G = Ty, K = gy x Z and N = m(Z,,) < I'};. Since
HP (g1 H (r1(8g,1); M)) = 0 for i > 2, any u € H?(T; 1; M) is represented
by a cocycle z whose value z(vy1,72,. e 3Yp)s TLrV2r++ s Yp € P_};,i’ depends only
on the cosets 72m1(Zg1),...,7p71(Zy,1) and ;. We denote by rp—12 the cocycle
given by restricting v, into 71(2y,1) and regarding 7, .. .,7, as elements of Lg1=
Iy 1/m1(Zg,1)- By definition we have myu = [rp_12] € H?~}(Ty ;; H ® M).

On the other hand the cocycle w U 2z defined by

(WU 2)(70:715- - 37) = w(10) @ 10(2(71,721-- -, 15))s Y05 Vir--+>7p € Ty,

represents the cup product w U u € HP"'I(I‘;’I,I‘g,l X Z;H ® M). The value (w U
z)(0,71, .- -,7p) depends only on the cosets Y2m1(8g,1)s - Wp™1(Zg,1) and 7o, 71.
Thus, from a computation involved with [Ka] Lemma 2.3, :

g
m(w U 2)(v2y- .-, 7p) = Z —a; ® 2(bi, Y2 .., ) —bi ® z(ai ", Y2 - - o, Yp),
=1
where {a1,az,...,a4,b1,bs,...,b,} is a usual symplectic generating system of the
fundamental group m;(X,,1). This implies m(w U 2z) = r,—;z and so m(w U u) =
[m(wU 2)] = [rp—12] = myu, as was to be shown. O

Proof of Theorem 1.B. We prove the theorem by induction on n. When n = 0,
the theorem is trivial, so we assume n > 1. Set J = {1,2,...,n}, jo = 1 and
J- = {2,...,n}. Recall the exact sequence (2.8) in the proof of Theorem 2.5.
From Theorem 2.5 and (1.3) the Gysin map my restricted to ¥

H*(Ty1; H®-) @ eZle]) ® w® ® H*(Ty1; H®U-=9) @ Ze]
9, 9,
0£SCJ-

is an isomorphism onto H*~!(I'y 1; H®”) for x < N(g) — n + 1. We denote Sy =
SU {1} for S C J_. Lemma 2.10 implies

m(e'w®) = m(efwSt) = mis, € H*(T,1; H®S+).
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Therefore from the inductive assumption we obtain -

H*(Fg,l;H®") = H*(Ty,1; H®Y) l
= P @m, s, H*(Dg1; HOU-- S>)ea@m,,{1}ﬂ (Tg1; HE'-) )
##£SCJ_ i=0 =1
= @ mpH*(I'g,1;2)
. Pep,

for * < N(g) — n, which completes the induction. [

3. Stable Cohomology Algebra of Extended Mapping Class Groups.
Let 2 > 0, j > 1 be integers with ¢ 4+ j > 2. As in [Ka], we define

m; j = m(e'w!) € H2i+j_2(I‘g,1;/\]H),

where 7 is the fiber integral (1.4), and w’ € H¥(T} |, Ty x Z; N H) is the power
of w.
The n-th symmetric group &, acts on the set P, of the weighted partitions of

the set {1,2,...,n} by

| 0P :={(6(81),11), (0(S2);82), - . ., (0(S,), )},
where 0 € G, and P = {(51,21),(S2,%2),- -+, (Sv,%,)} € Pn. The &p-orbits in P,
are parametrized by the set Q,, defined as follows.
Definition 3.1. A sequence Q = ((71,%1), (J25%2), - -, (Ju, 10)) is & weighted parti-
tion of the number n if

(1) The sequence (j1,J2,---,7v) IS a _bartition of the number n:.
ntptotih=n j12j2--235,21 g

(2) t1,12,...,%, > 0 are non-negative integers.

(3) Zja 2 z'a+1 -ifja = ja+1- '

(4) Each (jq,1,) satisfies the condition: i, + j, > 2.

We denote by Q,, the set consisting of all weighted partition of the number n.
Define R

AP := ((§51,91), (§52,72),. .., (§Sy, 1)) € Qn

for P = {(S1,%1),(S2,82);- ., (Sy,iy)} € Pn provided that §S; > S5 > --- > 45,
and §S; = §Sa41 = %4 2 te41, (1 £ a < v). Then the map A : P, — Qn, P )P
induces a bijection A : P, /&, = Qn. Set

e . n
mg 1= My, 5 Mz, gy * * " My 5, € H2(21a+h 1)(F9’1; /\ H)

for Q = ((41,%1),(J2,%2), - - ,(],,,z,,)) € Q,. The canonical projection \ : H®" —
A"H maps mg to £m, 5 for any Pep,:

(3.2) A(mp) = £m,p € H*(Ty1; [\ H).
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Theorem 3.3. Let‘k be a field with chk >n or = 0. Then we have
H*(Ty,1; /\nﬂl(zy,ﬁ k)) = @ H*(Tg,15k)mg = H*(Ty,1; k)®9-
Q€Qn
for x < N(g) —n.

As a corollary we obtain Theorem 1.C. In fg,ft, the Lyndon-Hochschild-Serre
spectral sequence of the group extension H —»Ty; = H x T, — Ty is given by

Ep? = HP(Tyu; \'H) = HPH(T, ),

and the class m; ; € E2"77~27 s lifted to the class mi; € H¥+2-2(T ),

Proof of Theorem $.8. We fix the order in each P = {(51,%1),(S2,%2),...,(S,,i,)}
€ P, as follows;

(1) §S1 > 4S5 > --- > §S,.
: (2) If uSa = ﬁSa+17 g 2 ia+1-
(3) If §S, = §S,+1 and 4, = 4441, then the minimal element of S, is smaller
than that of Sa+1.

Furthermore we denote

12 ... n |
= (51 gu) € G,

where the indices are set in numerical order inside each subset $,. The n-th sym-
metric group &, acts on H®" by

o(u1 @ Uz ®+* ® Un) = Ug(1) ® Ug(z) ® *** @ Ug(n)
foro € Gp, u; € H (1 <i < n). From the (anti-) commutativity of cup products we

have 7ym; s = mis € H*(T,,1; H®®),if § C {1,2,...,n}, 7 € 6, and 7(3) = S.
Since degm; s = S mod 2, we have

(151 g) misMj T = mjsm; T
*
for §,T C {1,2,...,n}, SNT = 0. Hence, if r € &,, P € P, and T(ﬁ) = P, then
(34) T«mp =mp € H*(D, 1; H®").
Especially for any ¢ € 6,, the permutation 0"’17'0( ) 7'13'1 fixes mp, and so we have
oxmp = Ta(ﬁ)*rﬁ_l*mﬁ = (sign Ta(ﬁ)rp_l)ma(ﬁ).

Therefore for any Py € P, the sum 3 5., _; A(T,;)(sigri Tg)m p is invariant under the
G r-action. This implies myp, #0in H*(Ty1; A"H @ k).
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The group H*(T'y,1; H®™) decomposes itself into a direct sum of &,,-submodules
parametrized by Q, = Pr/&,, which implies the independency of mé’s, @ € Qn.

From the assumption on the characteritic of the field k the map \, : H *(Tya;
(H®k)®") — H*(Ty1; A\"H ®k) is surjective. By Theorem 1.B the H*(T, 1; k)-
module H*(T'y,1;(H ® k)®") is generated by mp, P e P, for x < N(g) — n.
Hence, from (3.2), the H*(T'y,1; k)-module H*(T'; 1; A" H ® k) is generated by mg,
Q€L O

Harer et. al. prdve

Hy(Tg1;2) =0 if g >3 [Mul] [P] [H2]
H2(Pg,1;Z) =27 lfg > 5 [H2])

which imply, when ¢ < 3, H¥(T'y ;;Z) has no torsion in the stable range. So, from
Theorem 3.4, H4(Ty1; A" H(Z,,1;Z)) has no p ( > n)-torsion for ¢ < 3. Glover
and Mislin [GM] prove H*™(T'y 1;Z) (m > 1) has torsion (see also [CC] and [Mis]).
On the other hand Morita [Mo3] proves HY(T, 1; A> HY(2,,1;Z)) = Z* for g > 3 in
a (completely different and) precise manner. Consequently it would be interesting
to know whether H4(T'y 1; A" H'(Z,,1;Z)) (¢ < 3) has torsion or not.
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