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Abstract

Three-dimensional rotating Navier-Stokes equations are considered with a constant
Coriolis parameter €) and initial data nondecreasing at infinity. In contrast to the non-
rotating case (€2 = 0), it is shown for the problem with rotation (2 # 0) that Green’s
function corresponding to the linear problem (Stokes + Coriolis combined operator)
does not belong to L (R?). Moreover, the corresponding integral operator is unbounded
in the space LP(RR?) of solenoidal vector fields in R? and the linear (Stokes+Coriolis)
combined operator does not generate a semigroup in L°(R3). Local in time, uniform
in € unique solvability of the rotating Navier-Stokes equations is proven for initial
velocity fields in the space LZ?G(R?’) which consists of L> solenoidal vector fields sat-
isfying vertical averaging property such that their baroclinic component belongs to a
homogeneous Besov space Bgo,l which is smaller than L but still contains various
periodic and almost periodic functions. This restriction of initial data to Lg?a(R?’)
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which is a subspace of L°(R?) is essential for the combined linear operator (Stokes
+ Coriolis) to generate a semigroup. The proof of uniform in  local in time unique
solvability requires detailed study of the symbol of this semigroup and obtaining uni-
form in €2 estimates of the corresponding operator norms in Banach spaces. Using the
rotation transformation, we also obtain local in time, uniform in €2 solvability of the
classical 3D Navier-Stokes equations in R? with initial velocity and vorticity of the
form V(0) = Vo(y) + Ses x y, cwrlV(0) = curlVo(y) + Qes where Vo (y) € L, (R?).

1 Introduction

In this paper we study initial value problem for the three-dimensional rotating Navier-Stokes
equations in R?® with initial data nondecreasing at infinity:

O, U+ (U-V)U +Qes x U +vewrl?U = -Vp, V-U =0, (1.1)

U(t,l’)‘tzo = Uo(.CE) (12)

where © = (21,29, 23), U(t,z) = (Uy, Us, Us) is the velocity field and p is the pressure. In
Egs. (1.1) e3 denotes the vertical unit vector and €2 is a constant Coriolis parameter; the
term Qe3 x U restricted to divergence free vector fields is called the Coriolis operator. The
initial velocity field Uy(z) depends on three variables x1, xo and x3. We consider initial data
in spaces of solenoidal vector fields L°(R3) nondecreasing at infinity (L>°(R?) restricted
to the divergence free subspace). The consideration of solutions not decaying at infinity
is essential in the development of rigorous mathematical theory of 3D rotating turbulence
(homogeneous statistical solutions [10]). In this paper we prove local (in time), uniform in
Q unique solvability of the rotating Navier-Stokes equations in R?® under the condition that
the initial velocity Uy € Lg‘fa(R:”), which is a subspace of L°(R?) having vertical averaging
property. We take initial data in the space L, (R%) = {u € L*®(R%) : u —u € BY, |} where
32071 is a Besov space which contains various periodic and almost periodic functions (see
Appendix B). Here @ denotes the vertical average of u. We use ngl since the Riesz operator
is bounded in BY ; but not in L. The space L, (R?) is a subspace of L°(R®) which
consists of bounded vector fields satisfying vertical averaging property. It is shown that the
linear combined operator (Stokes + Coriolis) generates a uniformly bounded semigroup on
Ly, (R?).

The above initial value problem (1.1)-(1.2) for the 3D rotating Navier-Stokes Equations
is equivalent, via rotation transformation with respect to the vertical axis e3, to the initial
value problem for the classical (non-rotating) 3D Navier-Stokes Equations with initial data
of the type V(0) = Vo(y) + Zes x y:

OV +(V-V)V +vewrl*’V = -Vq, V-V =0, (1.3)



Vit oo = V(0)= Voly) + Ses xy (14
where y = (y1,¥2,93), V(t,y) = (V1, V5, V3) is the velocity field and ¢ is the pressure. Since
curl(%eg xy) = Qes, the vorticity vector at initial time ¢t = 0 is curlV(0, y) = curl\?o(y)—{—Qeg.
This connection between initial value problems for the 3D Navier-Stokes Equations is made
precise in the last section of the paper. Using the rotation transformation, our results for
initial value problem (1.1)-(1.2) imply local (in time), uniform in € solvability of the Navier-
Stokes equations (1.3)-(1.4) in R® under the condition that the initial velocity is of the form
V(0) = Vo(y) + Les x y with Vo(y) € L, (R?).

Let J be the matrix such that Ja = e3 x a for any vector field a. Then

0 -1 0
J=[1 0 o0]. (1.5)
0 0 0
We define the Stokes operator A:
AU = veurl®U = —vAU (1.6)

on divergence free vector fields. Let P be the projection operator on divergence free fields.
We recall that the operator P is related to the Riesz operators:

P ={P,}ij=123 Pj;=20;+ RRj; (1.7)

where 0; ; is Kronecker’s delta and R; are the scalar Riesz operators defined by

RN VRS .
Rj_ﬁxj( A) —a(|§|) for j=1,2,3 (1.8)

where i = v/—1 (see e.g. [27]).
We transform (1.1)-(1.2) into the abstract operator differential equation for U

U, +AQU+P(U-V)U=0, (1.9)
where
A(QU =AU+ QSU, S=PJP (1.10)

and we have used PJU = PJPU on solenoidal vector fields. The main difficulty that we
face in our studies of local uniform in € solvability for Eqs. (1.1)-(1.2), (1.3)-(1.4) is that the
Coriolis term is an unbounded operator in L:°(R?). We find that it is necessary to restrict
initial data on a subspace of L°(R?) on which the combined operator (Stokes + Coriolis)
generates a semigroup. Then uniform in 2 time-local solvability of the full nonlinear problem
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is proven with detailed study of the symbol of this semigroup and obtaining uniform in €2
estimates of the corresponding operator norms in Banach spaces.

It is important to note that mathematical techniques for Eqs. (1.1)-(1.2) with initial
data on compact manifolds (bounded domains and periodic lattices in R?) and for initial
data in LP(R?), 1 < p < +oo spaces of functions that decay at infinity are very different
from those for initial data non-decaying at infinity in R3. In the former case, the Coriolis
operator is a bounded zero order pseudo-differential operator with a skew-symmetric matrix
symbol. Then local in time solvability for fixed 2 immediately follows by repeating classical
arguments on local solvability of the 3D Navier-Stokes equations. Uniform in €2 solvability
does not always hold for bounded domains and it requires careful consideration in each
case. We note that for initial data on periodic lattices and in bounded cylindrical domains
in R? the time interval [0, 7] for existence of strong solutions is uniform in Q. Moreover,
regularization of solutions occurs for large 2. Global regularity for large €2 of solutions of the
three-dimensional Navier-Stokes equations (1.1)-(1.2), (1.3)-(1.4) with initial data Ug(x) on
arbitrary periodic lattices and in bounded cylindrical domains in R* was proven in [2], [3]
and [20] without any conditional assumptions on the properties of solutions at later times.
The method of proving global regularity for large fixed €2 is based on the analysis of fast
singular oscillating limits (singular limit {2 — +00), nonlinear averaging and cancellation of
oscillations in the nonlinear interactions for the vorticity field. It uses harmonic analysis tools
of lemmas on restricted convolutions and Littlewood-Paley dyadic decomposition to prove
global regularity of the limit resonant three-dimensional Navier-Stokes equations which holds
without any restriction on the size of initial data and strong convergence theorems for large
Q.

The mathematical theory of the Navier-Stokes equations in R™ (n = 2,3) with initial
data in spaces of functions non-decaying at infinity is more difficult than those on bounded
domains or with periodic boundary conditions and it was developed only recently although
there are earlier works to construct mild solutions for L initial data [6],[8]. Since energy
is infinite for the corresponding solutions, classical energy methods for estimating norms
of solutions or Galerkin approximation procedures cannot be used and new techniques are
required. For example, Giga, Inui and Matsui [12] showed the time-local existence of strong
solutions to the Navier-Stokes equations with non-decaying initial data in L*(R™), n = 2, 3.
Moreover, they proved the uniqueness under the same conditions. There are several related
works for L initial data [7],[19]. We do not intend to exhaust references on this topic.
Giga, Matsui and Sawada [13] proved the global in time solvability of the 2D Navier-Stokes
equations with initial velocity in L:°(R?) without smallness nor integrability condition on
initial velocity.

Although there are several earlier works on the solvability of the Navier-Stokes equations
with initial data in Besov type spaces, it requires decay at space infinity. The space BQOJ was
first used to solve the Boussinesq equations by Sawada and Taniuchi [25] (see Taniuchi[28] for
recent improvement). Recently, Hieber-Sawada [16] and Sawada [24] constructed a unique
local solution for the Navier-Stokes equations (1.3) with initial data Mx + vy where M is a



trace free matrix and vy € Bgo,l. This includes (1.4). However, their existence time estimate
depends on (2, since the term Qez x ® is regarded as a perturbation. This is a major
difference between our and their approaches. Although we restrict initial data vy in Lg°,,
as noticed in Remark 4.1 (iii) we may take an arbitrary element of Bgo,l provided that it is
divergence free. The reason we use smaller space is to give a framework to study the limit

2 — oo in the future.

2 Linear problem and calculation of symbols of pseudo-
differential operators

In this section we solve linear problem using Fourier transform and calculate symbols
of the corresponding pseudo-differential operators in R3. We consider the linear problem
(Stokes+Coriolis):

0P — VAP 4+ Qes x = —-Vr, V-® =0,
D (t,x)|i=0 = Po(z). (2.1)

After applying projection P on divergence free vector fields, the above equation (2.1) can be
written in operator form as follows

We introduce Fourier integrals:
1 )
p—y 0 p— _Zé.x
Ful) = 6(6) = gy [ ula)d,
1 )
-1 v _ ix-€
Fv(e) = ¥(0) = o /R (), (2.3)

Clearly, £ - a(§) = 0 if u is divergence free. Recall that the operators P and curl in Fourier
representation have symbols o(P) and o(curl):

1 & L& && 0 =& &
o(P)=1- GE & & && |, olewrl) =4 & 0 =& |. (2.4)
&6 && & & & 0

Here I is the 3 x 3 identity matrix. In what follows, we shall freely denote singular integral
operator, say R; in (1.8), by its symbol, say i£;/|{| for simplicity.
We also define the vector Riesz operator R by introducing its symbol:

& &
50 LI
JR)=RE=| & 0 -& (2.5)
_ & & 0
q T



We note that the symbol R() is a 3 x 3 skew-symmetric matrix. The vector Riesz operator
R acting in the space of divergence free vector fields has the property:

R? = -1 (2.6)
In fact, since R(§)v = %5 x v, we calculate for any solenoidal vector field v

R(¢)% = R(¢ ><|§|
1

Here, we used dlvergence free condition (§ - v) = 0. Because the scalar Riesz operators R,
satisfy Z i1 R2 , it seems natural to call the operator R the vector Riesz operator. We
now calculate 3 X 3 matrlx symbol S(§) of the zero order pseudo-differential operator S:

a(S) =8(¢§) = P(§)JP(E). (2.7)

We make an important observation that the operator S = PJP is related to the Riesz
operators and the curl operator. One can easily show by direct matrix multiplication that

S(6) = P(6)IP(€) = (E)R(é) (2.8)

It implies that the symbol of the operator S commutes with the symbols of the operator curl
and the Stokes operator A. The symbol S(&) of the operator S is a homogeneous funstion
of degree zero and it is expressed in terms of the scalar Riesz operators R; for j = 1,2,3 (cf.
(1.8)). Egs. (2.5) and (2.8) imply

§X V)= |§|2§ X (£ x V)
|§|2

0 Ry —Ry
S=Rs| -R; 0 R |. (2.9)
Ry —R; 0

We recall that the Riesz operators R; are bounded operators in LF(R?) for 1 < p < oo and
BMO(R?). Here, BMO is the space of functions of bounded mean oscillations (e.g. [27]).
However, the Riesz operators are not bounded in L>°(R3). We also note that the Riesz
operators R; are bounded from L>(R?) to BMO(R?).

Since Riesz operators are bounded in BMO(R?) and LP(R?) (1 < p < +oc), we have

Proposition 2.1. (1) S : BMO(R?) — BMO(R?) is a bounded operator.

(2) S: LP(R?) — LP(R?), 1 < p < 400, is a bounded operator.

(3) The symbol S(€) : R® — R3 of the operator S is a 3 x 3 matriz with the following
properties:

(a) (S(£))" = —S(&) (skew-symmetric matriz),
2 & _ @ €3 ie S2— R2
® @ = = (i) () e o= mo .10
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where % 1s the symbol of the Riesz operator Rs.
(4) |S(&)v| = |v| on the linear subspace of R with the property & - v = 0 (subspace of

solenoidal vector fields). Here |v| denotes length of the vector v € R3.

Remark 2.1. The operator S is not a bounded operator in L°(R3), however, S : L2(R3) —
BMO(R?).

Eq. (2.10) is useful in calculating the operator exp(S) directly using infinite series:

+001

exp(S) = S/ (2.11)

=

Then we can solve linear Stokes+Coriolis problem (2.1), (2.2) in BMO(R?) and in LP(R?),
1 < p < +00. Since the operators commute, the solution of (2.2) is given by

D(t) = exp((—A — QS)t) Py = exp(VtA)E(—Qt) Py, (2.12)

where E(—Qt) = exp(—QtS). Of course, in Egs. (2.12), exp(vtA) is the usual semigroup
generated by the heat kernel. Since S is a bounded operator in BMO(R3) and LP(R3?),
1 < p < 400, the operator exp(2St) is also a bounded operator in these spaces. It is defined
by convergent series:

+oo
1 o
exp(QSt) = Z ﬁ(Qt)]S]. (2.13)
j=0
We can solve linear Stokes+Coriolis problem (2.1) using Fourier transform in R3. After
applying Fourier transform and projecting on divergence free subspace, we obtain

QB (1, ) + VEPB(1,€) + OS(E)B(L. &) =0,

D(t,&)|i=0 = Po(§). (2.14)
Direct calculation using infinite series (2.13) and the property (2.10) of S implies that
exp(QS(€)t) cos(%m)l + sin(%@t)R(f), (2.15)
where R(€) is defined in (2.5).
Then the solution of (2.14) is given by
B(t, &) = eV <cos(%§2t)l — sin(%@t)R(ﬁ)) D(&). (2.16)

In physical space the solution is given by convolution of inverse Fourier transform of
e vIEPt cos(%Qt} and e~V sin(%Qt)R(ﬁ) with ®¢(z).
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Thus, the symbol of the vector pseudo-differential operator exp(—A(2)t) corresponding
to the linear problem (Stokes Operator + 2S) is given by

o(exp(—A(Q)t)) = e VI cos(%@t)l — VIR sin(%ﬁt)R(f), (2.17)
where R is the vector Riesz operator with the 3 x 3 matrix symbol R(§) defined above; I is

the 3 x 3 identity matrix. From the calculations outlined in Appendix A it follows that

F! (e""ﬂgt cos(%@t)) JE (e""ﬂgt sin(%ﬁt)R({)) € LY(R?*),1 < ¢ < +oo. (2.18)

The symbol o (exp(—A(Q)t)) is discontinuous at &€ = 0 since the functions eI’ sin(%@t)%,
j = 1,2 are discontinuous at £ = 0. Therefore, the integral kernel given by Fourier transform
of the symbol cannot belong to L*(R?®). More detailed consideration of the Fourier transform
given in the Appendix A shows that it behaves as ||~ for large |z| and that it is not a
bounded operator in L°(R?).

We state a uniform boundedness of exp(—A(2)¢) in BMO(R?) which will be needed in

Section 4:
Proposition 2.2. exp(—A(Q)t) : BMO(R3) — BMO(R?) is a bounded operator and

|| exp(=A(Q)1)|| pro—pmo < C, (2.19)
where C' is independent of 2 and t > 0.

Proof: The fact that exp(—A(Q)t) is a bounded operator in BMO(R?) follows from the
formula for its symbol (2.17) together with Lemma B.2 and the fact that the Riesz operators

are bounded in BMO(R?). We note that dependence on € appears only in COS(%Qt) and

sin(%Qt) which are functions of the Riesz operator R3 (e.g. COS(%Qt) = (ei\%mjte_i%m)/Q).
Since the spectrum of the Riesz operator Rj is included in the pure imaginary axis (Appendix
B; Lemma B.5), the operator norm of exp(aR3) : BMO — BMO is bounded by 1 indepen-
dent of a € R. Since exp(—A(Q)t) = e’ E(=Qt) and ||e"?!||pvo—pmo < Co with Cy > 0

independent of ¢ and v, the uniform bound for exp(aR3) now yields (2.19).

Remark 2.2. (i) exp(—A(Q)t) is a bounded operator from L(R?) to BMO(R?); however,
it is not a bounded operator from L°(R?) to itself.
(ii) exp(—A(Q)t) : LP(R?) — LP(R3), 1 < p < 400 is a bounded operator.

3 Stokes-Coriolis semigroup and splitting of initial data
having vertical averaging property

It was shown in the previous section that exp(—A(Q)t)U does not belong to L°(R3) for
general U € L®(R3). However, exp(—A(Q)t)U € LP(R?) if U belongs to a subspace
LT, (R?) of LP(R?), which we now define.



First, we introduce vertical averaging property.

Definition 3.1. (vertical averaging)
Let U € LX(R3). We say that U admits vertical averaging if

Llirfooﬁ/ U(z1, T2, x3)dz3 = Uz, 22)

exists almost everywhere. The vector field U(z1, x5) is called vertical average of U(zy, 19, x3).

Remark 3.1. (i) Clearly, all periodic and almost periodic functions (or vector fields) admit
vertical averaging.

(ii) The vector field U(xy,2o) = (Uyi(x1, 22), Us(w1,22), Us(z1, 22)) has zero horizontal di-
vergence:

V.U =0, T +0,0s = 0. (3.1)

(iii)Supposing U € LP(R3) for 1 < p < oo, the vertical average always exists; moreover,
U =0.
(iv)If U € L*°(R?) admits vertical averaging (at (z1,3)), then we have uniform convergence
property, i.e.,

lim sup —/ U(w1, 29, 23 + r)drs = U(x1, 29)

L—oo < 2L
for each M > 0. Indeed, we may assume that U(x1,75) = 0 by considering U — U instead
of U. We suppress the dependence of (z1,x3). Since

L+r L+r
/ U(zs + r)des = </ / ) (x3)dzxs,

L+r
U(xg)dﬂfg

—L—r

we observe that

L+r 1
L 2(L+r)

I 2r
37 | Ulaa+1)das < [0ller

We take supremum in r € [—=M, M] and send L to oo to get the desired result.

Eq. (3.1) follows if we apply vertical averaging operation to the 3D divergence free equa-
tion V- U = 0,,U; + 0,,Us 4+ 0,,Us = 0 and notice that

im L[y oy Ly L) — Us( —L))=0 (3:2)
L—IH}OOQL L al’g x3—L—1>r-iI-1002L 3\F1, T2, 3\ %2, o ‘

since Uz € L™ (R3).



The operation of vertical averaging defined above is called ‘barotropic projection” and the
vector field U(zy, x2) is called ‘barotropic component’ of U(zy, x5, x3). Then the ‘baroclinic
component’ U~ (1, 29, 23) is defined as

Ut (21, 29, 73) = U(y, 29, 23) — U(21, 29). (3.3)
Now we define the space L3, (R?).
Definition 3.2. (Space for initial data) We define a subspace of L2 of the form
LY,(R*) = {U € LF(R?); U admits vertical averaging and U™ € 32071}.

Here Bgo,l is the homogeneous Besov space (see Appendix B on details of its definition and
properties). The space L3, (R?) is a Banach space with the norm

10112, = 1Ol ey + [[UH ] g,

Indeed, let {U;} be a Cauchy sequence of Lg7,. Since |[f][z < C|[fl[, U; converges to

some U € LY uniformly in R?®. Since U; exists, so does U. Since ||f[|loc < Cl|f|c0, we

conclude that U; — U uniformly in R2. Since {U]L} is a Cauchy sequence in BY |, there is

a limit v € ngl. However, U; — U, ﬁ] — U, so v must be equal to U*t.
Remark 3.2. The space Ly, has a topological direct sum decomposition of the form
LY, =WaB
with
W ={U € L; 0U;/0x3 =0 in distributional sense R* for i = 1,2, 3},
B'={Uc¢ Bgo,l NLZ; Uz, ze) =0 aee. (z1,12) € R?)

Indeed, for U € Lg7, we observe that U € W and Ut € B°. Moreover, WN B° = {0}. The
closedness of W and B° can be proved using Definition 3.2.

The advantage of the Besov space 32071 is that the Riesz operators and, consequently,
the operator exp(—A(€2)t) are bounded operators in this space. Also, this space contains all
locally Lipschitz periodic functions with zero mean value and all almost periodic functions
of the form

D aze ™ with {a;}52, €1 A} C RP\ {0},
7=1

Let U € LY, (R?). Then U admits vertical averaging and we have the following repre-
sentation (splitting)

U=U+U", (3.4)
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where U(zy,22) is a 2D-3C vector field (vector field with three components where each
component {Uj(xl,xg)};’:l depends only on two variables z; and x); U,(z1, 12) € L=(R?).
We have

exp(—A(Q)t)U = exp(vtA)U + exp(—A(Q)t) U, (3.5)
where we used
exp(—QtS)U = U. (3.6)

Then the first term in (3.5) is the classical heat kernel. In order to estimate the second term
in (3.5), we need to show that the norm of the operator exp(—A()t) in the Besov space
BY, , is independent of Q.

Proposition 3.1. The operator exp(—A(Q)t) : ngl — Bgo,l is a bounded operator and
lexp(~ A1)l o <C. (.7
where C' is independent of 2 and t > 0.

Proof: A direct calculation using the Gauss kernel yields
VtA|] . )
1230 g <1.

It suffices to prove the uniform boundedness of E(—Qt) : BY, | — BY, ;. Since (2.15) implies
that
E(—Qt) = cos(—iR3)I 4+ R sin(—iR3t)

and the Riesz operator R is bounded in Bgo,l, it suffices to prove a uniform bound for

cos(—iR3Qt) and sin(—iR3t). The dependence on €2 appears only in cos and sin functions.
Note that the operator norm of exp(aRj3) : 32071 — 32071 is bounded by 1 independent of
a € R since the spectrum of the Riesz operator R3 is included in the pure imaginary axis
(Appendix B; Lemma B.4). Since cos and sin can be expressed by exponential functions,
e.g. cos(—iR30t) = (exp(RsQt) + exp(—R30t))/2, we have a uniform bound independent of
2 and t for E(—Qt). This yields (3.7).

In the remainder of this section we shall prove that exp(—A(2)t) is a uniformly bounded
semigroup in L3°,. Since we have Proposition 3.1 together with (3.5) and (3.6), it suffices to
prove

Proposition 3.2. The operator exp(—A(Q)t) maps from L7, to idtself for all t > 0.

11



Proof: It suffices to show that exp(—A(Q)t)U = exp(—QtS) exp(vtA)U € B® if U € B°.
We first prove that exp(vtA)U € BY if U € B°. Since

(eXp(VtA)U)(x) = /3 </ U(xl —Y1,T2 — Y2,X3 — y3>gut(y3>dy3) gut(yl,yz)dyldyz
R¢ —00

with the Gauss kernel g, it suffices to prove that

. 1 L poo
lim —/ / U(m — Y1, T2 — Y2,T3 — y3)9ut(y3)dy3dx3 —0
L= 2L ) ;) o

for a.e. (x1 — y1,9 — y2). This follows from the uniform convergence property Remark
3.1(iv), since g,:(y3) is integrable for large y3. We thus proved that exp(vtA)U = 0. The
divergence free property is clear, so we conclude that exp(vtA)U € B if U € B°. The proof
will be complete if we prove

E(-)U e B if Ue B

We give the proof of this fact in the Appendix (Lemma B.6).

4 Local solvability independent of the speed of rotation

In this section we prove time-local existence and uniqueness for (1.1)-(1.2) on some time
0, Ty] with Ty independent of Q € R. The differential equations are formally transformed
into the integral equation of the form:

(1) U(t) = exp(—A(Q)t)Uy — N(U, t;Q) for t > 0.
Here the nonlinear term N (U, ¢;Q) = N(U, U, ;) is defined by

N(U,V,0) = /0 exp(— AWt — $)Pdiv(U © V)(s) ds.

We call a solution of the integral equation (I) a mild solution of the rotational Navier-Stokes
equations. Since PU = U for divergence free vector field and PA = AP, we have

A(Q)=-PA+QPJ =-A+QPJP.
Note that
exp(—A(Q)t) = e E(—Ot),

where €2 is the solution operator of the heat equation (in this section we put v = 1 for
simplicity of notations). For an interval I C [—o0,00] and a Banach space X let C(I; X)
denote the space of all continuous functions with valued in X. The space C,,(I; X) denotes
the space of all X-valued star weakly continuous functions.

The goal of this section is to prove the following theorems.
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Theorem 4.1. (Existence and uniqueness of mild solution U)
Suppose that Uy € LY, (R?). Then
(1) There exist Ty > 0 independent of Q and a unique solution U = U(t) of (I) such that

U € C([6, To]; L") N Cu ([0, Tol; L) (4.1)
for any 6 > 0.
(2) The solution U satisfies
sup |[tV?VU||p= <00 and VU € C([6, Tp); L) (4.2)
te(0,70)

for any o > 0.

Theorem 4.2. (Existence of classical solution U)
Suppose that Uy € Lg‘ja(R?’). Let U = U(t) be a solution of (1) satisfying (4.1) and (4.2). If
we set

3 | Ry (R, U — R, U?)
Vp(t) =V Y R;RUUt) - Q| Ry (R,U' - R, U?) fort >0, (4.3)
Jk=1 Rs (R,U' — R, U?)

then the pair (U, Vp) is a classical solution of (1.1)-(1.2).
Such a solution (satisfying (4.1)-(4.3)) is unique. In fact a stronger version is available.

Theorem 4.3. (Uniqueness of classical solution U)
Suppose that Uy € LY, (R?). Let

U e L°((0,T) xR®), pe L. ([0,T); BMO)

be a solution of (1.1)-(1.2) in a distributional sense for some T > 0. Then the pair (U, Vp)
is unique. Furthermore, the relation (4.3) holds.

Remark 4.1. (i)For a lower estimate for T, > 0 we get
To > C/||Uol| 7,

with C' independent of €.
(ii)For regularity we can get the same results as in [12]. The remark except (i) after Theorem
1 in [12] holds for our equation (I).

(iii) From the proof given below it is rather clear that one can take initial data in W + B

co,1
which is larger than LZ°,. In particular, this class includes Bgo,l N L for which local existence
is discussed in [24]. o

(iv) If in addition we assume that U, € BUC so that Uy, € BUC, then by construction
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our solution U € C([0, Ty}; BUC); here, BUC denotes the space of all bounded uniformly
continuous functions in R?. Indeed, since By, ; C BUC (see e.g. Example 2.3(iv) in [24]),

U, € BUC. Since U, € C([0,00); BUC) (see Proposition A.1.1 in [12]) and E(—Qt)Uy €
C([0,00); BY, ), it is easy to see that U; € C(]0,00); BUC). Thus its uniform limit U

oco,1

belongs to C([0, Ty]; BUC).

We note that Theorem 4.2 follows from Theorem 4.1 as observed in [12], where the case
2 = 0 is discussed. We also note that the uniqueness (Theorem 4.3) can be proved along the
line of [14],[18], where the case 2 = 0 is discussed. We won’t repeat the proofs. The proof of
Theorem 4.1 is based on a standard iteration method, and is similar to that of [12]. We have
already prepared two estimates for exp(—A(2)t) in BMO and Besov spaces (Proposition
2.2 and Proposition 3.1). We further estimate its spatial derivatives.

Lemma 4.1. There exists a constant C > 0 (depending only on space dimensions) that
satisfies
Ve flle < CEV2|fllBmo, ¢ >0

for f € BMO.
Proof In [[9],Lemma 2.1] Carpio obtained for the Gauss kernel ¢g; = g;(x) that
Vgl < CtY2 ¢ >0.
Here, H! denotes the Hardy space. Since the dual space of the space H! is BMO, we have
IV fllz= < [IVaillsa |l fllsao < Ct2)| fl|aro-
Lemma 4.1 was proved.

Using the above lemma, Proposition 2.2 and Proposition 3.1, the linear term is estimated
as follows.

Lemma 4.2. There exists a constant C' (independent of Q,t, f) that satisfies
lexp(=A(Q)1) fllz~ < Cllfllzg,, >0, and
IV exp(=A Q)0 fl[z= < O fllrg,, >0
forall f = (fi)i<i<s € L3S,
Proof By (3.5), Proposition 3.1 and || - ||z~ < || - HB&,l we get

|| exp(=A(Q)) f]

12 F + ' exp(—tQPJIP) f*||

< e Fllz + ||e" exp(—tQPIP) f| o
< N fllz + || exp(—tQPIP) f ]|

< N fllz~ + Hexp(—tQPJP)fﬂ|f3go,1

< |z +C||JPLHB§;Q1

< C[lfllze,-
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Similarly Lemma 4.1, Proposition 2.2 and || - ||gmo < || - ||z imply that

IV exp(—A(Q)t) f] L~

IVE'SF + Ve exp(—tQPIP) |1

VT + || Ve exp(—tQPIP) £~

Ot [Fllmaso + O] exp(~tQPIP) || paro
Ct2(|[fllsao + 11 £ Buo)
CEM(| [l + 11+ ]20)
CEV(|[Fllzee + 111, ,)

Ct2)| £ g,

IA A TN IACIA

IN

We have proved Lemma 4.2.

Next we prepare estimates for the nonlinear term.

Lemma 4.3. (Derivative estimate)
There exists a constant C' (independent of Q,t, F and f) that satisfies

|| exp(—A(Q)t)PAivF||~ < CtY2||F||pyo, t>0, and
IV exp(=AQ)O)Pf]1= < Ct 2| fllpyo ¢ >0

for all F = (F; ;)1<ij<s € BMO, with divF € BMO and for all f = (fi)1<i<s € BMO.
Proof It is easy to see that
PdivF = divF + div(P — ) F*,
where F* is transposed matrix of . We rewrite
exp(—A(Q)t)PdivF = "> E(—Qt)div{F + (P — I)F'}.

Since the symbol of the operator e'® E(—Qt)div is represented by

. & .
ew(ﬂﬂﬂm%ﬂ )T = R(E)sin )iy
= & exp(— CcoS 53 —1 ex sin 53
= i€, exp(—t[¢[?) (‘5 )T — & R(€) exp(—t[¢]?) (‘5 t),

one sees that

"2 B(=Qt)div|| ooz~ < ||Ve™||Brro—r~|| cos(—iRsQt)|| prro—Baro

+| |Curlem | |BMO—>L°° | | sin(—iR;;Qt) \ ‘BMO—>BMO‘ \ \R\ ‘BMO—»BMO
< Ct_1/2, (4.4)
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where C' > 0 is independent of €2 and ¢. Thus, by Lemma 4.1, Proposition 2.2 and bound-
edness of the operator P in BMO we have

|| exp(—=A(Q)t)PAivF ||z~ < CtY2||F + (P — I)F'||zmo0
< Ct72(||F||smo + ||(P = 1) F*||pno) < Ct2(|F||sao-

Similarly, we get by (4.4)
IV exp(—=A Q)P f|1= < Ct 2| fl|paro
because the symbol of the operator V exp(—A (2)) is the essentially same as that of !> E(—Qt)div.
We have proved Lemma 4.3.
Proof of Theorem 4.1. We use the following successive iteration:
Ui(t) = exp(-A(@QH)Us,  Upa(t) = exp(~A(QHUy — N(U;, £:Q)  for j > 1.
For 7 > 1 and T' > 0 we set
Ky = K;(T) = sup [[U;(s)[lz~ and K} = Kj(T) = sup (s'2|VU;(s)||)-

0<s<T
Put Koy = ||[Ug||zg, and note that Ky is independent of 7' > 0. It follows from Lemma 4.3
and || - |[paro <[ - || that
t

[IN(Uj, t; Q)| < || exp(=A(Q)(t — 5))Pdiv(U; ®@ Uj;)(s)|[ = ds
0
t
< || exp(—=A(Q)(t — s))Pdiv||pro—r=||(U; @ Uj)(s)|[smo ds
0
t
< [ et @ U a0 ds
0
< Ct"? sup ||(U; @ U;)(s)||amo < Ct? sup [|(U; @ U;)(s)|| =
0<s<t 0<s<t
< Ct2 sup (||Us(s)][3=) < CH2(sup |[U;(s)|[1)". (4.5)
0<s<t 0<s<t

Similarly we have from Lemma 4.3

IVN(U, Qe < / 1V exp(—A(Q)(t — 5))Pdiv(U; @ U;)(s)| [~ ds

< / S2|div(U; © U)o ds

< c / ) |div(U; © U,)(s)] o= ds

< / (t = 5)"Y/257Y251/2 U (5)] o U (5| - s

< Coililit(slm\WUj(s)HLw) Sup, [U;(s)] - (4.6)
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By the above estimates and Lemma 4.2 there exist constants Cy, C;, Cs and C3 independent
of  and T such that

Kj1(T) < CoKo + CiTY?(K;(T))?,
K}, (T) < CoKo + CsT2K;(T) Kj(T)
for j > 1. Taking Tj, small so that Ty < inf(1/(4CoC1Ky)?, 1/(4CoC3Kp)?), we get

sup KJ(T> < QCOKO and sup K,( ) < 2C2K0 if T < T().

j>1 i>1
Next we shall prove the convergence. For 7 > 1 and T' > 0 put

L; =L;(T) = sup ||U;j(s) — U;_1(s)]|re=,

0<s<T
Ly = L(T) = sup (s"2|[VU;(s) = VU, 1(5)] 1),
Since
Uj(t) = U;(t) = N(U;, Uy, £,Q) = N(U;, U, 1Q)
+N(Uj,Uj_1,t; Q) - N(Uj_l,Uj_l,t; Q), (47)

similarly as in (4.5) and (4.6) we get

1U;41(t) = Us(0)]] o

/ C(t = ) 21U, ()l + 1051 (5) 1)1 (U; = Uy 1) (3)] 1= ds
< Cr'? OiggT(HUj( Sz + [[Uj-1(8)[ ) OiLSlgTH(Uj —U;1)(s)[ = (4.8)
and
VU () - VU (0]~ <C / /25122 T U (5) e | (U — Uja)(5)] e
5 2|0 ()| [V (U = U 1) (5) 1o} s
e / 2V TU, 4 (3)] o | (U — Uy 1))l
+31/2HUJ'—1( Mz=l|V(U; = Uj1)(s)|| <} ds. (4.9)

Hence there exist Cy4, C'5 > 0 independent of 2 and T such that

L1 (T) < CoK TY2L,(T),
L (T < CsKoTY?(L;(T) + L, (T))
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for j > 1. Taking T small so that T} < 1/(2(Cy + C5)Kp)?, it is easy to see that

Lin(T) 1 Lj(T) + L 4 (T) .
< = d < — f T <Ty.
oL T2 ™ T omym T2 o =H

Thus, choosing T < min(Ty, T1), the approximations {U;(#)};51 and {t'/2VU;(t)};>, are
Cauchy sequences in L>®((0,7) x R3). Denote its limits by U(t) and V(t), respectively.
Since Uj satisfies (4.1), so does U. Similar calculation as in (4.8) and (4.9) yields that
N(U;, Q) — N(U, Q) in L°((0,T) x R*)  as j — oo,
VN(U;,t;Q) — VN(U, Q) in L®((0,T7) x R*) as j — oo,
which guarantees that t'/2VU = V and that the limit U solves the integral equation (I).

The properties (4.2) for U are also inherited from Uj;’s.
It remains to prove the uniqueness. We set W = U; — U, and observe that

W(t) = N(Ub U17 tv Q) - N(U27 U27 t7 Q)
Then the same calculation as (4.7) and (4.8) gives us W = 0.

5 Concluding remarks

The above results for the 3D rotating Navier-Stokes Equations can be formulated for
solutions of the three-dimensional Navier-Stokes Equations with initial data of the form
V(t,y)li=0 = V(0) = Vo (y) + Fes x y:

OV +(V-V)V +veurl’V = -Vq, V-V =0, (5.1)

Vit = V(0 =Voly) + Ses xy (5.2

where y = (y1,¥2,y3), V(t,y) = (V1, V5, V3) is the velocity field and ¢ is the pressure. In
Eqs. (5.1) es denotes the vertical unit vector and €2 is a constant parameter. The field V(y)
depends on three variables y1, y» and y3. Since curl( es X y) = Qes, the vorticity vector at
initial time ¢ = 0 is

curlV(0,y) = curl Vo (y) + Qes. (5.3)

In (5.2) we take Vo(y) € L, (R?).

We now detail the canonical rotation transformation between the original vector field
V(t,y) and the vector field U(¢, z). Let J be the matrix such that Ja = e3 x a for any vector
field a. Then

0 -1 0 cos({%) —sin(Z) 0
J=[1 0 0], Yt)=eM?= sin($)  cos(¥) 0 . (5.4)
0 0 0 0 0 1
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For any fixed parameter 2 we introduce the following fundamental rotation transforma-
tion:

Q
V(t,y) = e™¥2U (L, e M2y + EJy, x = e M2y, (5.5)
The transformation (5.5) is invertible:
Q
U(t, ) = e W2V (¢, et H2g) — §J£E, y = et W2 (5.6)

The transformations (5.5)-(5.6) establish one-to-one correspondence between solenoidal vec-
tor fields V(¢,y) and U(t, z). We note that = y for t = 0 and therefore Vi(y) = Vo (z).
Let = (zp,, x3) where z;, = (71,22, 0), |z,|*> = 23 + 23 and similarly for y.

The following identities hold for the vector fields V(¢,y) and U(¢, x) and pressure 7:
Vv, V(t,y) =V, Ut z).

V,r=Y({t)V,7.

curl, V(t,y) = Y(t)curl, U(t, z) + Qes, cwrllV(t,y) = Y(t)curl2U(¢, z).

DV(t,y) =Y(t) <%U(t, z)+QJU — %th) where £ are the corresponding Lagrangian

Ll e

derivatives, JU = e3 x U.

The above identities 1-4 imply that the transformation (5.5)-(5.6) is canonical for Egs. (5.1)-
(5.2). From the property 1 it follows that V, - U(¢,z) = 0 since V- V(¢,y) = 0. Now using
2-4 and the fact that Y(¢) is unitary, we can express each term in (5.1) in = and ¢ variables
to obtain the equations for U(¢,z). Under the canonical rotation transformation (5.5)-(5.6)
Egs. (5.1)-(5.2) turn into Navier-Stokes system (5.7)-(5.8) with an additional Coriolis term
Qez x U and modified initial data and pressure:

U+ (U-V,)U+vewrl2U +Qez x U= -V,p, V,-U=0, (5.7)

U(t, )| = U(0,2) = Vo(x), (5.8)

where x = y at t = 0 and z, = (21,72). The systems Egs. (5.1)-(5.2) and (5.7)-(5.8)
are equivalent for every  and the pair of transformations (5.5)-(5.6) establishes one-to-one
correspondence between their fully three-dimensional solutions.

We now state our theorem for the initial value problem (5.1)-(5.2).

Theorem 5.1. (Existence of classical solution V)
Suppose Vo € Lg‘ja(R?’). Then there exists a classical solution (V,Nq) of (5.1)-(5.2) satisfy-
mg
3 Ry (RyV' — R V?) 02y 2
Vq(t) =V Z RiRVIVF(H) —Q | Ry (RV' — R V?) | + vt fort>0.
= Ry (RyV' — R, V?) 4

Such a solution is unique provided that V — %Jy € L*(R" x (0,7)).
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This follows from Theorem 4.2 and 4.3.
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A Appendix: Calculation of integral kernels

In this section we analyze inverse Fourier transform of e "I¢ % cos(%@t), which gives the inte-
gral kernel in the convolution operator with ®,(z ) (diagonal terms in (2.16)-(2.17)). The cal-

culation of the inverse Fourier transform of e~*I¢/* sm(fg"Qt) EJ' (off-diagonal terms in (2.16)-

(2.17)) is similar. The integral kernel is obtained in the form (27)~3/2F 1 (eI’ cos(%Qt) -

evIer tsm(fg' Ot) \55]\) since F~'mFf = (2r)~%2(F~'m) % f for a symbol m and a function f.
We have

- 1 ISP

Pt (e VIEP cos (53 )) = / cos(ZQt)e VIS et ge (A.1)
N (2m)32 Jgs (8]

where © = (21,29, 23) and we denote |z|? = 23 + 23 + 23, |2/|> = 2} + 23. Using spherical

coordinates with center at 0 and azimuthal angle 8 measured from the axis determined by

the vector z, one has (0 <0 <7, 0 <1 <2m, p=|[¢|)

é——BSIHQSIHw‘F_COSQ (A.2)

IS |z]

/|2

Then

/ cos(S Qt) —VIEPtging e

/+°°/ e (57

oo Q Q
= 27r/ / Jo < t] sin 6) cos ( g Ccos 9) —vP*teilelpcost 2 in O pdd, (A.3)

|| ||

Qt
sin@sin w) cos < |j3 cos 9) —vP*tgilzlpcost p* sin @dpdipdf

where we have used the identity

2 !
/ Ccos (Q‘t‘ | i sin 6 sin w) dy =27, (Q‘HT | sin 8) (A4)
0 x
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Let po = cosf. Then we have from (A.3)
/ cos(fﬂﬂt) e VIEPtein e ge

+oo /
= 27?/ / Jo (Qt\x |\/ ) <Qt73 ) e~ cos(|z|pp) pPdpdp (A5)

since the function sin(|z|pp) is odd in p and other functions are even in p.

Now we calculate the integral in (A.5) involving integration with respect to p. We have
after somewhat lengthy but elementary calculations (which also involves shifting contour of
integration in complex plane) or from the Table of Integrals in [[15],page 529, 3.952]:

+oo ) NS |z |12 |22
e """t cos(|x 2dp = 1— e vt A6
/ (el = 1 (1= ) (A6

Substituting (A.6) into (A.5), we obtain

/ cos(fg‘ Ot)e VPt € ge

b Qi Qt S W
=27 VT / Jo ( |£LT |\/1 - MQ) cos <‘79T3,u) <1 _ el ) e~k du.(A.7)
-1

4(\/vt)3 2ut
For 2 = 0 the above expression reduces to the heat kernel G,.(z) = Wa o . In fact,

! || 1 j21%0° jo1?
1 — T avt d = 2 _H’
[, (=)

since Jj (Qﬂz‘ 1— ) lo=o = 1, cos <Qm3 ) lo—o = 1 and

we get

Hence the kernel is given by (27)~3/2F~1(e~vEI* cos(%Qt)) = Gu(z) if Q=0.
Let Q and ¢ be fixed. The asymptotics of the integral kernel in |z| can be analyzed
using (A.7). Clearly, it is bounded for |z| — 0. Now we deduce the behaviour for large

2122
|z|. The main obstacle to a rapid decay of the kernel for large |z| is that the term e~ e

appears in combination with |z|?u? and e~ =T | u=0 = 1. The main contribution to the kernel
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asymptotics for large |z| is given in the integral (A.7) by a small interval containing p = 0. If
we expand the expression Jj <Qt|x/| v 01— ,u2) oS (ng ,u) under integral in powers of p (valid

|| |z

uniformly in |z| since %, % < 1), then first we recover the term (heat kernel) x Jo(Qﬂjq)

which clearly rapidly decays as |x| — +o0. Since the function under integral is even in p,

- 2
the next term will be of the form (function independent of p) x p?(1 — %)e“ e Tt
asymptotic behaviour for large |z| is given by the integral:

1 2,2 2 2 || 2 2

YR ol e 1 2 nt o2 C(r)

p(l— Ye  wi dp = —/ n° (1 — —)e widn ~ for large |z|.
/_1 2vt [z J_ 1 |z[3

Therefore, the integral kernel behaves as # for large |z|. In particular, the integral

kernel does not belong to L'(R3). The corresponding integral operator cannot be viewed as
a bounded operator in L°°(R?) since a characteristic function of the outside of a large ball
is always mapped to oo by this operator.

&3

The above analysis and similar considerations for F~! <e"’|§|2t sin(ﬂQt)%> show that

F! (e_”ﬂQt cos(‘%ﬁt)) S P (e_”ﬂQt sin(%@t)R(f)) € LY(R?),1 < q < +o0.

It is clear without any calculations that F~! (e""f|2t sin(%ﬂt}R(ﬁ)) does not belong to

L'(R?) since eI/’ sin(%ﬂt)% (j = 1,2) are discontinuous at £ = 0.

B Appendix: Boundedness of the operator F(—t) in
the homogeneous Besov space Bgo’l uniformly in )
and ¢

In this section we introduce the homogeneous Besov spaces B;q = B;q(R”) and show
boundedness of the operator E(—Qt) uniformly in the Coriolis parameter € and time ¢. The
boundedness in the Besov space is indispensable to estimate linear term in L to obtain
local existence and uniqueness theorems. The dependence of the operator E(—t) on the
parameter () appears in the form exp(wR3) with w € R. Except Lemma B.6 all statements
in this section hold for general dimension n =1,2,3,....

Before introducing the homogeneous Besov spaces, we prepare some notations. By S we
denote the class of rapidly decreasing functions. The dual of S, the space of tempered
distributions is denoted by &’. By H! we denote the Hardy space. It is well known that
the dual space of the Hardy space H! is BMO, the space of functions of bounded mean
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oscillations. Let {¢;}52_ _ be the Littlewood-Paley dyadic decomposition satisfying

Jj=—00

03(6) = do(279€) € CZ(R™), swppgo C {1/2< [ <2} D () =1 (£#0).

(B.1)

Definition B.1. (See, e.g. [5] page 146)
The homogeneous Besov space By , = By (R") is defined by

By, ={f € Z511: B}l < o}
fors e Rand 1 < p,q < oo, where
. 1/q
1l = 4 | S 2l s il g < oc,
SUP_ o< jcoo 27| * f1 LP|| if g = oo.

Here Z’ is the topological dual space of the space Z, which is defined by Z = { f e
S; D*f(0) = 0 for all multi-indices a = (ay, ..., o)}

The above definition yields that all polynomials vanish in B . however, it is well known

2K
that .
B = {feS; |IfiBll<ccand f= ¢+ finS} (B.2)
j=00
if
s<n/p or (s=n/pandqg=1). (B.3)

Since indices of our target space 32071@@”) satisfy (B.3), the space B;q can be regarded as
(B.2). For the details and examples one can consult e.g. [24],[25],[28].

The key lemma of this section is as follows.

Lemma B.1. (Boundedness of convolution-type operator)

Forh € 8§ let T = hx be a convolution-type operator defined on S. Assume that T is regarded
as a bounded operator H* — H!. Then, the operator T is bounded from Bg’o’l to itself. Its
norm ||T|[go .o is bounded by C|[T|[y1 s with C' depending only on n.

Proof: By the definition of the Besov norm we have

ITfBLA = > N+ Thlloe = > s hx flls.

j:—oo j:—OO
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Since only three terms in the family {suppqyj}j are nonzero for any fixed point £ € R", we
derive

ITHEBLA = > lés*hx i fllo

JKEZ, |j—k|<2

< Z @ * R|[1]| Dk * floo-

HEEL, |j—k|<2

The fact || - ||z1 < || - || and the assumption yield

ITf: Beall < Y ey xhlballdr = fll

THEEL, |j—k|<2

< C Z D13 || @n * fl]oo-

HEEL, |j—k|<2

Here, ||¢;]l20 = |lojller + D op; [[iRk®;l|11 is a constant independent of j since ||¢;|[x1 =
l|¢o]|31. Indeed, we obtain that

il = . ¢ (z)|dx = \(F_I(F¢j)(§))($)\dl‘
- RJ(F*(F%)@ o)|de =27 / . / (P y(8) () dr
= 20 [ Joetnjis = /R o) dz = [|6oll:

and similarly

liReosl = [ liRo@lde = [ (PP €)@

= 1%k —j _ ojn Z2Jr§2§k
[ Em e @l =27 [ | [ e o) @i

— 9 [ JiReo(2a)|dx — / (i Redo(2)|dz: = ||i Recol s
Rn R”

for all £ with 1 < k < n. Thus we conclude

ITF; Bl < Cligollzn Y 16k flloe < 3C|Io 2o Z 16 % flloo = CII.f; B 4l
J,kEZ, |j—k|<2 j=—00

This establishes the result.

Remark B.1. The proof can be easily modified to obtain a bound for ||T||g 0 for

arbitrary ¢ € [1, o0] including ¢ = oo
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Lemma B.2. (Theorem 7.30 in [11], [17], Mikhlin-type theorem in the Hardy
space and BMO)
Suppose k > n/2. Let m(&) € CH(R™\ {0}) satisfy

|Dm(€)| < Culé)™!™ (€#0)  forall |a|=ay+---+a, <k (B.4)

Then the operator defined by T,, = F~'mFE is bounded from H' to itself and from BMO to
itself.

Lemma B.3. (Boundedness of Resolvent operator)
Consider the operator X — iR; : BY,; — B, for j = 1,2,3. Then, Spec(iR;) C R. Here
Spec(K') denotes the spectrum set of an operator K.

Proof: Assume A € C\ R. Since it is easy to see that m(§) = 1/(A + %) satisfies (B.4),

Lemma B.2 guarantees that (A —iR;)™" exists and bounded from H' to itself. So, it follows
from Lemma B.1 that (A —iR;)~" exists and bounded from BJ ; to itself. Thus A € C\ R
belong to the resolvent set.

Finally we will show uniform boundedness for exp(wR;) independent of w € R.

Lemma B.4. (Uniform boundedness of the operator exp(wR;)-Besov-case)
For f € BY, | and w € R we have

|lexp(wR;) f; Bocall < |1 Boall-
Proof: By spectrum mapping theorem we have

| exp(WR)); B,y — Bl = sup{|z];z € Spec(exp(wR;))}
= sup{|z|; z € exp(—iw Spec(iR;))}
= sup{|exp(—iwz)|; z € Spec(iR;)}.

It follows from Lemma B.3 that
| exp(WR;); By — Blall < sup{|exp(—iwz)|; 2 € R}.
Since | exp(—iwz)| = 1 when z € R, we obtain the desired result.

Lemma B.5. (Uniform boundedness of the operator exp(wR;)-BMO-case)
Let X\ — iR; be the operator in BMO. Then Spec(iR;)C R and ||exp(wR;)f; BMO|| <
1f; BMO]|.

The proof parallels that of Lemma B.3 and Lemma B.4; we need not use Lemma B.1.

Lemma B.6. (Persistency of vertical averaging property)
Assume that n = 3. If U € B°, then E(—t)U € B°, where E(—t) = exp(—tQS).
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Proof: It suffices to prove that R;f = 0if f =0 for f € Bgo,l, where R; is a scalar Riesz
operator and f is a scalar function. We approximate f by a finite sum ) ¢; * f.

We set f; = ngl ¢ * f for [ > 0. By a similar argument to prove that exp(vtA)U = 0
for U = 0 in the proof of Proposition 3.2 we obtain that R;¢y * f = 0 if f = 0, since R;¢y, is
a rapidly decreasing function. This implies that R;f; = 0. Since f; — f in Bgo,l as | — oo,
the Riesz operator R; is bounded and the subspace of the zero vertical average is closed in
BY ,, we conclude that R, f = 0.

00,19

Remark B.2. The fact that Mikhlin’s condition (B.4) implies that a bound for the operator
Ty = F~'mF in B) | can be proved directly without using Lemma B.1; see e.g. Amann [1].
However, Lemma B.1 is not included in [1] and seems to be new.
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