
Navier-Stokes Equations in a Rotating Frame
in R3 with Initial Data Nondecreasing at Infinity

Yoshikazu Giga1∗, Katsuya Inui 2, Alex Mahalov 3 and Shin’ya Matsui 4

1 Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan,
Facsimile (81)-11-727-3705

2 Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan,
Facsimile (81)-11-727-3705, inui@math.sci.hokudai.ac.jp

3 Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA,
Facsimile (1)-480-357-9791, mahalov@asu.edu

4 Department of Information Science, Hokkaido Information University,
Ebetsu 069-8585, Japan, Facsimile (81)-11-384-0134, matsui@do-johodai.ac.jp

Matematical Subject Classification (2000). Primary: 76D05, Secondary: 76U05
Keywords. Rotating Navier-Stokes equations, nondecreasing initial data, homogeneous
Besov spaces, Riesz operators.

Abstract

Three-dimensional rotating Navier-Stokes equations are considered with a constant
Coriolis parameter Ω and initial data nondecreasing at infinity. In contrast to the non-
rotating case (Ω = 0), it is shown for the problem with rotation (Ω 6= 0) that Green’s
function corresponding to the linear problem (Stokes + Coriolis combined operator)
does not belong to L1(R3). Moreover, the corresponding integral operator is unbounded
in the space L∞

σ (R3) of solenoidal vector fields in R
3 and the linear (Stokes+Coriolis)

combined operator does not generate a semigroup in L∞
σ (R3). Local in time, uniform

in Ω unique solvability of the rotating Navier-Stokes equations is proven for initial
velocity fields in the space L∞

σ,a(R
3) which consists of L∞ solenoidal vector fields sat-

isfying vertical averaging property such that their baroclinic component belongs to a
homogeneous Besov space Ḃ0

∞,1 which is smaller than L∞ but still contains various

periodic and almost periodic functions. This restriction of initial data to L∞
σ,a(R

3)
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which is a subspace of L∞
σ (R3) is essential for the combined linear operator (Stokes

+ Coriolis) to generate a semigroup. The proof of uniform in Ω local in time unique
solvability requires detailed study of the symbol of this semigroup and obtaining uni-
form in Ω estimates of the corresponding operator norms in Banach spaces. Using the
rotation transformation, we also obtain local in time, uniform in Ω solvability of the
classical 3D Navier-Stokes equations in R

3 with initial velocity and vorticity of the
form V(0) = Ṽ0(y) + Ω

2 e3 × y, curlV(0) = curlṼ0(y) + Ωe3 where Ṽ0(y) ∈ L∞
σ,a(R

3).

1 Introduction

In this paper we study initial value problem for the three-dimensional rotating Navier-Stokes
equations in R3 with initial data nondecreasing at infinity:

∂tU + (U · ∇)U + Ωe3 × U + νcurl2U = −∇p, ∇ · U = 0, (1.1)

U(t, x)|t=0 = U0(x) (1.2)

where x = (x1, x2, x3), U(t, x) = (U1, U2, U3) is the velocity field and p is the pressure. In
Eqs. (1.1) e3 denotes the vertical unit vector and Ω is a constant Coriolis parameter; the
term Ωe3 × U restricted to divergence free vector fields is called the Coriolis operator. The
initial velocity field U0(x) depends on three variables x1, x2 and x3. We consider initial data
in spaces of solenoidal vector fields L∞

σ (R3) nondecreasing at infinity (L∞(R3) restricted
to the divergence free subspace). The consideration of solutions not decaying at infinity
is essential in the development of rigorous mathematical theory of 3D rotating turbulence
(homogeneous statistical solutions [10]). In this paper we prove local (in time), uniform in
Ω unique solvability of the rotating Navier-Stokes equations in R

3 under the condition that
the initial velocity U0 ∈ L∞

σ,a(R
3), which is a subspace of L∞

σ (R3) having vertical averaging

property. We take initial data in the space L∞
σ,a(R

3) = {u ∈ L∞(R3) : u− u ∈ Ḃ0
∞,1} where

Ḃ0
∞,1 is a Besov space which contains various periodic and almost periodic functions (see

Appendix B). Here u denotes the vertical average of u. We use Ḃ0
∞,1 since the Riesz operator

is bounded in Ḃ0
∞,1 but not in L∞. The space L∞

σ,a(R
3) is a subspace of L∞

σ (R3) which
consists of bounded vector fields satisfying vertical averaging property. It is shown that the
linear combined operator (Stokes + Coriolis) generates a uniformly bounded semigroup on
L∞

σ,a(R
3).

The above initial value problem (1.1)-(1.2) for the 3D rotating Navier-Stokes Equations
is equivalent, via rotation transformation with respect to the vertical axis e3, to the initial
value problem for the classical (non-rotating) 3D Navier-Stokes Equations with initial data
of the type V(0) = Ṽ0(y) + Ω

2
e3 × y:

∂tV + (V · ∇)V + νcurl2V = −∇q, ∇ · V = 0, (1.3)
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V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω

2
e3 × y (1.4)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and q is the pressure. Since
curl(Ω

2
e3×y) = Ωe3, the vorticity vector at initial time t = 0 is curlV(0, y) = curlṼ0(y)+Ωe3.

This connection between initial value problems for the 3D Navier-Stokes Equations is made
precise in the last section of the paper. Using the rotation transformation, our results for
initial value problem (1.1)-(1.2) imply local (in time), uniform in Ω solvability of the Navier-
Stokes equations (1.3)-(1.4) in R3 under the condition that the initial velocity is of the form
V(0) = Ṽ0(y) + Ω

2
e3 × y with Ṽ0(y) ∈ L∞

σ,a(R
3).

Let J be the matrix such that Ja = e3 × a for any vector field a. Then

J =




0 −1 0
1 0 0
0 0 0


 . (1.5)

We define the Stokes operator A:

AU = νcurl2U = −ν∆U (1.6)

on divergence free vector fields. Let P be the projection operator on divergence free fields.
We recall that the operator P is related to the Riesz operators:

P = {Pij}i,j=1,2,3, Pij = δij +RiRj; (1.7)

where δi,j is Kronecker’s delta and Rj are the scalar Riesz operators defined by

Rj =
∂

∂xj
(−∆)−1/2 = σ(

iξj
|ξ| ) for j = 1, 2, 3 (1.8)

where i =
√
−1 (see e.g. [27]).

We transform (1.1)-(1.2) into the abstract operator differential equation for U

Ut + A(Ω)U + P(U · ∇)U = 0, (1.9)

where

A(Ω)U = AU + ΩSU, S = PJP (1.10)

and we have used PJU = PJPU on solenoidal vector fields. The main difficulty that we
face in our studies of local uniform in Ω solvability for Eqs. (1.1)-(1.2), (1.3)-(1.4) is that the
Coriolis term is an unbounded operator in L∞

σ (R3). We find that it is necessary to restrict
initial data on a subspace of L∞

σ (R3) on which the combined operator (Stokes + Coriolis)
generates a semigroup. Then uniform in Ω time-local solvability of the full nonlinear problem

3



is proven with detailed study of the symbol of this semigroup and obtaining uniform in Ω
estimates of the corresponding operator norms in Banach spaces.

It is important to note that mathematical techniques for Eqs. (1.1)-(1.2) with initial
data on compact manifolds (bounded domains and periodic lattices in R3) and for initial
data in Lp(R3), 1 < p < +∞ spaces of functions that decay at infinity are very different
from those for initial data non-decaying at infinity in R3. In the former case, the Coriolis
operator is a bounded zero order pseudo-differential operator with a skew-symmetric matrix
symbol. Then local in time solvability for fixed Ω immediately follows by repeating classical
arguments on local solvability of the 3D Navier-Stokes equations. Uniform in Ω solvability
does not always hold for bounded domains and it requires careful consideration in each
case. We note that for initial data on periodic lattices and in bounded cylindrical domains
in R3 the time interval [0, T ] for existence of strong solutions is uniform in Ω. Moreover,
regularization of solutions occurs for large Ω. Global regularity for large Ω of solutions of the
three-dimensional Navier-Stokes equations (1.1)-(1.2), (1.3)-(1.4) with initial data U0(x) on
arbitrary periodic lattices and in bounded cylindrical domains in R

3 was proven in [2], [3]
and [20] without any conditional assumptions on the properties of solutions at later times.
The method of proving global regularity for large fixed Ω is based on the analysis of fast
singular oscillating limits (singular limit Ω → +∞), nonlinear averaging and cancellation of
oscillations in the nonlinear interactions for the vorticity field. It uses harmonic analysis tools
of lemmas on restricted convolutions and Littlewood-Paley dyadic decomposition to prove
global regularity of the limit resonant three-dimensional Navier-Stokes equations which holds
without any restriction on the size of initial data and strong convergence theorems for large
Ω.

The mathematical theory of the Navier-Stokes equations in Rn (n = 2, 3) with initial
data in spaces of functions non-decaying at infinity is more difficult than those on bounded
domains or with periodic boundary conditions and it was developed only recently although
there are earlier works to construct mild solutions for L∞ initial data [6],[8]. Since energy
is infinite for the corresponding solutions, classical energy methods for estimating norms
of solutions or Galerkin approximation procedures cannot be used and new techniques are
required. For example, Giga, Inui and Matsui [12] showed the time-local existence of strong
solutions to the Navier-Stokes equations with non-decaying initial data in L∞

σ (Rn), n = 2, 3.
Moreover, they proved the uniqueness under the same conditions. There are several related
works for L∞ initial data [7],[19]. We do not intend to exhaust references on this topic.
Giga, Matsui and Sawada [13] proved the global in time solvability of the 2D Navier-Stokes
equations with initial velocity in L∞

σ (R2) without smallness nor integrability condition on
initial velocity.

Although there are several earlier works on the solvability of the Navier-Stokes equations
with initial data in Besov type spaces, it requires decay at space infinity. The space Ḃ0

∞,1 was
first used to solve the Boussinesq equations by Sawada and Taniuchi [25] (see Taniuchi[28] for
recent improvement). Recently, Hieber-Sawada [16] and Sawada [24] constructed a unique
local solution for the Navier-Stokes equations (1.3) with initial data Mx + v0 where M is a
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trace free matrix and v0 ∈ Ḃ0
∞,1. This includes (1.4). However, their existence time estimate

depends on Ω, since the term Ωe3 × Φ is regarded as a perturbation. This is a major
difference between our and their approaches. Although we restrict initial data v0 in L∞

σ,a,

as noticed in Remark 4.1 (iii) we may take an arbitrary element of Ḃ0
∞,1 provided that it is

divergence free. The reason we use smaller space is to give a framework to study the limit
Ω → ∞ in the future.

2 Linear problem and calculation of symbols of pseudo-

differential operators

In this section we solve linear problem using Fourier transform and calculate symbols
of the corresponding pseudo-differential operators in R3. We consider the linear problem
(Stokes+Coriolis):

∂tΦ − ν∆Φ + Ωe3 × Φ = −∇π, ∇ · Φ = 0,

Φ(t, x)|t=0 = Φ0(x). (2.1)

After applying projection P on divergence free vector fields, the above equation (2.1) can be
written in operator form as follows

Φt + AΦ + ΩSΦ = 0, Φ(t)|t=0 = Φ0. (2.2)

We introduce Fourier integrals:

Fu(ξ) = û(ξ) =
1

(2π)3/2

∫

R3

e−iξ·xu(x)dx,

F−1v(x) = v̌(x) =
1

(2π)3/2

∫

R3

eix·ξv(ξ)dξ. (2.3)

Clearly, ξ · û(ξ) = 0 if u is divergence free. Recall that the operators P and curl in Fourier
representation have symbols σ(P) and σ(curl):

σ(P) = I − 1

|ξ|2




ξ2
1 ξ1ξ2 ξ1ξ3

ξ2ξ1 ξ2
2 ξ2ξ3

ξ3ξ1 ξ3ξ2 ξ2
3


 , σ(curl) = i




0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0


 . (2.4)

Here I is the 3 × 3 identity matrix. In what follows, we shall freely denote singular integral
operator, say Rj in (1.8), by its symbol, say iξj/|ξ| for simplicity.

We also define the vector Riesz operator R by introducing its symbol:

σ(R) ≡ R(ξ) =




0 − ξ3
|ξ|

ξ2
|ξ|

ξ3
|ξ| 0 − ξ1

|ξ|
− ξ2

|ξ|
ξ1
|ξ| 0


 . (2.5)
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We note that the symbol R(ξ) is a 3× 3 skew-symmetric matrix. The vector Riesz operator
R acting in the space of divergence free vector fields has the property:

R2 = −I. (2.6)

In fact, since R(ξ)v = 1
|ξ|ξ × v, we calculate for any solenoidal vector field v

R(ξ)2v = R(ξ)(
1

|ξ|ξ × v) =
1

|ξ|2 ξ × (ξ × v)

=
1

|ξ|2 ((ξ · v)ξ − (ξ · ξ)v) = − 1

|ξ|2 |ξ|
2v = −v.

Here, we used divergence free condition (ξ · v) = 0. Because the scalar Riesz operators Rj

satisfy
∑3

j=1R
2
j = −1, it seems natural to call the operator R the vector Riesz operator. We

now calculate 3 × 3 matrix symbol S(ξ) of the zero order pseudo-differential operator S:

σ(S) ≡ S(ξ) = P(ξ)JP(ξ). (2.7)

We make an important observation that the operator S = PJP is related to the Riesz
operators and the curl operator. One can easily show by direct matrix multiplication that

S(ξ) ≡ P(ξ)JP(ξ) =

(
ξ3
|ξ|

)
R(ξ). (2.8)

It implies that the symbol of the operator S commutes with the symbols of the operator curl
and the Stokes operator A. The symbol S(ξ) of the operator S is a homogeneous funstion
of degree zero and it is expressed in terms of the scalar Riesz operators Rj for j = 1, 2, 3 (cf.
(1.8)). Eqs. (2.5) and (2.8) imply

S = R3




0 R3 −R2

−R3 0 R1

R2 −R1 0


 . (2.9)

We recall that the Riesz operators Rj are bounded operators in Lp(R3) for 1 < p < ∞ and
BMO(R3). Here, BMO is the space of functions of bounded mean oscillations (e.g. [27]).
However, the Riesz operators are not bounded in L∞(R3). We also note that the Riesz
operators Rj are bounded from L∞(R3) to BMO(R3).

Since Riesz operators are bounded in BMO(R3) and Lp(R3) (1 < p < +∞), we have

Proposition 2.1. (1) S : BMO(R3) → BMO(R3) is a bounded operator.
(2) S : Lp(R3) → Lp(R3), 1 < p < +∞, is a bounded operator.
(3) The symbol S(ξ) : R3 → R3 of the operator S is a 3 × 3 matrix with the following
properties:

(a) (S(ξ))∗ = −S(ξ) (skew-symmetric matrix),

(b) (S(ξ))2 = − ξ2
3

|ξ|2 I =

(
iξ3
|ξ|

)(
iξ3
|ξ|

)
I i.e. S2 = R2

3 I (2.10)
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where iξ3
|ξ| is the symbol of the Riesz operator R3.

(4) |S(ξ)v| = |v| on the linear subspace of R3 with the property ξ · v = 0 (subspace of
solenoidal vector fields). Here |v| denotes length of the vector v ∈ R3.

Remark 2.1. The operator S is not a bounded operator in L∞
σ (R3), however, S : L∞

σ (R3) →
BMO(R3).

Eq. (2.10) is useful in calculating the operator exp(S) directly using infinite series:

exp(S) =
+∞∑

j=0

1

j!
Sj. (2.11)

Then we can solve linear Stokes+Coriolis problem (2.1), (2.2) in BMO(R3) and in Lp(R3),
1 < p < +∞. Since the operators commute, the solution of (2.2) is given by

Φ(t) = exp((−A − ΩS)t)Φ0 = exp(νt∆)E(−Ωt)Φ0, (2.12)

where E(−Ωt) = exp(−ΩtS). Of course, in Eqs. (2.12), exp(νt∆) is the usual semigroup
generated by the heat kernel. Since S is a bounded operator in BMO(R3) and Lp(R3),
1 < p < +∞, the operator exp(ΩSt) is also a bounded operator in these spaces. It is defined
by convergent series:

exp(ΩSt) =
+∞∑

j=0

1

j!
(Ωt)jSj. (2.13)

We can solve linear Stokes+Coriolis problem (2.1) using Fourier transform in R3. After
applying Fourier transform and projecting on divergence free subspace, we obtain

∂tΦ(t, ξ) + ν|ξ|2Φ(t, ξ) + ΩS(ξ)Φ(t, ξ) = 0,

Φ(t, ξ)|t=0 = Φ0(ξ). (2.14)

Direct calculation using infinite series (2.13) and the property (2.10) of S implies that

exp(ΩS(ξ)t) = cos(
ξ3
|ξ|Ωt)I + sin(

ξ3
|ξ|Ωt)R(ξ), (2.15)

where R(ξ) is defined in (2.5).
Then the solution of (2.14) is given by

Φ(t, ξ) = e−ν|ξ|2t

(
cos(

ξ3
|ξ|Ωt)I − sin(

ξ3
|ξ|Ωt)R(ξ)

)
Φ0(ξ). (2.16)

In physical space the solution is given by convolution of inverse Fourier transform of
e−ν|ξ|2t cos( ξ3

|ξ|Ωt) and e−ν|ξ|2t sin( ξ3
|ξ|Ωt)R(ξ) with Φ0(x).
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Thus, the symbol of the vector pseudo-differential operator exp(−A(Ω)t) corresponding
to the linear problem (Stokes Operator + ΩS) is given by

σ(exp(−A(Ω)t)) = e−ν|ξ|2t cos(
ξ3
|ξ|Ωt)I − e−ν|ξ|2t sin(

ξ3
|ξ|Ωt)R(ξ), (2.17)

where R is the vector Riesz operator with the 3× 3 matrix symbol R(ξ) defined above; I is
the 3 × 3 identity matrix. From the calculations outlined in Appendix A it follows that

F−1

(
e−ν|ξ|2t cos(

ξ3
|ξ|Ωt)

)
, F−1

(
e−ν|ξ|2t sin(

ξ3
|ξ|Ωt)R(ξ)

)
∈ Lq(R3), 1 < q < +∞. (2.18)

The symbol σ(exp(−A(Ω)t)) is discontinuous at ξ = 0 since the functions e−ν|ξ|2t sin( ξ3
|ξ|Ωt)

ξj

|ξ| ,
j = 1, 2 are discontinuous at ξ = 0. Therefore, the integral kernel given by Fourier transform
of the symbol cannot belong to L1(R3). More detailed consideration of the Fourier transform
given in the Appendix A shows that it behaves as |x|−3 for large |x| and that it is not a
bounded operator in L∞

σ (R3).
We state a uniform boundedness of exp(−A(Ω)t) in BMO(R3) which will be needed in

Section 4:

Proposition 2.2. exp(−A(Ω)t) : BMO(R3) → BMO(R3) is a bounded operator and

|| exp(−A(Ω)t)||BMO→BMO ≤ C, (2.19)

where C is independent of Ω and t > 0.

Proof: The fact that exp(−A(Ω)t) is a bounded operator in BMO(R3) follows from the
formula for its symbol (2.17) together with Lemma B.2 and the fact that the Riesz operators
are bounded in BMO(R3). We note that dependence on Ω appears only in cos( ξ3

|ξ|Ωt) and

sin( ξ3
|ξ|Ωt) which are functions of the Riesz operator R3 (e.g. cos( ξ3

|ξ|Ωt) = (ei
ξ3
|ξ|

Ωt+e−i
ξ3
|ξ|

Ωt)/2).

Since the spectrum of the Riesz operator R3 is included in the pure imaginary axis (Appendix
B; Lemma B.5), the operator norm of exp(αR3) : BMO → BMO is bounded by 1 indepen-
dent of α ∈ R. Since exp(−A(Ω)t) = eν∆tE(−Ωt) and ||eν∆t||BMO→BMO ≤ C0 with C0 > 0
independent of t and ν, the uniform bound for exp(αR3) now yields (2.19).

Remark 2.2. (i) exp(−A(Ω)t) is a bounded operator from L∞
σ (R3) to BMO(R3); however,

it is not a bounded operator from L∞
σ (R3) to itself.

(ii) exp(−A(Ω)t) : Lp(R3) → Lp(R3), 1 < p < +∞ is a bounded operator.

3 Stokes-Coriolis semigroup and splitting of initial data

having vertical averaging property

It was shown in the previous section that exp(−A(Ω)t)U does not belong to L∞
σ (R3) for

general U ∈ L∞
σ (R3). However, exp(−A(Ω)t)U ∈ L∞

σ (R3) if U belongs to a subspace
L∞

σ,a(R
3) of L∞

σ (R3), which we now define.
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First, we introduce vertical averaging property.

Definition 3.1. (vertical averaging)
Let U ∈ L∞

σ (R3). We say that U admits vertical averaging if

lim
L→+∞

1

2L

∫ L

−L

U(x1, x2, x3)dx3 ≡ U(x1, x2)

exists almost everywhere. The vector field U(x1, x2) is called vertical average of U(x1, x2, x3).

Remark 3.1. (i) Clearly, all periodic and almost periodic functions (or vector fields) admit
vertical averaging.
(ii) The vector field U(x1, x2) = (U 1(x1, x2), U2(x1, x2), U3(x1, x2)) has zero horizontal di-
vergence:

∇ · U = ∂x1
U 1 + ∂x2

U2 = 0. (3.1)

(iii)Supposing U ∈ Lp
σ(R3) for 1 < p < ∞, the vertical average always exists; moreover,

U ≡ 0.
(iv)If U ∈ L∞(R3) admits vertical averaging (at (x1, x2)), then we have uniform convergence
property, i.e.,

lim
L→∞

sup
|r|≤M

1

2L

∫ L

−L

U(x1, x2, x3 + r)dx3 = U(x1, x2)

for each M > 0. Indeed, we may assume that U(x1, x2) = 0 by considering U − U instead
of U. We suppress the dependence of (x1, x2). Since

∫ L

−L

U(x3 + r)dx3 =

(∫ L+r

−L−r

−
∫ −L+r

−L−r

)
U(x3)dx3,

we observe that
∣∣∣∣

1

2L

∫ L

−L

U(x3 + r)dx3

∣∣∣∣ ≤
L+ r

L

1

2(L+ r)

∣∣∣∣
∫ L+r

−L−r

U(x3)dx3

∣∣∣∣ + ||U||∞
2r

2L
.

We take supremum in r ∈ [−M,M ] and send L to ∞ to get the desired result.

Eq. (3.1) follows if we apply vertical averaging operation to the 3D divergence free equa-
tion ∇ ·U = ∂x1

U1 + ∂x2
U2 + ∂x3

U3 = 0 and notice that

lim
L→+∞

1

2L

∫ L

−L

∂U3

∂x3

dx3 = lim
L→+∞

1

2L
(U3(x1, x2, L) − U3(x1, x2,−L)) = 0, (3.2)

since U3 ∈ L∞(R3).
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The operation of vertical averaging defined above is called ‘barotropic projection’ and the
vector field U(x1, x2) is called ‘barotropic component’ of U(x1, x2, x3). Then the ‘baroclinic
component’ U⊥(x1, x2, x3) is defined as

U⊥(x1, x2, x3) = U(x1, x2, x3) − U(x1, x2). (3.3)

Now we define the space L∞
σ,a(R

3).

Definition 3.2. (Space for initial data) We define a subspace of L∞
σ of the form

L∞
σ,a(R

3) = {U ∈ L∞
σ (R3); U admits vertical averaging and U⊥ ∈ Ḃ0

∞,1}.

Here Ḃ0
∞,1 is the homogeneous Besov space (see Appendix B on details of its definition and

properties). The space L∞
σ,a(R

3) is a Banach space with the norm

||U||L∞
σ,a

= ||U||L∞(R2;R3) + ||U⊥||Ḃ0

∞,1
.

Indeed, let {Uj} be a Cauchy sequence of L∞
σ,a. Since ||f ||Ḃ0

∞,1
≤ C||f ||∞, Uj converges to

some U ∈ L∞
σ uniformly in R3. Since Uj exists, so does U. Since ||f ||∞ ≤ C||f ||∞, we

conclude that Uj → U uniformly in R2. Since {U⊥
j } is a Cauchy sequence in Ḃ0

∞,1, there is

a limit v ∈ Ḃ0
∞,1. However, Uj → U, Uj → U, so v must be equal to U⊥.

Remark 3.2. The space L∞
σ,a has a topological direct sum decomposition of the form

L∞
σ,a = W ⊕ B0

with

W = {U ∈ L∞
σ ; ∂Ui/∂x3 ≡ 0 in distributional sense R

3 for i = 1, 2, 3},
B0 = {U ∈ Ḃ0

∞,1 ∩ L∞
σ ; U(x1, x2) ≡ 0 a.e. (x1, x2) ∈ R

2}.

Indeed, for U ∈ L∞
σ,a we observe that U ∈ W and U⊥ ∈ B0. Moreover, W ∩ B0 = {0}. The

closedness of W and B0 can be proved using Definition 3.2.

The advantage of the Besov space Ḃ0
∞,1 is that the Riesz operators and, consequently,

the operator exp(−A(Ω)t) are bounded operators in this space. Also, this space contains all
locally Lipschitz periodic functions with zero mean value and all almost periodic functions
of the form ∞∑

j=1

αje
√
−1λj ·x with {αj}∞j=1 ∈ l1, {λj} ⊂ R

3 \ {0}.

Let U ∈ L∞
σ,a(R

3). Then U admits vertical averaging and we have the following repre-
sentation (splitting)

U = U + U⊥, (3.4)
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where U(x1, x2) is a 2D-3C vector field (vector field with three components where each
component {U j(x1, x2)}3

j=1 depends only on two variables x1 and x2); U j(x1, x2) ∈ L∞(R2).
We have

exp(−A(Ω)t)U = exp(νt∆)U + exp(−A(Ω)t)U⊥, (3.5)

where we used

exp(−ΩtS)U = U. (3.6)

Then the first term in (3.5) is the classical heat kernel. In order to estimate the second term
in (3.5), we need to show that the norm of the operator exp(−A(Ω)t) in the Besov space
Ḃ0

∞,1 is independent of Ω.

Proposition 3.1. The operator exp(−A(Ω)t) : Ḃ0
∞,1 → Ḃ0

∞,1 is a bounded operator and

|| exp(−A(Ω)t)||Ḃ0

∞,1→Ḃ0

∞,1
≤ C, (3.7)

where C is independent of Ω and t > 0.

Proof: A direct calculation using the Gauss kernel yields

||eνt∆||Ḃ0

∞,1→Ḃ0

∞,1
≤ 1.

It suffices to prove the uniform boundedness of E(−Ωt) : Ḃ0
∞,1 → Ḃ0

∞,1. Since (2.15) implies
that

E(−Ωt) = cos(−iR3Ωt)I + R sin(−iR3Ωt)

and the Riesz operator R is bounded in Ḃ0
∞,1, it suffices to prove a uniform bound for

cos(−iR3Ωt) and sin(−iR3Ωt). The dependence on Ω appears only in cos and sin functions.
Note that the operator norm of exp(αR3) : Ḃ0

∞,1 → Ḃ0
∞,1 is bounded by 1 independent of

α ∈ R since the spectrum of the Riesz operator R3 is included in the pure imaginary axis
(Appendix B; Lemma B.4). Since cos and sin can be expressed by exponential functions,
e.g. cos(−iR3Ωt) = (exp(R3Ωt) + exp(−R3Ωt))/2, we have a uniform bound independent of
Ω and t for E(−Ωt). This yields (3.7).

In the remainder of this section we shall prove that exp(−A(Ω)t) is a uniformly bounded
semigroup in L∞

σ,a. Since we have Proposition 3.1 together with (3.5) and (3.6), it suffices to
prove

Proposition 3.2. The operator exp(−A(Ω)t) maps from L∞
σ,a to itself for all t > 0.

11



Proof: It suffices to show that exp(−A(Ω)t)U = exp(−ΩtS) exp(νt∆)U ∈ B0 if U ∈ B0.
We first prove that exp(νt∆)U ∈ B0 if U ∈ B0. Since

(exp(νt∆)U)(x) =

∫

R3

(∫ ∞

−∞
U(x1 − y1, x2 − y2, x3 − y3)gνt(y3)dy3

)
gνt(y1, y2)dy1dy2

with the Gauss kernel gνt, it suffices to prove that

lim
L→∞

1

2L

∫ L

−L

∫ ∞

−∞
U(x1 − y1, x2 − y2, x3 − y3)gνt(y3)dy3dx3 = 0

for a.e. (x1 − y1, x2 − y2). This follows from the uniform convergence property Remark
3.1(iv), since gνt(y3) is integrable for large y3. We thus proved that exp(νt∆)U = 0. The
divergence free property is clear, so we conclude that exp(νt∆)U ∈ B0 if U ∈ B0. The proof
will be complete if we prove

E(−Ωt)U ∈ B0 if U ∈ B0.

We give the proof of this fact in the Appendix (Lemma B.6).

4 Local solvability independent of the speed of rotation

In this section we prove time-local existence and uniqueness for (1.1)-(1.2) on some time
[0, T0] with T0 independent of Ω ∈ R. The differential equations are formally transformed
into the integral equation of the form:

(I) U(t) = exp(−A(Ω)t)U0 −N(U, t; Ω) for t > 0.

Here the nonlinear term N(U, t; Ω) = N(U,U, t; Ω) is defined by

N(U,V, t; Ω) =

∫ t

0

exp(−A(Ω)(t− s))Pdiv(U ⊗ V)(s) ds.

We call a solution of the integral equation (I) a mild solution of the rotational Navier-Stokes
equations. Since PU = U for divergence free vector field and P∆ = ∆P, we have

A(Ω) = −P∆ + ΩPJ = −∆ + ΩPJP.

Note that
exp(−A(Ω)t) = et∆E(−Ωt),

where et∆ is the solution operator of the heat equation (in this section we put ν = 1 for
simplicity of notations). For an interval I ⊂ [−∞,∞] and a Banach space X let C(I;X)
denote the space of all continuous functions with valued in X. The space Cw(I;X) denotes
the space of all X-valued star weakly continuous functions.

The goal of this section is to prove the following theorems.
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Theorem 4.1. (Existence and uniqueness of mild solution U)
Suppose that U0 ∈ L∞

σ,a(R
3). Then

(1) There exist T0 > 0 independent of Ω and a unique solution U = U(t) of (I) such that

U ∈ C([δ, T0];L
∞
σ ) ∩ Cw([0, T0];L

∞
σ ) (4.1)

for any δ > 0.
(2) The solution U satisfies

sup
t∈(0,T0)

||t1/2∇U||L∞
σ
<∞ and ∇U ∈ C([δ, T0];L

∞
σ ) (4.2)

for any δ > 0.

Theorem 4.2. (Existence of classical solution U)
Suppose that U0 ∈ L∞

σ,a(R
3). Let U = U(t) be a solution of (I) satisfying (4.1) and (4.2). If

we set

∇p(t) = ∇
3∑

j,k=1

RjRkU
jUk(t) − Ω




R1 (R2U
1 −R1U

2)
R2 (R2U

1 −R1U
2)

R3 (R2U
1 −R1U

2)


 for t > 0, (4.3)

then the pair (U,∇p) is a classical solution of (1.1)-(1.2).

Such a solution (satisfying (4.1)-(4.3)) is unique. In fact a stronger version is available.

Theorem 4.3. (Uniqueness of classical solution U)
Suppose that U0 ∈ L∞

σ,a(R
3). Let

U ∈ L∞((0, T ) × R
3), p ∈ L1

loc([0, T );BMO)

be a solution of (1.1)-(1.2) in a distributional sense for some T > 0. Then the pair (U,∇p)
is unique. Furthermore, the relation (4.3) holds.

Remark 4.1. (i)For a lower estimate for T0 > 0 we get

T0 ≥ C/||U0||2L∞
σ,a

with C independent of Ω.
(ii)For regularity we can get the same results as in [12]. The remark except (i) after Theorem
1 in [12] holds for our equation (I).
(iii) From the proof given below it is rather clear that one can take initial data in W + Ḃ0

∞,1,

which is larger than L∞
σ,a. In particular, this class includes Ḃ0

∞,1∩L∞
σ for which local existence

is discussed in [24].
(iv) If in addition we assume that U0 ∈ BUC so that U0 ∈ BUC, then by construction
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our solution U ∈ C([0, T0];BUC); here, BUC denotes the space of all bounded uniformly
continuous functions in R

3. Indeed, since Ḃ0
∞,1 ⊂ BUC (see e.g. Example 2.3(iv) in [24]),

U0 ∈ BUC. Since et∆U0 ∈ C([0,∞);BUC) (see Proposition A.1.1 in [12]) and E(−Ωt)U⊥
0 ∈

C([0,∞); Ḃ0
∞,1), it is easy to see that Uj ∈ C([0,∞);BUC). Thus its uniform limit U

belongs to C([0, T0];BUC).

We note that Theorem 4.2 follows from Theorem 4.1 as observed in [12], where the case
Ω = 0 is discussed. We also note that the uniqueness (Theorem 4.3) can be proved along the
line of [14],[18], where the case Ω = 0 is discussed. We won’t repeat the proofs. The proof of
Theorem 4.1 is based on a standard iteration method, and is similar to that of [12]. We have
already prepared two estimates for exp(−A(Ω)t) in BMO and Besov spaces (Proposition
2.2 and Proposition 3.1). We further estimate its spatial derivatives.

Lemma 4.1. There exists a constant C > 0 (depending only on space dimensions) that
satisfies

||∇et∆f ||L∞ ≤ Ct−1/2||f ||BMO, t > 0

for f ∈ BMO.

Proof In [[9],Lemma 2.1] Carpio obtained for the Gauss kernel gt = gt(x) that

||∇gt||H1 ≤ Ct−1/2, t > 0.

Here, H1 denotes the Hardy space. Since the dual space of the space H1 is BMO, we have

||∇et∆f ||L∞ ≤ ||∇gt||H1 ||f ||BMO ≤ Ct−1/2||f ||BMO.

Lemma 4.1 was proved.

Using the above lemma, Proposition 2.2 and Proposition 3.1, the linear term is estimated
as follows.

Lemma 4.2. There exists a constant C (independent of Ω, t, f) that satisfies

|| exp(−A(Ω)t)f ||L∞ ≤ C||f ||L∞
σ,a
, t > 0, and

||∇ exp(−A(Ω)t)f ||L∞ ≤ Ct−1/2||f ||L∞
σ,a
, t > 0

for all f = (fi)1≤i≤3 ∈ L∞
σ,a.

Proof By (3.5), Proposition 3.1 and || · ||L∞ ≤ || · ||Ḃ0

∞,1
we get

|| exp(−A(Ω)t)f ||L∞ = ||et∆f + et∆ exp(−tΩPJP)f⊥||L∞

≤ ||et∆f ||L∞ + ||et∆ exp(−tΩPJP)f⊥||L∞

≤ ||f ||L∞ + || exp(−tΩPJP)f⊥||L∞

≤ ||f ||L∞ + || exp(−tΩPJP)f⊥||Ḃ0

∞,1

≤ ||f ||L∞ + C||f⊥||Ḃ0

∞,1

≤ C||f ||L∞
σ,a
.
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Similarly Lemma 4.1, Proposition 2.2 and || · ||BMO ≤ || · ||L∞ imply that

||∇ exp(−A(Ω)t)f ||L∞ = ||∇et∆f + ∇et∆ exp(−tΩPJP)f⊥||L∞

≤ ||∇et∆f ||L∞ + ||∇et∆ exp(−tΩPJP)f⊥||L∞

≤ Ct−1/2||f ||BMO + Ct−1/2|| exp(−tΩPJP)f⊥||BMO

≤ Ct−1/2(||f ||BMO + ||f⊥||BMO)

≤ Ct−1/2(||f ||L∞ + ||f⊥||L∞)

≤ Ct−1/2(||f ||L∞ + ||f⊥||Ḃ0

∞,1
)

≤ Ct−1/2||f ||L∞
σ,a
.

We have proved Lemma 4.2.

Next we prepare estimates for the nonlinear term.

Lemma 4.3. (Derivative estimate)
There exists a constant C (independent of Ω, t, F and f) that satisfies

|| exp(−A(Ω)t)PdivF ||L∞ ≤ Ct−1/2||F ||BMO, t > 0, and

||∇ exp(−A(Ω)t)Pf ||L∞ ≤ Ct−1/2||f ||BMO t > 0

for all F = (Fi,j)1≤i,j≤3 ∈ BMO, with divF ∈ BMO and for all f = (fi)1≤i≤3 ∈ BMO.

Proof It is easy to see that

PdivF = divF + div(P− I)F t,

where F t is transposed matrix of F . We rewrite

exp(−A(Ω)t)PdivF = et∆E(−Ωt)div{F + (P− I)F t}.

Since the symbol of the operator et∆E(−Ωt)div is represented by

exp(−t|ξ|2){cos(
ξ3
|ξ|Ωt)I − R(ξ) sin(

ξ3
|ξ|Ωt)}iξk

= iξk exp(−t|ξ|2) cos(
ξ3
|ξ|Ωt)I − iξkR(ξ) exp(−t|ξ|2) sin(

ξ3
|ξ|Ωt),

one sees that

||et∆E(−Ωt)div||BMO→L∞ ≤ ||∇et∆||BMO→L∞|| cos(−iR3Ωt)||BMO→BMO

+||curlet∆||BMO→L∞|| sin(−iR3Ωt)||BMO→BMO|||R||BMO→BMO

≤ Ct−1/2, (4.4)
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where C > 0 is independent of Ω and t. Thus, by Lemma 4.1, Proposition 2.2 and bound-
edness of the operator P in BMO we have

|| exp(−A(Ω)t)PdivF ||L∞ ≤ Ct−1/2||F + (P− I)F t||BMO

≤ Ct−1/2(||F ||BMO + ||(P− I)F t||BMO) ≤ Ct−1/2||F ||BMO.

Similarly, we get by (4.4)

||∇ exp(−A(Ω)t)Pf ||L∞ ≤ Ct−1/2||f ||BMO

because the symbol of the operator ∇ exp(−A(Ω)t) is the essentially same as that of et∆E(−Ωt)div.
We have proved Lemma 4.3.

Proof of Theorem 4.1. We use the following successive iteration:

U1(t) = exp(−A(Ω)t)U0, Uj+1(t) = exp(−A(Ω)t)U0 −N(Uj, t; Ω) for j ≥ 1.

For j ≥ 1 and T > 0 we set

Kj = Kj(T ) = sup
0<s<T

||Uj(s)||L∞ and K ′
j = K ′

j(T ) = sup
0<s<T

(s1/2||∇Uj(s)||L∞).

Put K0 = ||U0||L∞
σ,a

and note that K0 is independent of T > 0. It follows from Lemma 4.3
and || · ||BMO ≤ || · ||L∞ that

||N(Uj, t; Ω)||L∞ ≤
∫ t

0

|| exp(−A(Ω)(t− s))Pdiv(Uj ⊗ Uj)(s)||L∞ ds

≤
∫ t

0

|| exp(−A(Ω)(t− s))Pdiv||BMO→L∞||(Uj ⊗ Uj)(s)||BMO ds

≤
∫ t

0

C(t− s)−1/2||(Uj ⊗ Uj)(s)||BMO ds

≤ Ct1/2 sup
0<s<t

||(Uj ⊗ Uj)(s)||BMO ≤ Ct1/2 sup
0<s<t

||(Uj ⊗ Uj)(s)||L∞

≤ Ct1/2 sup
0<s<t

(||Uj(s)||2L∞) ≤ Ct1/2( sup
0<s<t

||Uj(s)||L∞)2. (4.5)

Similarly we have from Lemma 4.3

||∇N(Uj, t; Ω)||L∞ ≤
∫ t

0

||∇ exp(−A(Ω)(t− s))Pdiv(Uj ⊗ Uj)(s)||L∞ ds

≤ C

∫ t

0

(t− s)−1/2||div(Uj ⊗ Uj)(s)||BMO ds

≤ C

∫ t

0

(t− s)−1/2||div(Uj ⊗ Uj)(s)||L∞ ds

≤ C

∫ t

0

(t− s)−1/2s−1/2s1/2||∇Uj(s)||L∞||Uj(s)||L∞ ds

≤ C sup
0<s<t

(s1/2||∇Uj(s)||L∞) sup
0<s<t

||Uj(s)||L∞. (4.6)
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By the above estimates and Lemma 4.2 there exist constants C0, C1, C2 and C3 independent
of Ω and T such that

Kj+1(T ) ≤ C0K0 + C1T
1/2(Kj(T ))2,

K ′
j+1(T ) ≤ C2K0 + C3T

1/2Kj(T )K ′
j(T )

for j ≥ 1. Taking T0 small so that T0 < inf(1/(4C0C1K0)
2, 1/(4C0C3K0)

2), we get

sup
j≥1

Kj(T ) ≤ 2C0K0 and sup
j≥1

K ′
j(T ) ≤ 2C2K0 if T ≤ T0.

Next we shall prove the convergence. For j ≥ 1 and T > 0 put

Lj = Lj(T ) = sup
0<s<T

||Uj(s) − Uj−1(s)||L∞,

L′
j = L′

j(T ) = sup
0<s<T

(s1/2||∇Uj(s) −∇Uj−1(s)||L∞).

Since

Uj+1(t) − Uj(t) = N(Uj,Uj, t; Ω) −N(Uj,Uj−1, t; Ω)

+N(Uj,Uj−1, t; Ω) −N(Uj−1,Uj−1, t; Ω), (4.7)

similarly as in (4.5) and (4.6) we get

||Uj+1(t) − Uj(t)||L∞

≤
∫ t

0

C(t− s)−1/2(||Uj(s)||L∞ + ||Uj−1(s)||L∞)||(Uj − Uj−1)(s)||L∞ ds

≤ Ct1/2 sup
0<s<T

(||Uj(s)||L∞ + ||Uj−1(s)||L∞) sup
0<s<T

||(Uj − Uj−1)(s)||L∞ (4.8)

and

||∇Uj+1(t) −∇Uj(t)||L∞ ≤ C

∫ t

0

(t− s)−1/2s−1/2{s1/2||∇Uj(s)||L∞||(Uj − Uj−1)(s)||L∞

+s1/2||Uj(s)||L∞||∇(Uj − Uj−1)(s)||L∞} ds

+C

∫ t

0

(t− s)−1/2s−1/2{s1/2||∇Uj−1(s)||L∞||(Uj − Uj−1)(s)||L∞

+s1/2||Uj−1(s)||L∞||∇(Uj − Uj−1)(s)||L∞} ds. (4.9)

Hence there exist C4, C5 > 0 independent of Ω and T such that

Lj+1(T ) ≤ C4K0T
1/2Lj(T ),

L′
j+1(T ) ≤ C5K0T

1/2(Lj(T ) + L′
j(T ))
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for j ≥ 1. Taking T1 small so that T1 < 1/(2(C4 + C5)K0)
2, it is easy to see that

sup
j≥1

Lj+1(T )

Lj(T )
<

1

2
and sup

j≥1

Lj+1(T ) + L′
j+1(T )

Lj(T ) + L′
j(T )

<
1

2
if T ≤ T1.

Thus, choosing T < min(T0, T1), the approximations {Uj(t)}j≥1 and {t1/2∇Uj(t)}j≥1 are
Cauchy sequences in L∞((0, T ) × R3). Denote its limits by U(t) and V(t), respectively.
Since Uj satisfies (4.1), so does U. Similar calculation as in (4.8) and (4.9) yields that

N(Uj, t; Ω) → N(U, t; Ω) in L∞((0, T ) × R
3) as j → ∞,

∇N(Uj, t; Ω) → ∇N(U, t; Ω) in L∞((0, T ) × R
3) as j → ∞,

which guarantees that t1/2∇U = V and that the limit U solves the integral equation (I).
The properties (4.2) for U are also inherited from Uj’s.
It remains to prove the uniqueness. We set W = U1 − U2 and observe that

W(t) = N(U1,U1, t; Ω) −N(U2,U2, t; Ω).

Then the same calculation as (4.7) and (4.8) gives us W ≡ 0.

5 Concluding remarks

The above results for the 3D rotating Navier-Stokes Equations can be formulated for
solutions of the three-dimensional Navier-Stokes Equations with initial data of the form
V(t, y)|t=0 = V(0) = Ṽ0(y) + Ω

2
e3 × y:

∂tV + (V · ∇)V + νcurl2V = −∇q, ∇ · V = 0, (5.1)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω

2
e3 × y (5.2)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and q is the pressure. In
Eqs. (5.1) e3 denotes the vertical unit vector and Ω is a constant parameter. The field Ṽ0(y)
depends on three variables y1, y2 and y3. Since curl(Ω

2
e3 × y) = Ωe3, the vorticity vector at

initial time t = 0 is

curlV(0, y) = curlṼ0(y) + Ωe3. (5.3)

In (5.2) we take Ṽ0(y) ∈ L∞
σ,a(R

3).
We now detail the canonical rotation transformation between the original vector field

V(t, y) and the vector field U(t, x). Let J be the matrix such that Ja = e3×a for any vector
field a. Then

J =




0 −1 0
1 0 0
0 0 0


 , Υ(t) ≡ eΩJt/2 =




cos(Ωt
2

) − sin(Ωt
2

) 0
sin(Ωt

2
) cos(Ωt

2
) 0

0 0 1


 . (5.4)
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For any fixed parameter Ω we introduce the following fundamental rotation transforma-
tion:

V(t, y) = e+ΩJt/2U(t, e−ΩJt/2y) +
Ω

2
Jy, x = e−ΩJt/2y. (5.5)

The transformation (5.5) is invertible:

U(t, x) = e−ΩJt/2V(t, e+ΩJt/2x) − Ω

2
Jx, y = e+ΩJt/2x. (5.6)

The transformations (5.5)-(5.6) establish one-to-one correspondence between solenoidal vec-
tor fields V(t, y) and U(t, x). We note that x = y for t = 0 and therefore Ṽ0(y) = Ṽ0(x).
Let x = (xh, x3) where xh = (x1, x2, 0), |xh|2 = x2

1 + x2
2 and similarly for y.

The following identities hold for the vector fields V(t, y) and U(t, x) and pressure π:
1. ∇y · V(t, y) = ∇x · U(t, x).
2. ∇yπ = Υ(t)∇xπ.
3. curlyV(t, y) = Υ(t)curlxU(t, x) + Ωe3, curl2yV(t, y) = Υ(t)curl2xU(t, x).

4. D
Dt

V(t, y) = Υ(t)
(

D
Dt

U(t, x) + ΩJU − Ω2

2
xh

)
where D

Dt
are the corresponding Lagrangian

derivatives, JU = e3 × U.

The above identities 1-4 imply that the transformation (5.5)-(5.6) is canonical for Eqs. (5.1)-
(5.2). From the property 1 it follows that ∇x ·U(t, x) = 0 since ∇y ·V(t, y) = 0. Now using
2-4 and the fact that Υ(t) is unitary, we can express each term in (5.1) in x and t variables
to obtain the equations for U(t, x). Under the canonical rotation transformation (5.5)-(5.6)
Eqs. (5.1)-(5.2) turn into Navier-Stokes system (5.7)-(5.8) with an additional Coriolis term
Ωe3 × U and modified initial data and pressure:

∂tU + (U · ∇x)U + νcurl2xU + Ωe3 × U = −∇xp, ∇x · U = 0, (5.7)

U(t, x)|t=0 = U(0, x) = Ṽ0(x), (5.8)

where x = y at t = 0 and xh = (x1, x2). The systems Eqs. (5.1)-(5.2) and (5.7)-(5.8)
are equivalent for every Ω and the pair of transformations (5.5)-(5.6) establishes one-to-one
correspondence between their fully three-dimensional solutions.

We now state our theorem for the initial value problem (5.1)-(5.2).

Theorem 5.1. (Existence of classical solution V)
Suppose Ṽ0 ∈ L∞

σ,a(R
3). Then there exists a classical solution (V,∇q) of (5.1)-(5.2) satisfy-

ing

∇q(t) = ∇
3∑

j,k=1

RjRkV
jVk(t) − Ω




R1 (R2V
1 − R1V

2)
R2 (R2V

1 − R1V
2)

R3 (R2V
1 − R1V

2)


 + ∇Ω2|yh|2

4
for t > 0.

Such a solution is unique provided that V − Ω
2
Jy ∈ L∞(Rn × (0, T )).
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This follows from Theorem 4.2 and 4.3.
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A Appendix: Calculation of integral kernels

In this section we analyze inverse Fourier transform of e−ν|ξ|2t cos( ξ3
|ξ|Ωt), which gives the inte-

gral kernel in the convolution operator with Φ0(x) (diagonal terms in (2.16)-(2.17)). The cal-

culation of the inverse Fourier transform of e−ν|ξ|2t sin( ξ3
|ξ|Ωt)

ξj

|ξ| (off-diagonal terms in (2.16)-

(2.17)) is similar. The integral kernel is obtained in the form (2π)−3/2F−1(e−ν|ξ|2t cos( ξ3
|ξ|Ωt)−

e−ν|ξ|2t sin( ξ3
|ξ|Ωt)

ξj

|ξ|) since F−1mFf = (2π)−3/2(F−1m) ∗ f for a symbol m and a function f .
We have

F−1

(
e−ν|ξ|2t cos(

ξ3
|ξ|Ωt)

)
=

1

(2π)3/2

∫

R3

cos(
ξ3
|ξ|Ωt)e

−ν|ξ|2teix·ξdξ, (A.1)

where x = (x1, x2, x3) and we denote |x|2 = x2
1 + x2

2 + x2
3, |x′|2 = x2

1 + x2
2. Using spherical

coordinates with center at 0 and azimuthal angle θ measured from the axis determined by
the vector x, one has (0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π, ρ = |ξ|)

ξ3
|ξ| = −|x′|

|x| sin θ sinψ +
x3

|x| cos θ. (A.2)

Then
∫

R3

cos(
ξ3
|ξ|Ωt)e

−ν|ξ|2teix·ξdξ

=

∫ +∞

0

∫ 2π

0

∫ π

0

cos

(
Ωt|x′|
|x| sin θ sinψ

)
cos

(
Ωtx3

|x| cos θ

)
e−νρ2tei|x|ρ cos θρ2 sin θdρdψdθ

= 2π

∫ +∞

0

∫ π

0

J0

(
Ωt|x′|
|x| sin θ

)
cos

(
Ωtx3

|x| cos θ

)
e−νρ2tei|x|ρ cos θρ2 sin θdρdθ, (A.3)

where we have used the identity
∫ 2π

0

cos

(
Ωt|x′|
|x| sin θ sinψ

)
dψ = 2πJ0

(
Ωt|x′|
|x| sin θ

)
. (A.4)
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Let µ = cos θ. Then we have from (A.3)

∫

R3

cos(
ξ3
|ξ|Ωt)e

−ν|ξ|2teix·ξdξ

= 2π

∫ +∞

0

∫ 1

−1

J0

(
Ωt|x′|
|x|

√
1 − µ2

)
cos

(
Ωtx3

|x| µ
)
e−νρ2t cos(|x|ρµ)ρ2dρdµ (A.5)

since the function sin(|x|ρµ) is odd in µ and other functions are even in µ.
Now we calculate the integral in (A.5) involving integration with respect to ρ. We have

after somewhat lengthy but elementary calculations (which also involves shifting contour of
integration in complex plane) or from the Table of Integrals in [[15],page 529, 3.952]:

∫ +∞

0

e−νρ2t cos(|x|ρµ)ρ2dρ =

√
π

4(
√
νt)3

(
1 − |x|2ν2

2νt

)
e−

|x|2µ2

4νt . (A.6)

Substituting (A.6) into (A.5), we obtain

∫

R3

cos(
ξ3
|ξ|Ωt)e

−ν|ξ|2teix·ξdξ

= 2π

√
π

4(
√
νt)3

∫ 1

−1

J0

(
Ωt|x′|
|x|

√
1 − µ2

)
cos

(
Ωtx3

|x| µ
) (

1 − |x|2ν2

2νt

)
e−

|x|2µ2

4νt dµ.(A.7)

For Ω = 0 the above expression reduces to the heat kernel Gνt(x) = 1
(4πνt)3/2

e−
|x|2

4νt . In fact,

since J0

(
Ωt|x′|
|x|

√
1 − µ2

)
|Ω=0 = 1, cos

(
Ωtx3

|x| µ
)
|Ω=0 = 1 and

∫ 1

−1

(
1 − |x|2µ2

2νt

)
e−

|x|2µ2

4νt dµ = 2e−
|x|2

4νt ,

we get

2π

√
π

4(
√
νt)3

∫ 1

−1

(
1 − |x|2ν2

2νt

)
e−

|x|2µ2

4νt dµ

= 2π

√
π

4(
√
νt)3

2(4πνt)3/2 1

(4πνt)3/2
e−

|x|2

4νt = (2π)
3

2
·2Gνt(x).

Hence the kernel is given by (2π)−3/2F−1(e−ν|ξ|2t cos( ξ3
|ξ|Ωt)) = Gνt(x) if Ω = 0.

Let Ω and t be fixed. The asymptotics of the integral kernel in |x| can be analyzed
using (A.7). Clearly, it is bounded for |x| → 0. Now we deduce the behaviour for large

|x|. The main obstacle to a rapid decay of the kernel for large |x| is that the term e−
|x|2µ2

4νt

appears in combination with |x|2µ2 and e−
|x|2µ2

4νt |µ=0 = 1. The main contribution to the kernel
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asymptotics for large |x| is given in the integral (A.7) by a small interval containing µ = 0. If

we expand the expression J0

(
Ωt|x′|
|x|

√
1 − µ2

)
cos

(
Ωtx3

|x| µ
)

under integral in powers of µ (valid

uniformly in |x| since |x3|
|x| ,

|x′|
|x| ≤ 1), then first we recover the term (heat kernel) × J0(

Ωt|x′|
|x| )

which clearly rapidly decays as |x| → +∞. Since the function under integral is even in µ,

the next term will be of the form (function independent of µ) × µ2(1 − |x|2µ2

2νt
)e−

|x|2µ2

4νt . Its
asymptotic behaviour for large |x| is given by the integral:

∫ 1

−1

µ2(1 − |x|2µ2

2νt
)e−

|x|2µ2

4νt dµ =
1

|x|3
∫ |x|

−|x|
η2(1 − η2

2νt
)e−

η2

4νtdη ∼ C(νt)

|x|3 for large |x|.

Therefore, the integral kernel behaves as 1
|x|3 for large |x|. In particular, the integral

kernel does not belong to L1(R3). The corresponding integral operator cannot be viewed as
a bounded operator in L∞(R3) since a characteristic function of the outside of a large ball
is always mapped to ∞ by this operator.

The above analysis and similar considerations for F−1
(
e−ν|ξ|2t sin( ξ3

|ξ|Ωt)
ξj

|ξ|

)
show that

F−1

(
e−ν|ξ|2t cos(

ξ3
|ξ|Ωt)

)
, F−1

(
e−ν|ξ|2t sin(

ξ3
|ξ|Ωt)R(ξ)

)
∈ Lq(R3), 1 < q < +∞.

It is clear without any calculations that F−1
(
e−ν|ξ|2t sin( ξ3

|ξ|Ωt)R(ξ)
)

does not belong to

L1(R3) since e−ν|ξ|2t sin( ξ3
|ξ|Ωt)

ξj

|ξ| (j = 1, 2) are discontinuous at ξ = 0.

B Appendix: Boundedness of the operator E(−Ωt) in

the homogeneous Besov space Ḃ0
∞,1 uniformly in Ω

and t

In this section we introduce the homogeneous Besov spaces Ḃs
p,q = Ḃs

p,q(R
n) and show

boundedness of the operator E(−Ωt) uniformly in the Coriolis parameter Ω and time t. The
boundedness in the Besov space is indispensable to estimate linear term in L∞ to obtain
local existence and uniqueness theorems. The dependence of the operator E(−Ωt) on the
parameter Ω appears in the form exp(ωR3) with ω ∈ R. Except Lemma B.6 all statements
in this section hold for general dimension n = 1, 2, 3, . . ..
Before introducing the homogeneous Besov spaces, we prepare some notations. By S we

denote the class of rapidly decreasing functions. The dual of S, the space of tempered
distributions is denoted by S ′. By H1 we denote the Hardy space. It is well known that
the dual space of the Hardy space H1 is BMO, the space of functions of bounded mean
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oscillations. Let {φj}∞j=−∞ be the Littlewood-Paley dyadic decomposition satisfying

φ̂j(ξ) = φ̂0(2
−jξ) ∈ C∞

c (Rn), suppφ̂0 ⊂ {1/2 < |ξ| < 2},
∞∑

j=−∞
φ̂j(ξ) = 1 (ξ 6= 0).

(B.1)

Definition B.1. (See, e.g. [5] page 146)
The homogeneous Besov space Ḃs

p,q = Ḃs
p,q(R

n) is defined by

Ḃs
p,q ≡

{
f ∈ Z ′; ||f ; Ḃs

p,q|| <∞
}

for s ∈ R and 1 ≤ p, q ≤ ∞, where

||f ; Ḃs
p,q|| ≡





[∑∞
j=−∞ 2jsq||φj ∗ f ;Lp||q

]1/q

if q <∞,

sup−∞≤j≤∞ 2js||φj ∗ f ;Lp|| if q = ∞.

Here Z ′ is the topological dual space of the space Z, which is defined by Z ≡
{
f ∈

S; Dαf̂(0) = 0 for all multi-indices α = (α1, . . . , αn)
}
.

The above definition yields that all polynomials vanish in Ḃs
p,q, however, it is well known

that

Ḃs
p,q

∼= {f ∈ S ′; ||f ; Ḃs
p,q|| <∞ and f =

∞∑

j=∞
φj ∗ f in S ′} (B.2)

if
s < n/p or (s = n/p and q = 1). (B.3)

Since indices of our target space Ḃ0
∞,1(R

n) satisfy (B.3), the space Ḃs
p,q can be regarded as

(B.2). For the details and examples one can consult e.g. [24],[25],[28].

The key lemma of this section is as follows.

Lemma B.1. (Boundedness of convolution-type operator)
For h ∈ S ′ let T = h∗ be a convolution-type operator defined on S. Assume that T is regarded
as a bounded operator H1 → H1. Then, the operator T is bounded from Ḃ0

∞,1 to itself. Its
norm ||T ||Ḃ0

∞,1→Ḃ0

∞,1
is bounded by C||T ||H1→H1 with C depending only on n.

Proof: By the definition of the Besov norm we have

||Tf ; Ḃ0
∞,1|| =

∞∑

j=−∞
||φj ∗ Tf ||∞ =

∞∑

j=−∞
||φj ∗ h ∗ f ||∞.
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Since only three terms in the family {suppφ̂j}j are nonzero for any fixed point ξ ∈ Rn, we
derive

||Tf ; Ḃ0
∞,1|| =

∑

j,k∈Z, |j−k|≤2

||φj ∗ h ∗ φk ∗ f ||∞

≤
∑

j,k∈Z, |j−k|≤2

||φj ∗ h||1||φk ∗ f ||∞.

The fact || · ||L1 ≤ || · ||H1 and the assumption yield

||Tf ; Ḃ0
∞,1|| ≤

∑

j,k∈Z, |j−k|≤2

||φj ∗ h||H1||φk ∗ f ||∞

≤ C
∑

j,k∈Z, |j−k|≤2

||φj||H1||φk ∗ f ||∞.

Here, ||φj||H1 = ||φj||L1 +
∑n

k=1 ||iRkφj||L1 is a constant independent of j since ||φj||H1 =
||φ0||H1. Indeed, we obtain that

||φj||1 =

∫

Rn

|φj(x)|dx =

∫

Rn

|(F−1(Fφj)(ξ))(x)|dx

=

∫

Rn

|(F−1(Fφ0)(2
−jξ))(x)|dx = 2jn

∫

Rn

|
∫

Rn

ei2jxξ(Fφ0(ξ))(x)dξ|dx

= 2jn

∫

Rn

|φ0(2
jx)|dx =

∫

Rn

|φ0(x)|dx = ||φ0||1

and similarly

||iRkφj||1 =

∫

Rn

|iRkφj(x)|dx =

∫

Rn

|(F−1 iξk
|ξ| (Fφj)(ξ))(x)|dx

=

∫

Rn

|(F−1 iξk
|ξ| (Fφ0)(2

−jξ))(x)|dx = 2jn

∫

Rn

|
∫

Rn

ei2jxξ iξk
|ξ| (Fφ0(ξ))(x)dξ|dx

= 2jn

∫

Rn

|iRkφ0(2
jx)|dx =

∫

Rn

|iRkφ0(x)|dx = ||iRkφ0||1

for all k with 1 ≤ k ≤ n. Thus we conclude

||Tf ; Ḃ0
∞,1|| ≤ C||φ0||H1

∑

j,k∈Z, |j−k|≤2

||φk ∗ f ||∞ ≤ 3C||φ0||H1

∞∑

j=−∞
||φj ∗ f ||∞ = C||f ; Ḃ0

∞,1||.

This establishes the result.

Remark B.1. The proof can be easily modified to obtain a bound for ||T ||Ḃ0
∞,q→Ḃ0

∞,q
for

arbitrary q ∈ [1,∞] including q = ∞.
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Lemma B.2. (Theorem 7.30 in [11], [17], Mikhlin-type theorem in the Hardy
space and BMO)
Suppose k > n/2. Let m(ξ) ∈ Ck(Rn \ {0}) satisfy

|Dαm(ξ)| ≤ Cα|ξ|−|α| (ξ 6= 0) for all |α| = α1 + · · ·+ αn ≤ k. (B.4)

Then the operator defined by Tm = F−1mF is bounded from H1 to itself and from BMO to
itself.

Lemma B.3. (Boundedness of Resolvent operator)
Consider the operator λ − iRj : Ḃ0

∞,1 → Ḃ0
∞,1 for j = 1, 2, 3. Then, Spec(iRj) ⊂ R. Here

Spec(K) denotes the spectrum set of an operator K.

Proof: Assume λ ∈ C \ R. Since it is easy to see that m(ξ) = 1/(λ +
ξj

|ξ|) satisfies (B.4),

Lemma B.2 guarantees that (λ− iRj)
−1 exists and bounded from H1 to itself. So, it follows

from Lemma B.1 that (λ− iRj)
−1 exists and bounded from Ḃ0

∞,1 to itself. Thus λ ∈ C \ R

belong to the resolvent set.

Finally we will show uniform boundedness for exp(ωRj) independent of ω ∈ R.

Lemma B.4. (Uniform boundedness of the operator exp(ωRj)-Besov-case)
For f ∈ Ḃ0

∞,1 and ω ∈ R we have

|| exp(ωRj)f ; Ḃ0
∞,1|| ≤ ||f ; Ḃ0

∞,1||.

Proof: By spectrum mapping theorem we have

|| exp(ωRj); Ḃ
0
∞,1 → Ḃ0

∞,1|| = sup{|z|; z ∈ Spec(exp(ωRj))}
= sup{|z|; z ∈ exp(−iω Spec(iRj))}
= sup{| exp(−iωz)|; z ∈ Spec(iRj)}.

It follows from Lemma B.3 that

|| exp(ωRj); Ḃ
0
∞,1 → Ḃ0

∞,1|| ≤ sup{| exp(−iωz)|; z ∈ R}.

Since | exp(−iωz)| = 1 when z ∈ R, we obtain the desired result.

Lemma B.5. (Uniform boundedness of the operator exp(ωRj)-BMO-case)
Let λ − iRj be the operator in BMO. Then Spec(iRj)⊂ R and || exp(ωRj)f ;BMO|| ≤
||f ;BMO||.

The proof parallels that of Lemma B.3 and Lemma B.4; we need not use Lemma B.1.

Lemma B.6. (Persistency of vertical averaging property)
Assume that n = 3. If U ∈ B0, then E(−Ωt)U ∈ B0, where E(−Ωt) = exp(−tΩS).
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Proof: It suffices to prove that Rjf = 0 if f = 0 for f ∈ Ḃ0
∞,1, where Rj is a scalar Riesz

operator and f is a scalar function. We approximate f by a finite sum
∑
φj ∗ f .

We set fl =
∑

|k|≤l φk ∗ f for l > 0. By a similar argument to prove that exp(νt∆)U = 0

for U = 0 in the proof of Proposition 3.2 we obtain that Rjφk ∗ f = 0 if f = 0, since Rjφk is
a rapidly decreasing function. This implies that Rjfl = 0. Since fl → f in Ḃ0

∞,1 as l → ∞,
the Riesz operator Rj is bounded and the subspace of the zero vertical average is closed in
Ḃ0

∞,1, we conclude that Rjf = 0.

Remark B.2. The fact that Mikhlin’s condition (B.4) implies that a bound for the operator
Tm = F−1mF in Ḃ0

∞,1 can be proved directly without using Lemma B.1; see e.g. Amann [1].
However, Lemma B.1 is not included in [1] and seems to be new.

References

[1] H. Amann (1997), Operator-Valued Fourier Multipliers, Vector-Valued Besov Spaces,
and Applications, Math. Nachr., 186, p. 5-56.

[2] A. Babin, A. Mahalov and B. Nicolaenko (2001), 3D Navier-Stokes and Euler Equa-
tions with initial data characterized by uniformly large vorticity, Indiana University
Mathematics Journal, 50, p. 1-35.

[3] A. Babin, A. Mahalov and B. Nicolaenko (1999), Global regularity of the 3D Rotating
Navier-Stokes Equations for resonant domains, Indiana University Mathematics Jour-
nal, 48, No. 3, p. 1133-1176.

[4] A. Babin, A. Mahalov and B. Nicolaenko (1997), Regularity and integrability of the
3D Euler and Navier-Stokes Equations for uniformly rotating fluids, Asympt. Anal., 15,
No. 2, p. 103-150.
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