Stability of Discrete Ground State

Tadahiro Miyao and Itaru Sasaki
Department of Mathematics,
Hokkaido University, Sapporo 060-0810, Japan
e-mail: s993165@math.sci.hokudai.ac.jp *
e-mail: i-sasaki@math.sci.hokudai.ac.jp †

September 14, 2004

Abstract

We present new criteria for a self-adjoint operator to have a ground state. As an application, we consider models of "quantum particles" coupled to a massive Bose field and prove the existence of a ground state of them, where the particle Hamiltonian does not necessarily have compact resolvent.

Key words: Ground state; discrete ground state; generalized spinboson model; Fock space; Dereziński-Gérard model.

1 INTRODUCTION

Let T be a self-adjoint operator on a Hilbert space \mathcal{H}, and bounded from below. We say that T has a discrete ground state if the bottom of the spectrum of T is an isolated eigenvalue of T. In that case a non-zero vector

[^0]in $\operatorname{ker}\left(T-E_{0}(T)\right)$ is called a ground state of T. Let S be a symmetric operator on \mathcal{H}. Suppose that T has a discrete ground state and S is T bounded. By the regular perturbation theory [8 , XII], it is already known that $T+\lambda S$ has a discrete ground state for "sufficiently small" $\lambda \in \mathbb{R}$. Our aim is to present new criteria for $T+\lambda S$ to have a ground state.

In Section 2, we prove an existence theorem of a ground state which is useful to show the existence of a ground state of models of quantum particles coupled to a massive Bose field.

In Section 3, we consider the GSB model [2] with a self-interaction term of a Bose field, which we call the GSB $+\phi^{2}$ model. We consider only the case where the Bose field is massive. The GSB model - an abstract system of quantum particles coupled to a Bose field - was proposed in [2]. In [2], A. Arai and M. Hirokawa proved the existence and uniqueness of the GSB model in the case where the particle Hamiltonian A has compact resolvent. Shortly after that, they proved the existence of a ground state of the GSB model in the case where A does not have necessarily compact resolvent $[4,3]$. In this paper, using a theorem in Section 2, we prove the existence of a ground state of the GSB $+\phi^{2}$ model in the case where A does not necessarily have compact resolvent.

In Section 4, we consider an extended version of the Nelson type model, which we call the Dereziński-Gérard model [5]. The Dereziński-Gérard model introduced in [5], and J. Dereziński and C. Gérard prove an existence of a ground state for their model under some conditions including that A has compact resolvent. In Section 4, we prove the existence of a ground state of the Dereziński-Gérard model in the case where A does not have compact resolvent. Our strategy to establish a ground state is the same as in Section 3.

2 BASIC RESULTS

Let \mathcal{H} be a separable complex Hilbert space. We denote by $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ the scalar product on Hilbert space \mathcal{H} and by $\|\cdot\|_{\mathcal{H}}$ the associated norm. Scalar product $\langle f, g\rangle_{\mathcal{H}}$ is linear in g and antilinear in f. We omit \mathcal{H} in $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and $\|\cdot\|_{\mathcal{H}}$, respectively if there is no danger of confusion. For a linear operator T in Hilbert space, we denote by $D(T)$ and $\sigma(T)$ the domain and the spectrum of T respectively. If T is self-adjoint and bounded from below, then we define

$$
E_{0}(T):=\inf \sigma(T), \quad \Sigma(T):=\inf \sigma_{\mathrm{ess}}(T)
$$

where $\sigma_{\text {ess }}(T)$ is the essential spectrum of T. If T has no essential spectrum, then we set $\Sigma(T)=\infty$. For a self-adjoint operator T, we denote the form domain of T by $Q(T)$. In this paper, an eigenvector of a self-adjoint operator T with eigenvalue $E_{0}(T)$ is called a ground state of T (if it exists). We say that T has a ground state if $\operatorname{dim} \operatorname{ker}\left(T-E_{0}(T)\right)>0$.

The basic results are as follows:
Theorem 2.1. Let H be a self-adjoint operator on \mathcal{H}, and bounded from below. Suppose that there exists a self-adjoint operator V on \mathcal{H} satisfying the following conditions (i)-(iii):
(i) $D(H) \subset D(V)$.
(ii) V is bounded from below, and $\Sigma(V)>0$.
(iii) $H-E_{0}(H) \geq V$ on $D(H)$.

Then H has purely discrete spectrum in the interval $\left[E_{0}(H), E_{0}(H)+\Sigma(V)\right)$. In particular, H has a ground state.

Proof. For all $u_{1}, \ldots, u_{n-1} \in \mathcal{H}$, we have

$$
\inf _{\substack{\Psi \in \mathrm{L} . \mathrm{h} .\left[u_{1}, \ldots, u_{n-1}\right]^{\perp} \\\|\Psi\|=1, u \in D(H)}}\langle\Psi, H \Psi\rangle-E_{0}(H) \geq \inf _{\substack{\Psi \in \mathrm{L} . \mathrm{h} .\left[u_{1}, \ldots, u_{n-1}\right]^{\perp} \\\|\Psi\|=1, u \in D(H)}}\langle\Psi, V \Psi\rangle,
$$

where L.h. [...] denotes the linear hull of the vectors in [...]. Since $D(H) \subset$ $D(V)$, we have that

$$
\inf _{\substack{\Psi \in \mathrm{L} . \mathrm{h} .\left[u_{1}, \ldots, u_{n-1}\right]^{\perp} \\\|\Psi\|=1, \Psi \in D(H)}}\langle\Psi, V \Psi\rangle \geq \inf _{\substack{\Psi \in \mathrm{L} . \mathrm{h} .\left[u_{1}, \ldots, u_{n-1}\right]^{\perp} \\\|\Psi\|=1, \Psi \in D(V)}}\langle\Psi, V \Psi\rangle .
$$

Hence, for all $n \in \mathbb{N}$

$$
\mu_{n}(H)-E_{0}(H) \geq \mu_{n}(V)
$$

where

$$
\mu_{n}(H):=\sup _{\substack{u_{1}, \ldots, u_{n-1} \in \mathcal{H}}} \inf _{\substack{\Psi \in \mathrm{L} . \mathrm{h} .\left[u_{1}, \ldots, u_{n-1}\right]^{\perp} \\\|\Psi\|=1, \Psi \in D(H)}}\langle\Psi, H \Psi\rangle .
$$

By the min-max principle ([8, Theorem XIII.1]), $\lim _{n \rightarrow \infty} \mu_{n}(H)=\Sigma(H)$ and $\lim _{n \rightarrow \infty} \mu_{n}(V)=\Sigma(V)$. Therefore we obtain

$$
\Sigma(H)-E_{0}(H) \geq \Sigma(V)>0
$$

This means that H has purely discrete spectrum in $\left[E_{0}(H), E_{0}(H)+\Sigma(V)\right)$.

Theorem 2.2. Let H be a self-adjoint operator on \mathcal{H}, and bounded from below. Suppose that there exists a self-adjoint operator V on \mathcal{H} satisfying the following conditions (i)-(iii):
(i) $Q(H) \subset Q(V)$.
(ii) V is bounded from below, and $\Sigma(V)>0$.
(iii) $H-E_{0}(H) \geq V$ on $Q(H)$.

Then H has purely discrete spectrum in the interval $\left[E_{0}(H), E_{0}(H)+\Sigma(V)\right)$. In particular, H has a ground state.

Proof. Similar to the proof of Theorem 2.1.
We apply Theorems 2.1 and 2.2 to a perturbation problem of a self-adjoint operator.

Theorem 2.3. Let A be a self-adjoint operator on \mathcal{H} with $E_{0}(A)=0$, and let B be a symmetric operator on $D(A)$. Suppose that $A+B$ is self-adjoint on $D(A)$ and that there exist constants $a \in[0,1)$ and $b \geq 0$ such that

$$
|\langle\psi, B \psi\rangle| \leq a\langle\psi, A \psi\rangle+b\|\phi\|^{2}, \quad \psi \in D(A)
$$

Assume

$$
\begin{equation*}
\frac{b+E_{0}(A+B)}{1-a}<\Sigma(A) \tag{1}
\end{equation*}
$$

Then $A+B$ has purely discrete spectrum in $\left[E_{0}(A+B),(1-a) \Sigma(A)-b\right)$. In particular, $A+B$ has a ground state.

Proof. By the assumption we have

$$
A+B-E_{0}(A+B) \geq(1-a) A-b-E_{0}(A+B)
$$

on $D(A)$, and $(1-a) \Sigma(A)-b-E_{0}(A+B)>0$. Hence we can apply Theorem 2.1 , to conclude that $A+B$ has purely discrete spectrum in $\left[E_{0}(A+B),(1-\right.$ a) $\Sigma(A)-b)$. In particular, $A+B$ has a ground state.

Remark. It is easily to see that $-b \leq E_{0}(A+B) \leq b$. Therefore condition (1) is satisfied if

$$
\frac{2 b}{1-a}<\Sigma(A)
$$

Theorem 2.4. Let \mathcal{H}, \mathcal{K} be complex separable Hilbert spaces. Let A and B be self-adjoint operators on \mathcal{H} and \mathcal{K} respectively. Suppose that $E_{0}(A)=$ $E_{0}(B)=0$. We set

$$
T_{0}:=A \otimes I+I \otimes B .
$$

Let Z be a symmetric sesquilinear form on $Q\left(T_{0}\right)$, and assume that there exist constants $a_{1} \in[0,1), a_{2} \in[0,1)$ and $b \geq 0$ such that, for all $\Psi \in Q\left(T_{0}\right)$

$$
|Z(\Psi, \Psi)| \leq a_{1}\langle\Psi, A \otimes I \Psi\rangle_{\text {form }}+a_{2}\langle\Psi, I \otimes B \Psi\rangle_{\text {form }}+b\|\Psi\|^{2}
$$

where $\langle\Psi, A \otimes I \Psi\rangle_{\text {form }}=\left\|A^{1 / 2} \otimes I \Psi\right\|^{2}$. Therefore, by the KLMN theorem there exists a unique self-adjoint operator T on $\mathcal{H} \otimes \mathcal{K}$ such that $Q(T)=$ $Q\left(T_{0}\right)$ and $T=T_{0}+Z$ in the sense of sesquilinear form on $Q\left(T_{0}\right)$. We set

$$
s:=\min \left\{\left(1-a_{1}\right) \Sigma(A),\left(1-a_{2}\right) \Sigma(B)\right\} .
$$

Assume

$$
\begin{equation*}
s>b+E_{0}(T) \tag{2}
\end{equation*}
$$

Then, T has purely discrete spectrum in the interval $\left[E_{0}(T), s-b\right)$. In particular, T has a ground state.

Proof. Similar to the proof of Theorem 2.3.
Remark. It is easy to see that $-b \leq E_{0}(T) \leq b$. Therefore the condition (2) is satisfied if

$$
s>2 b .
$$

Remark. Theorem 2.4 is essentially same as [4, Theorem B.1]. But our proof is very simple.

3 Ground States of a General Class of Quantum Field Hamiltonians

We consider a model which is an abstract unification of some quantum field models of particles interacting with a Bose field. It is the GSB model [2] with a self-interaction term of the field.

Let \mathcal{H} be a separable complex Hilbert space and \mathcal{F}_{b} be the Boson Fock space over $L^{2}\left(\mathbb{R}^{d}\right)$:

$$
\mathcal{F}_{\mathrm{b}}:=\bigoplus_{n=0}^{\infty}\left[\bigotimes_{s}^{n} L^{2}\left(\mathbb{R}^{d}\right)\right]
$$

The Hilbert space of the quantum field model we consider is

$$
\mathcal{F}:=\mathcal{H} \otimes \mathcal{F}_{\mathrm{b}} .
$$

Let $\omega: \mathbb{R}^{d} \rightarrow[0, \infty)$ be Borel measurable such that $0<\omega(k)<\infty$ for all most everywhere (a.e.) $k \in \mathbb{R}^{d}$. We denote the multiplication operator by the function ω acting in $L^{2}\left(\mathbb{R}^{d}\right)$ by the same symbol ω. We set

$$
H_{\mathrm{b}}:=\mathrm{d} \Gamma_{\mathrm{b}}(\omega)
$$

the second quantization of ω (e.g. [7, Section X.7]). We denote by $a(f)$, $f \in L^{2}\left(\mathbb{R}^{d}\right)$, the smeared annihilation operators on \mathcal{F}_{b}. It is a densely defined closed linear operator on $\mathcal{F}_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$ (e.g. [7, Section X.7]). The adjoint $a(f)^{*}$, called the creation operator, and the annihilation operator $a(g), g \in L^{2}\left(\mathbb{R}^{d}\right)$ obey the canonical commutation relations

$$
\left[a(f), a(g)^{*}\right]=\langle f, g\rangle, \quad[a(f), a(g)]=0, \quad\left[a(f)^{*}, a(g)^{*}\right]=0
$$

for all $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ on the dense subspace

$$
\begin{aligned}
\mathcal{F}_{0}:= & \left\{\psi=\left(\psi^{(n)}\right)_{n=0}^{\infty} \in \mathcal{F}_{\mathrm{b}} \mid \text { there exists a number } n_{0}\right. \text { such that } \\
& \left.\psi^{(n)}=0 \text { for all } n \geq n_{0}\right\},
\end{aligned}
$$

where $[X, Y]=X Y-Y X$. The symmetric operator

$$
\phi(f):=\frac{1}{\sqrt{2}}\left[a(f)^{*}+a(f)\right],
$$

called the Segal field operator, is essentially self-adjoint on \mathcal{F}_{0} (e.g. [7, Section X.7]). We denote its closure by the same symbol. Let A be a positive self-adjoint operator on \mathcal{H} with $E_{0}(A)=0$. Then, the unperturbed Hamiltonian of the model is defined by

$$
H_{0}:=A \otimes I+I \otimes H_{\mathrm{b}}
$$

with domain $D\left(H_{0}\right)=D(A \otimes I) \cap D\left(I \otimes H_{\mathrm{b}}\right)$. For $g_{j}, f_{j} \in L^{2}\left(\mathbb{R}^{d}\right) j=$ $1, \ldots, J$, and $B_{j}(j=1, \ldots, J)$ a symmetric operator on \mathcal{H}, we define a symmetric operator

$$
\begin{aligned}
H_{1} & :=\sum_{j=1}^{J} B_{j} \otimes \phi\left(g_{j}\right), \\
H_{2} & :=\sum_{j=1}^{J} I \otimes \phi\left(f_{j}\right)^{2} .
\end{aligned}
$$

The Hamiltonian of the model we consider is of the form

$$
H(\lambda, \mu):=H_{0}+\lambda H_{1}+\mu H_{2}
$$

where $\lambda \in \mathbb{R}$ and $\mu \geq 0$ are coupling parameters.
For $H(\lambda, \mu)$ to be self-adjoint, we shall need the following conditions [H.1]-[H.3]:
[H.1] $\quad g_{j} \in D\left(\omega^{-1 / 2}\right), f_{j} \in D\left(\omega^{1 / 2}\right) \cap D\left(\omega^{-1 / 2}\right), j=1, \ldots, J$.
[H.2] $D\left(A^{1 / 2}\right) \subset \cap_{j=1}^{J} D\left(B_{j}\right)$ and there exist constants $a_{j} \geq 0, b_{j} \geq 0$, $j=1, \ldots, J$, such that,

$$
\left\|B_{j} u\right\| \leq a_{j}\left\|A^{1 / 2} u\right\|+b_{j}\|u\|, \quad u \in D\left(A^{1 / 2}\right)
$$

[H.3] $|\lambda| \sum_{j=1}^{J} a_{j}\left\|g_{j} / \sqrt{\omega}\right\|<1$.
Proposition 3.1. Assume [H.1], [H.2] and [H.3]. Then, $H(\lambda, \mu)$ is selfadjoint with $D(H(\lambda, \mu))=D\left(H_{0}\right) \subset D\left(H_{1}\right) \cap D\left(H_{2}\right)$ and bounded from below. Moreover, $H(\lambda, \mu)$ is essentially self-adjoint on every core of H_{0}.

Remark. This proposition has no restriction of the coupling parameter $\mu \geq$ 0 .

To perform a finite volume approximation, we need an additional condition:
[H.4] The function $\omega(k)\left(k \in \mathbb{R}^{d}\right)$ is continuous with

$$
\lim _{|k| \rightarrow \infty} \omega(k)=\infty
$$

and there exist constants $\gamma>0, C>0$ such that

$$
\left|\omega(k)-\omega\left(k^{\prime}\right)\right| \leq C\left|k-k^{\prime}\right|^{\gamma}\left[1+\omega(k)+\omega\left(k^{\prime}\right)\right], \quad k, k^{\prime} \in \mathbb{R}^{d}
$$

Let

$$
\begin{equation*}
m:=\inf _{k \in \mathbb{R}^{d}} \omega(k) \tag{3}
\end{equation*}
$$

If A has compact resolvent, we can prove the extension of the previous theorem [2, Theorem 1.2].

Theorem 3.2. Consider the case $m>0$. Suppose that A has entire purely discrete spectrum. Assume Hypotheses [H.1]-[H.4]. Then, $H(\lambda, \mu)$ has purely discrete spectrum in the interval $\left[E_{0}(H(\lambda, \mu)), E_{0}(H(\lambda, \mu))+m\right)$. In particular, $H(\lambda, \mu)$ has a ground state.

Remark. This theorem has no restriction of the coupling parameter $\mu \geq 0$.
Remark. In the case $m>0$, the condition [H.1] equivalent to the following:

$$
g_{j} \in L^{2}\left(\mathbb{R}^{d}\right), \quad f_{j} \in D(\sqrt{\omega}), \quad j=1, \ldots, J
$$

For a vector $v=\left(v_{1}, \ldots, v_{J}\right) \in \mathbb{R}^{J}$ and $h=\left(h_{1}, \ldots, h_{J}\right) \in \oplus_{j=1}^{J} L^{2}\left(\mathbb{R}^{d}\right)$, we define

$$
M_{v}(h)=\sum_{j=1}^{J} v_{j}\left\|h_{j}\right\|
$$

We set

$$
g=\left(g_{1}, \ldots, g_{J}\right) \in \bigoplus_{j=1}^{J} L^{2}\left(\mathbb{R}^{d}\right), \quad f=\left(f_{1}, \ldots, f_{J}\right) \in \bigoplus_{j=1}^{J} L^{2}\left(\mathbb{R}^{d}\right)
$$

and

$$
a=\left(a_{1}, \ldots, a_{J}\right), \quad b=\left(b_{1}, \ldots, b_{J}\right)
$$

For $\theta, \epsilon, \epsilon^{\prime}$, we introduce the following constants:

$$
\begin{aligned}
C_{\theta, \epsilon} & :=\theta M_{a}(g / \sqrt{\omega})+\epsilon M_{a}(g), \\
D_{\theta, \epsilon^{\prime}} & :=M_{a}(g / \sqrt{\omega}) / 2 \theta+\epsilon^{\prime} M_{b}(g / \sqrt{\omega}), \\
E_{\epsilon, \epsilon^{\prime}} & :=M_{a}(g) / 8 \epsilon+M_{b}(g / \sqrt{\omega}) / 2 \epsilon^{\prime}+M_{b}(g) / \sqrt{2} .
\end{aligned}
$$

Let the condition [H.3] be satisfied. Then, we define

$$
I_{\lambda, g}:= \begin{cases}\left(\frac{|\lambda| M_{a}(g \sqrt{\omega})}{2}, \frac{1}{|\lambda| M_{a}(g / \sqrt{\omega})}\right), & |\lambda| M_{a}(g / \sqrt{\omega}) \neq 0 \\ {[0, \infty],} & |\lambda| M_{a}(g / \sqrt{\omega})=0\end{cases}
$$

It is easy to see that $[1 / 2,1] \subset I_{\lambda, g}$. Therefore, for all $\theta \in I_{\lambda, g}$,

$$
\begin{aligned}
& 1-\theta|\lambda| M_{a}(g / \sqrt{\omega})>0, \\
& 1-\frac{|\lambda| M_{a}(g / \sqrt{\omega})}{2 \theta}>0 .
\end{aligned}
$$

We define for $\theta \in I_{\lambda, g}$,

$$
\mathrm{S}_{\theta}:=\left\{\left(\epsilon, \epsilon^{\prime}\right)\left|\epsilon, \epsilon^{\prime}>0,|\lambda| C_{\theta, \epsilon}<1,|\lambda| D_{\theta, \epsilon^{\prime}}<1\right\} .\right.
$$

Next we set

$$
\tau_{\theta, \epsilon, \epsilon^{\prime}}:=\left(1-|\lambda| C_{\theta, \epsilon}\right) \Sigma(A)-|\lambda| E_{\epsilon, \epsilon^{\prime}},
$$

and

$$
\mathrm{T}:=\left\{\left(\theta, \epsilon, \epsilon^{\prime}\right) \in \mathbb{R}^{3} \mid \theta \in I_{\lambda, g},\left(\epsilon, \epsilon^{\prime}\right) \in \mathrm{S}_{\theta}, \tau_{\theta, \epsilon, \epsilon^{\prime}}>E_{0}(H(\lambda, \mu))\right\} .
$$

Theorem 3.3. Consider the case $m>0$. Suppose that $\sigma_{\text {ess }}(A) \neq \emptyset$. Assume Hypothesis [H.1]-[H.4], and $\mathrm{T} \neq \emptyset$. Then, $H(\lambda, \mu)$ has purely discrete spectrum in the interval

$$
\begin{equation*}
\left[E_{0}(H(\lambda, \mu)), \min \left\{m+E_{0}(H(\lambda, \mu)), \sup _{\left(\theta, \epsilon, \epsilon^{\prime}\right) \in \mathrm{T}} \tau_{\theta, \epsilon, \epsilon^{\prime}}\right\}\right) . \tag{4}
\end{equation*}
$$

In particular, $H(\lambda, \mu)$ has a ground state.
Remark. $\top \neq \emptyset$ is necessary condition for A to have a discrete ground state. Conversely, if A has a discrete ground state, then $\mathrm{T} \neq \emptyset$ holds for sufficiently small λ, μ. Therefore the condition $\mathrm{T} \neq \emptyset$ is a restriction for the coupling constants λ, μ.

3.1 Proof of Proposition 3.1

In what follows, we write simply

$$
H:=H(\lambda, \mu) .
$$

For \mathcal{D} a dense subspace of $L^{2}\left(\mathbb{R}^{d}\right)$, we define

$$
\mathcal{F}_{\text {fin }}(\mathcal{D}):=\operatorname{L.h}\left[\left\{\Omega, a\left(h_{1}\right)^{*} \cdots a\left(h_{n}\right)^{*} \Omega \mid n \in \mathbb{N}, h_{j} \in \mathcal{D}, j=1, \ldots, n\right\}\right],
$$

where $\Omega:=(1,0,0, \ldots)$ is the Fock vacuum in \mathcal{F}_{b}. We introduce a dense subspace in \mathcal{F}

$$
\mathcal{D}_{\omega}:=D(A) \hat{\otimes} \mathcal{F}_{\text {fin }}(D(\omega)),
$$

where $\hat{\otimes}$ denotes algebraic tensor product. The subspace \mathcal{D}_{ω} is a core of H_{0}.

Let

$$
H_{\mathrm{GSB}}:=H_{0}+\lambda H_{1}
$$

be a GSB Hamiltonian. The Hamiltonian H and $H_{\text {GSB }}$ has the following relation:

Proposition 3.4. Let $D(A) \subset D\left(B_{j}\right), j=1, \ldots, J$ and $f_{j} \in D\left(\omega^{1 / 2}\right)$. Assume that H_{GSB} is bounded from below. Then, for all $\Psi \in D_{\omega}$,

$$
\begin{equation*}
\left\|\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi\right\|^{2}+\left\|\mu H_{2} \Psi\right\|^{2} \leq\left\|\left(H-E_{0}\right) \Psi\right\|^{2}+D\|\Psi\|^{2}, \tag{5}
\end{equation*}
$$

where $D=\mu \sum_{j=1}^{J}\left\|\omega^{1 / 2} f_{j}\right\|^{2}$ and

$$
E_{0}:=\inf _{\substack{\Psi \in D\left(H_{\mathrm{GSB}}\right) \\\|\Psi\|=1}}\left\langle\Psi, H_{\mathrm{GSB}} \Psi\right\rangle .
$$

Proof. It is enough to show (5) the case $\lambda=\mu=1$. First we consider the case where $f_{j} \in D(\omega)$. Inequality (5) is equivalent to

$$
\begin{equation*}
-2 \operatorname{Re}\left\langle\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi, H_{2} \Psi\right\rangle \leq D\|\Psi\|^{2} . \tag{6}
\end{equation*}
$$

By $H_{\text {GSB }}-E_{0} \geq 0$, we have

$$
\begin{aligned}
\left\langle\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi, I \otimes \phi\left(f_{j}\right)^{2} \Psi\right\rangle= & \left\langle\left[I \otimes \phi\left(f_{j}\right),\left(H_{\mathrm{GSB}}-E_{0}\right)\right] \Psi, I \otimes \phi\left(f_{j}\right) \Psi\right\rangle \\
& +\left\langle\left(H_{\mathrm{GSB}}-E_{0}\right) I \otimes \phi\left(f_{j}\right) \Psi, I \otimes \phi\left(f_{j}\right) \Psi\right\rangle \\
\geq & \left\langle\left[I \otimes \phi\left(f_{j}\right), H_{\mathrm{GSB}}-E_{0}\right] \Psi, I \otimes \phi\left(f_{j}\right) \Psi\right\rangle .
\end{aligned}
$$

Therefore we have

$$
2 \operatorname{Re}\left\langle\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi, \phi\left(f_{j}\right)^{2} \Psi\right\rangle \geq-\left\|\sqrt{\omega} f_{j}\right\|^{2}\|\Psi\|^{2} .
$$

This means inequality (6). Next, we set $f_{j} \in D(\sqrt{\omega})$. Then, there exists a sequence $\left\{f_{j n}\right\}_{n=0}^{\infty} \subset D(\omega)$ such that $f_{j n} \rightarrow f_{j}, \omega^{1 / 2} f_{j n} \rightarrow \omega^{1 / 2} f_{j}(n \rightarrow \infty)$. By limiting argument, (6) holds with $f_{j} \in D\left(\omega^{1 / 2}\right)$.
Lemma 3.5. Suppose that H_{GSB} is self-adjoint with $D\left(H_{\mathrm{GSB}}\right)=D\left(H_{0}\right)$, essentially self-adjoint on \mathcal{D}_{ω}, and bounded from below. Let $f_{j} \in D\left(\omega^{1 / 2}\right) \cap$ $D\left(\omega^{-1 / 2}\right)$. Then H is self-adjoint with $D(H)=D\left(H_{0}\right)$ and essentially self-adjoint on any core of H_{GSB} with

$$
\left\|\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi\right\|^{2}+\left\|\mu H_{2} \Psi\right\|^{2} \leq\left\|\left(H-E_{0}\right) \Psi\right\|^{2}+D\|\Psi\|^{2}, \quad \Psi \in D\left(H_{0}\right) .
$$

Proof. It is well known that $D\left(H_{\mathrm{b}}\right) \subset D\left(\phi\left(f_{j}\right)^{2}\right)$, and $\phi\left(f_{j}\right)^{2}$ is $H_{\mathrm{b}^{-}}$ bounded (e.g. [1, Lemma 13-16]). Namely, there exist constants $\eta \geq 0$, $\theta \geq 0$ such that

$$
\begin{equation*}
\left\|\sum_{j=1}^{J} \phi\left(f_{j}\right)^{2} \psi\right\| \leq \eta\left\|H_{\mathrm{b}} \psi\right\|+\theta\|\psi\|, \quad \psi \in D\left(H_{\mathrm{b}}\right) \tag{7}
\end{equation*}
$$

Since $H_{\text {GSB }}$ is self-adjoint on $D\left(H_{0}\right)$, by the closed graph theorem, we have

$$
\begin{equation*}
\left\|H_{0} \Psi\right\| \leq \lambda\left\|H_{\mathrm{GSB}} \Psi\right\|+\nu\|\Psi\|, \Psi \in D\left(H_{0}\right) \tag{8}
\end{equation*}
$$

where λ and ν are non-negative constant independent of Ψ. Hence

$$
\left\|H_{2} \Psi\right\| \leq \eta \lambda\left\|H_{\mathrm{GSB}} \Psi\right\|+(\eta \nu+\theta)\|\Psi\|, \quad \Psi \in D\left(H_{0}\right)
$$

We fix a positive number μ_{0} such that $\mu_{0}<1 /(\mu \lambda)$. Then, by the KatoRellich theorem, $H\left(\lambda, \mu_{0}\right)$ is self-adjoint on $D\left(H_{\mathrm{GSB}}\right)$, bounded from below and essentially self-adjoint on any core of H_{GSB}. For a constant $a(0<$ $a<1$), we set $\mu_{n}:=(1+a)^{n} \mu_{0}$. Since $H_{\text {GSB }}$ is self-adjoint on $D\left(H_{0}\right)$, for each $j=1, \ldots, J$ we have $D(A) \subset D(B)$. Thus by Proposition 3.4, for all $\Psi \in \mathcal{D}_{\omega}$

$$
\left\|\left(H_{\mathrm{GSB}}-E_{0}\right) \Psi\right\|^{2}+\left\|\mu_{n} H_{2} \Psi\right\|^{2} \leq\left\|\left(H\left(\lambda, \mu_{n}\right)-E_{0}\right) \Psi\right\|^{2}+D\|\Psi\|^{2}
$$

If $H\left(\lambda, \mu_{n}\right)$ is self-adjoint on $D\left(H_{\mathrm{GSB}}\right)$, bounded from below and essentially self-adjoint on any core of H_{GSB}, then $H\left(\lambda, \mu_{n+1}\right)$ has the same property. On the other hand, we have $\mu_{n} \rightarrow \infty(n \rightarrow \infty)$. Hence we conclude that H is self-adjoint with $D(H)=D\left(H_{\mathrm{GSB}}\right)$, bounded from below and essentially self-adjoint on any core of H_{GSB}.

Now, we assume conditions [H.1],[H.2] and [H.3].
Then H_{GSB} is self-adjoint on $D\left(H_{0}\right)$, bounded from below and essentially self-adjoint on any core of H_{0} (see [2]). Hence, the assumptions of Lemma 3.5 hold. Thus Proposition 3.1 follows.

3.2 Proofs of Theorems 3.2 and 3.3

Throughout this subsection, we assume Hypotheses [H.1]-[H.4] and $m>$ 0 .

For a parameter $V>0$, we define the set of lattice points by

$$
\Gamma_{V}:=\frac{2 \pi \mathbb{Z}^{d}}{V}:=\left\{k=\left(k_{1}, \ldots, k_{d}\right) \left\lvert\, k_{j}=\frac{2 \pi n_{j}}{V}\right., n_{j} \in \mathbb{Z}, j=1, \ldots, d\right\}
$$

and we denote by $l^{2}\left(\Gamma_{V}\right)$ the set of l^{2} sequences over Γ_{V}. For each $k \in \Gamma_{V}$ we introduce

$$
C(k, V):=\left[k_{1}-\frac{\pi}{V}, k_{1}+\frac{\pi}{V}\right) \times \cdots \times\left[k_{d}-\frac{\pi}{V}, k_{d}+\frac{\pi}{V}\right) \subset \mathbb{R}^{d}
$$

the cube centered about k. By the map

$$
U: l^{2}\left(\Gamma_{V}\right) \ni\left\{h_{l}\right\}_{l \in \Gamma_{V}} \mapsto(V / 2 \pi)^{d / 2} \sum_{l \in \Gamma_{V}} h_{l} \chi_{l, V}(\cdot) \in L^{2}\left(\mathbb{R}^{d}\right)
$$

we identify $l^{2}\left(\Gamma_{V}\right)$ with a subspace in $L^{2}\left(\mathbb{R}^{d}\right)$, where $\chi_{l, V}(\cdot)$ is the characteristic function of the cube $C(l, V) \subset \mathbb{R}^{d}$. It is easy to see that $l^{2}\left(\Gamma_{V}\right)$ is a closed subspace of $L^{2}\left(\mathbb{R}^{d}\right)$. Let

$$
\mathcal{F}_{\mathrm{b}, \mathrm{~V}}:=\mathcal{F}_{\mathrm{b}}\left(l^{2}\left(\Gamma_{V}\right)\right)=\bigoplus_{n=0}^{\infty}\left[\bigotimes_{s}^{n} l^{2}\left(\Gamma_{V}\right)\right]
$$

the boson Fock space over $l^{2}\left(\Gamma_{V}\right)$. We can identify $\mathcal{F}_{\mathrm{b}, \mathrm{V}}$ the closed subspace of \mathcal{F}_{b} by the operator $\Gamma(U):=\oplus_{n=0}^{\infty} \otimes^{n} U$, where we define $\otimes^{0} U=0$. For each $k \in \mathbb{R}^{d}$, there exists a unique point $k_{V} \in \Gamma_{V}$ such that $k \in C\left(k_{V}, V\right)$. Let

$$
\omega_{V}(k):=\omega\left(k_{V}\right), \quad k \in \mathbb{R}^{d}
$$

be a lattice approximate function of $\omega(k)$ and let

$$
H_{\mathrm{b}, \mathrm{~V}}:=\mathrm{d} \Gamma\left(\omega_{V}\right)
$$

be the second quantization of ω_{V}. We define a constant

$$
C_{V}:=C d^{\gamma}\left(\frac{\pi}{V}\right)\left(\frac{1}{2 m}+1\right)
$$

where C and γ were defined in [H.4]. In what follows we assume that

$$
C_{V}<1
$$

This is satisfied for all sufficiently large V.

Lemma 3.6. ([2, Lemma 3.1]). We have

$$
D\left(H_{\mathrm{b}, \mathrm{~V}}\right)=D\left(H_{\mathrm{b}}\right)
$$

and

$$
\left\|\left(H_{\mathrm{b}}-H_{\mathrm{b}, \mathrm{~V}}\right) \Psi\right\|=\frac{2 C_{V}}{1-C_{V}}\left\|H_{\mathrm{b}} \Psi\right\|, \quad \Psi \in D\left(H_{\mathrm{b}}\right)
$$

First we consider the case where g_{j} 's and f_{j} 's are continuous, and finally, by limiting argument, we treat a general case. For a constant $K>0$, we define $g_{j, K}, f_{j, K}$, and $g_{j, K, V}, f_{j, K, V}$ as follows:

$$
\begin{aligned}
& g_{j, K}(k):=\chi_{K}\left(k_{1}\right) \cdots \chi_{K}\left(k_{d}\right) g_{j}(k), g_{j, K, V}(k): \\
& f_{j, K}(k):=\chi_{K}\left(k_{1}\right) \cdots \chi_{K}\left(k_{d}\right) f_{j}(k), \quad f_{j, K, V}(k):=\sum_{\substack{\ell \in \Gamma_{V},\left|\ell_{i}\right|<K \\
i=1, \ldots, d}} g_{j}(\ell) \chi_{\ell, V}(k), \\
& \sum_{j}(\ell) \chi_{\ell, V}(k), \\
& i=1, \ldots, d \ll
\end{aligned}
$$

where χ_{K} denotes the characteristic function of $[-K, K]$.
Lemma 3.7. For all $j=1, \ldots, J$,

$$
\begin{aligned}
\lim _{V \rightarrow \infty}\left\|g_{j, K, V}-g_{j, K}\right\| & =0, & \lim _{V \rightarrow \infty}\left\|g_{j, K, V} / \sqrt{\omega_{V}}-g_{j, K} / \sqrt{\omega}\right\| & =0 \\
\lim _{K \rightarrow \infty}\left\|g_{j, K}-g_{j}\right\| & =0, & \lim _{K \rightarrow \infty}\left\|g_{j, K} / \sqrt{\omega}-g_{j} / \sqrt{\omega}\right\| & =0 \\
\lim _{V \rightarrow \infty}\left\|f_{j, K, V}-f_{j, K}\right\| & =0, & \lim _{V \rightarrow \infty}\left\|f_{j, K, V} / \sqrt{\omega_{V}}-f_{j, K} / \sqrt{\omega}\right\| & =0 \\
\lim _{K \rightarrow \infty}\left\|f_{j, K}-f_{j}\right\| & =0, & \lim _{K \rightarrow \infty}\left\|f_{j, K} / \sqrt{\omega}-f_{j} / \sqrt{\omega}\right\| & =0 \\
\lim _{K \rightarrow \infty}\left\|\sqrt{\omega} f_{j, K}-\sqrt{\omega} f_{j}\right\| & =0, & \lim _{V \rightarrow \infty}\left\|\sqrt{\omega_{V}} f_{j, K, V}-\sqrt{\omega} f_{j, K}\right\| & =0
\end{aligned}
$$

Proof. Similar to the proof of [2, Lemma 3.10].
We introduce a new operator:

$$
\begin{aligned}
H_{0, V} & :=A \otimes I+I \otimes H_{\mathrm{b}, \mathrm{~V}} \\
H_{1, K} & :=\sum_{j=1}^{J} B_{j} \otimes \phi\left(g_{j, K}\right) \\
H_{1, K, V} & :=\sum_{j=1}^{J} B_{j} \otimes \phi\left(g_{j, K, V}\right),
\end{aligned}
$$

$$
\begin{aligned}
H_{2, K} & :=\sum_{j=1}^{J} I \otimes \phi\left(f_{j, K}\right)^{2}, \\
H_{2, K, V} & :=\sum_{j=1}^{J} I \otimes \phi\left(f_{j, K, V}\right)^{2},
\end{aligned}
$$

and define

$$
\begin{aligned}
H_{K} & :=H_{0}+\lambda H_{1, K}+\mu H_{2, K}, \\
H_{K, V} & :=H_{0, V}+\lambda H_{1, K, V}+\mu H_{2, K, V} .
\end{aligned}
$$

Lemma 3.8. (i) H_{K} is self-adjoint with $D\left(H_{K}\right)=D\left(H_{0}\right) \subset D\left(H_{1, K}\right)$ $\cap D\left(H_{2, K}\right)$, bounded from below, and essentially self-adjoint on any core of H_{0}.
(ii) For all large $V, H_{K, V}$ is self-adjoint with $D\left(H_{K, V}\right)=D\left(H_{0}\right) \subset$ $D\left(H_{1, K, V}\right) \cap D\left(H_{2, K, V}\right)$, bounded from below, and essentially selfadjoint on any core of $H_{0, V}$.

Proof. Similar to the proof of Proposition 3.1.
Lemma 3.9. For all $z \in \mathbb{C} \backslash \mathbb{R}$, and $K>0$,

$$
\begin{array}{r}
\lim _{K \rightarrow \infty}\left\|\left(H_{K}-z\right)^{-1}-(H-z)^{-1}\right\|=0, \\
\lim _{V \rightarrow \infty}\left\|\left(H_{K, V}-z\right)^{-1}-\left(H_{K}-z\right)^{-1}\right\|=0 .
\end{array}
$$

Proof. Similar to the proof of [2, Lemma 3.5].
The following fact is well known:
Lemma 3.10. The operator $H_{\mathrm{b}, \mathrm{V}}$ is reduced by $\mathcal{F}_{\mathrm{b}, \mathrm{V}}$ and $H_{\mathrm{b}, \mathrm{V}}\left\lceil\mathcal{F}_{\mathrm{b}, \mathrm{V}}\right.$ equal to the second quantization of $\omega_{V}\left\lceil l^{2}\left(\Gamma_{V}\right)\right.$ on $\mathcal{F}_{\mathrm{b}, \mathrm{V}}$.
Lemma 3.11. $H_{K, V}$ is reduced by \mathcal{F}_{V}.
Proof. Similar to the proof of [2, Lemma 3.7].
Lemma 3.12. We have

$$
H_{K, V}\left\lceil\mathcal{F}_{V}^{\perp} \geq E_{0}\left(H_{K, V}\right)+m .\right.
$$

Proof. Similar to the proof of [2, Lemma 3.10].
Lemma 3.13. Let T_{n} and T be a self-adjoint operators on a separable Hilbert space and bounded from below. Suppose that $T_{n} \rightarrow T$ in norm resolvent sense as $n \rightarrow \infty$ and T_{n} has purely discrete spectrum in the interval $\left[E_{0}\left(T_{n}\right), E_{0}\left(T_{n}\right)+c_{n}\right)$ with some constant c_{n}. If $c:=\lim \sup _{n \rightarrow \infty} c_{n}>0$, then T has purely discrete spectrum in $\left[E_{0}(T), E_{0}(T)+c\right)$.

Proof. There exists a sequence $\left\{c_{n_{j}}\right\}_{j=1}^{\infty} \subset\left\{c_{n}\right\}_{n=1}^{\infty}$ so that $c_{n_{j}} \rightarrow c(j \rightarrow$ $\infty)$. So, for all $\epsilon>0$ and for sufficiently large j, the spectrum of $T_{n_{j}}$ in $\left[E_{0}\left(T_{n_{j}}\right), E_{0}\left(T_{n_{j}}\right)+c-\epsilon\right)$ is discrete. Therefore, applying [2 ,Lemma 3.12], we find that the spectrum of T in $\left[E_{0}(T), E_{0}(T)+c-\epsilon\right)$ is discrete. Since $\epsilon>0$ is arbitrary, we get the conclusion.

Now, if A has compact resolvent, by a method similar to the proof of [2, Theorem 1.2], we can prove Theorem 3.2. Therefore, we only prove Theorem 3.3.

The following inequality is known [2, (2.12)]:

$$
\left|\left\langle\Psi, H_{1} \Psi\right\rangle\right| \leq C_{\theta, \epsilon}\langle\Psi, A \otimes I \Psi\rangle+D_{\theta, \epsilon}\left\langle\Psi, I \otimes H_{\mathrm{b}} \Psi\right\rangle+E_{\epsilon, \epsilon^{\prime}}\|\Psi\|^{2},
$$

where $\Psi \in D\left(H_{0}\right)$ is arbitrary. Thus we have,

$$
H \geq\left(1-|\lambda| C_{\theta, \epsilon}\right) A \otimes I+\left(1-|\lambda| D_{\theta, \epsilon^{\prime}}\right) I \otimes H_{\mathrm{b}}+\mu H_{2}-|\lambda| E_{\epsilon, \epsilon^{\prime}} .
$$

Let $I_{\lambda, g}(K), C_{\theta, \epsilon}(K), D_{\theta, \epsilon}(K)$ and $E_{\epsilon, \epsilon^{\prime}}(K)$ are $I_{\lambda, g}, C_{\theta, \epsilon}, D_{\theta, \epsilon}, E_{\epsilon, \epsilon^{\prime}}$ with g_{j}, f_{j} replaced by $g_{j, K}, f_{j, K}$ respectively, and let $I_{\lambda, g}(K, V), C_{\theta, \epsilon}(K, V)$, $D_{\theta, \epsilon}(K, V)$ and $E_{\epsilon, \epsilon^{\prime}}(K, V)$ are $I_{\lambda, g}, C_{\theta, \epsilon}, D_{\theta, \epsilon}, E_{\epsilon, \epsilon^{\prime}}$ with g_{j}, f_{j} and ω replaced by $g_{j, K, V}, f_{j, K, V}$ and ω_{V} respectively. Then we have

Lemma 3.14. The following operator inequalities hold:

$$
\begin{aligned}
H_{K} \geq & \left(1-|\lambda| C_{\theta, \epsilon}(K)\right) A \otimes I+\left(1-|\lambda| D_{\theta, \epsilon^{\prime}}(K)\right) I \otimes H_{\mathrm{b}} \\
& +\mu H_{2, K}-|\lambda| E_{\epsilon, \epsilon^{\prime}}(K) \quad \text { on } \quad D\left(H_{0}\right), \\
H_{K, V} \geq & \left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) A \otimes I+\left(1-|\lambda| D_{\theta, \epsilon^{\prime}}(K, K)\right) I \otimes H_{\mathrm{b}, \mathrm{~V}} \\
& +\mu H_{2, K, V}-|\lambda| E_{\epsilon, \epsilon^{\prime}}(K, V) \quad \text { on } \quad D\left(H_{0}\right) .
\end{aligned}
$$

Proof. Similar to the calculation of [2, (2.12)].

By Lemma 3.7, we have

$$
\begin{align*}
\lim _{V \rightarrow \infty} C_{\theta, \epsilon}(K, V) & =C_{\theta, \epsilon}(K), & \lim _{K \rightarrow \infty} C_{\theta, \epsilon}(K) & =C_{\theta, \epsilon}, \tag{9}\\
\lim _{V \rightarrow \infty} D_{\theta, \epsilon^{\prime}}(K, V) & =D_{\theta, \epsilon^{\prime}}(K), & \lim _{K \rightarrow \infty} D_{\theta, \epsilon^{\prime}}(K) & =D_{\theta \theta \epsilon^{\prime}} \tag{10}\\
\lim _{V \rightarrow \infty} E_{\epsilon, \epsilon^{\prime}}(K, V) & =E_{\epsilon, \epsilon^{\prime}}(K), & \lim _{K \rightarrow \infty} E_{\epsilon, \epsilon^{\prime}}(K) & =E_{\epsilon, \epsilon^{\prime}} . \tag{11}
\end{align*}
$$

Let $\left(\theta, \epsilon, \epsilon^{\prime}\right) \in \mathrm{T}$, namely

$$
\tau_{\theta, \epsilon, \epsilon^{\prime}}=\left(1-|\lambda| C_{\theta, \epsilon}\right) \Sigma(A)-|\lambda| E_{\epsilon, \epsilon^{\prime}}>E_{0}(H) .
$$

Formulas (9)-(11) and Lemma 3.9 imply that for all large V there exists a constant $K_{0}>0$ such that for all $K>K_{0}$,

$$
\begin{align*}
& \left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) \Sigma(A)-|\lambda| E_{\epsilon, \epsilon^{\prime}}(K, V)>E_{0}\left(H_{K, V}\right) \tag{12}\\
& \quad|\lambda| C_{\theta, \epsilon}(K, V)<1, \quad|\lambda| D_{\theta, \epsilon^{\prime}}(K, V)<1 . \tag{13}
\end{align*}
$$

By Lemma 3.11, $H_{K, V}$ is reduced by \mathcal{F}_{V}. Therefore, $H_{K, V}$ satisfies the following inequality:

$$
\begin{align*}
H_{K, V}\left\lceil\mathcal{F}_{V} \geq\right. & \left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) A \otimes I\left\lceil\mathcal{F}_{V}\right. \\
& +\left(1-|\lambda| D_{\theta, \epsilon^{\prime}}(K, V)\right) I \otimes H_{\mathrm{b}, \mathrm{~V}}\left\lceil\mathcal{F}_{V}\right. \\
& -|\lambda| E_{\epsilon, \epsilon^{\prime}}(K, V) . \tag{14}
\end{align*}
$$

Since $H_{\mathrm{b}, \mathrm{V}}\left\lceil\mathcal{F}_{\mathrm{b}, \mathrm{V}}\right.$ has compact resolvent, the bottom of essential spectrum of the right hand side of (14) is equal to

$$
\left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) \Sigma(A)-|\lambda| E_{\epsilon, \epsilon^{\prime}}(K, V) .
$$

By Lemma 3.12, we have $E_{0}\left(H_{K, V}\left\lceil\mathcal{F}_{V}\right)=E_{0}\left(H_{K, V}\right)\right.$. Thus, applying Theorem 2.1 with $H_{K, V}\left\lceil\mathcal{F}_{V}\right.$, we have that $H_{K, V}\left\lceil\mathcal{F}_{V}\right.$ has purely discrete spectrum in $\left[E_{0}\left(H_{K, V}\right),\left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) \Sigma_{A}-E_{\epsilon, \epsilon^{\prime}}(K, V)\right)$. Since this fact and Lemma 3.12, $H_{K, V}$ has purely discrete spectrum in

$$
\left[E_{0}\left(H_{K, V}\right), \min \left\{E_{0}\left(H_{K, V}\right)+m,\left(1-|\lambda| C_{\theta, \epsilon}(K, V)\right) \Sigma_{A}-E_{\epsilon, \epsilon^{\prime}}(K, V)\right\}\right) .
$$

By Lemma 3.9 and Lemma 3.13, we have that for all sufficiently large $K>0, H_{K}$ has purely discrete spectrum in $\left[E_{0}\left(H_{K}\right), \min \left\{E_{0}\left(H_{K}\right)+m,(1-\right.\right.$ $\left.\left.\left.|\lambda| C_{\theta, \epsilon}(K)\right) \Sigma(A)-|\lambda| E_{\epsilon, \epsilon^{\prime}}(K)\right\}\right)$. Similarly, H has purely discrete spectrum in $\left[E_{0}(H(\lambda, \mu)), \min \left\{m+E_{0}(H(\lambda, \mu)), \tau_{\theta, \epsilon, \epsilon^{\prime}}\right\}\right)$. Since $\left(\theta, \epsilon, \epsilon^{\prime}\right) \in \mathrm{T}$ is arbitrary, H has purely discrete spectrum in (4). Finally, we have to consider the case where g_{j} 's and f_{j} 's are not necessarily continuous. But, that argument were already discussed in [4]. So we skip that argument.

4 Ground State of the Dereziński-Gérard Model

We consider a model discussed by J. Dereziński and C. Gérard [5]. We take the Hilbert space of the particle system is taken to be

$$
\mathcal{H}=L^{2}\left(\mathbb{R}^{N}\right) .
$$

The Hilbert space for the Dereziński-Gérard (DG) model is given by

$$
\mathcal{F}:=\mathcal{H} \otimes \mathcal{F}_{\mathrm{b}}\left(L^{2}\left(\mathbb{R}^{d}\right)\right) .
$$

We identify \mathcal{F} as

$$
\bigoplus_{n=0}^{\infty}\left[\mathcal{H} \otimes \bigotimes_{s}^{n} L^{2}\left(\mathbb{R}^{d}\right)\right] .
$$

Hence, if we denote that $\Psi \in\left(\Psi^{(n)}\right)_{n=0}^{\infty} \in \mathcal{F}$, each $\Psi^{(n)}$ belongs to $\mathcal{H} \otimes$ $\left[\otimes_{s}^{n} L^{2}\left(\mathbb{R}^{d}\right)\right]$. We denote by $\mathrm{B}(\mathcal{K}, \mathcal{J})$ the set of bounded linear operators from \mathcal{K} to \mathcal{J}. For $v \in \mathrm{~B}\left(\mathcal{H}, \mathcal{H} \otimes L^{2}\left(\mathbb{R}^{d}\right)\right)$, we define an operator $\widetilde{a}^{*}(v)$ by

$$
\begin{aligned}
& \left(\widetilde{a}^{*}(v) \Psi\right)^{(0)}:=0, \\
& \left(\widetilde{a}^{*}(v) \Psi\right)^{(n)}:=\sqrt{n}\left(I_{\mathcal{H}} \otimes S_{n}\right)\left(v \otimes I_{\otimes_{s}^{n-1} L^{2}\left(\mathbb{R}^{d}\right)}\right) \Psi^{(n-1)}, \quad(n \geq 1), \\
& \Psi \in D\left(\widetilde{a}^{*}(v)\right):=\left\{\Psi=\left(\Psi^{(n)}\right)_{n=0}^{\infty} \in \mathcal{F} \mid \sum_{n=0}^{\infty}\left\|\left(\widetilde{a}^{*}(v) \Psi\right)^{(n)}\right\|^{2}<\infty\right\} .
\end{aligned}
$$

We set

$$
\begin{array}{r}
\mathcal{D}_{0}:=\left\{\Psi=\left(\Psi^{(n)}\right)_{n=0}^{\infty} \in \mathcal{F} \mid \text { there exists a constant } n_{0} \in \mathbb{N},\right. \\
\\
\text { such that, for all } \left.n \geq n_{0}, \Psi^{(n)}=0\right\} .
\end{array}
$$

Throughout this section, we write simply $I_{n}:=I_{\otimes_{s}^{n} L^{2}\left(\mathbb{R}^{d}\right)}$. It is easy to see that:

Proposition 4.1. $\widetilde{a}^{*}(v)$ is a closed linear operator and \mathcal{D}_{0} is a core of $\widetilde{a}^{*}(v)$.

So we set

$$
\widetilde{a}(v):=\left(\widetilde{a}^{*}(v)\right)^{*}
$$

the adjoint operator of $\widetilde{a}^{*}(v)$.

Proposition 4.2. The operator $\widetilde{a}(v)$ has the following properties:
$D(\widetilde{a}(v))=\left\{\Psi=\left(\Psi^{(n)}\right)_{n=0}^{\infty} \mid \sum_{n=0}^{\infty}(n+1)\left\|\left(I_{\mathcal{H}} \otimes S_{n}\right)\left(v^{*} \otimes I_{n}\right) \Psi^{(n+1)}\right\|^{2}<\infty\right\}$
$(\widetilde{a}(v) \Psi)^{(n)}=\sqrt{n+1} I_{\mathcal{H}} \otimes S_{n}\left(v^{*} \otimes I_{n}\right) \Psi^{(n+1)}, \quad \Psi \in D(\widetilde{a}(v))$,
and \mathcal{D}_{0} is a core of $\widetilde{a}(v)$.
Proof. For $\Phi \in \mathcal{F}, \Psi \in D\left(\widetilde{a}^{*}(v)\right)$,

$$
\begin{aligned}
\left\langle\Phi, \widetilde{a}^{*}(v) \Psi\right\rangle & =\sum_{n=1}^{\infty}\left\langle\Phi^{(n)}, \sqrt{n}\left(I_{\mathcal{H}} \otimes S_{n}\right)\left(v \otimes I_{n-1}\right) \Psi^{(n-1)}\right\rangle \\
& =\sum_{n=0}^{\infty} \sqrt{n+1}\left\langle v^{*} \otimes I_{n} \Phi^{(n+1)}, \Psi^{(n)}\right\rangle \\
& =\sum_{n=0}^{\infty}\left\langle\sqrt{n+1}\left(I_{\mathcal{H}} \otimes S_{n}\right)\left(v^{*} \otimes I_{n}\right) \Phi^{(n+1)}, \Psi^{(n)}\right\rangle
\end{aligned}
$$

This implies (15) and (16). It is easy to prove that \mathcal{D}_{0} is a core of $\widetilde{a}(v)$.
An analogue of the Segal field operator is defined by

$$
\widetilde{\phi}(v):=\frac{1}{\sqrt{2}}\left(\widetilde{a}(v)+\widetilde{a}^{*}(v)\right)
$$

Let A be a non-negative self-adjoint operator on \mathcal{H} with $E_{0}(A)=0$. Then the Hamiltonian of the DG model is defined by

$$
H_{\mathrm{DG}}:=A \otimes I+I \otimes H_{\mathrm{b}}+\widetilde{\phi}(v)
$$

We call it the Dereziński-Gérard Hamiltonian. Here H_{b} is the second quantization of ω introduce in Section 3. Let

$$
H_{0}:=A \otimes I+I \otimes H_{\mathrm{b}}
$$

Throughout this section we assume the following conditions:
[DG.1] There is a Borel measurable function $v(x, k) \in \mathbb{C},\left(x \in \mathbb{R}^{N}, k \in \mathbb{R}^{d}\right)$, such that

$$
(v f)(x, k)=v(x, k) f(x), \quad f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

We need also the following assumption:
[DG.2]

$$
\underset{x \in \mathbb{R}^{N}}{\operatorname{ess.sup}} \int_{\mathbb{R}^{d}}\left|\frac{v(x, k)}{\sqrt{\omega(k)}}\right|^{2} \mathrm{~d} k<\infty
$$

Proposition 4.3. Assume [DG.1] and [DG.2]. Then H_{DG} is self-adjoint with $D\left(H_{\mathrm{DG}}\right)=D\left(H_{0}\right)$, and essentially self-adjoint on any core of H_{0}.

For a finite volume approximation, we introduce the following hypotheses:
[DG.3] There exists a nonnegative function $\widetilde{v} \in L^{2}\left(\mathbb{R}^{d}\right)$ and function $\widetilde{o}: \mathbb{R} \rightarrow$ \mathbb{R}, such that

$$
\begin{aligned}
& \underset{x \in \mathbb{R}^{n}}{\operatorname{ess} . \sup }|v(x, k)-v(x, \ell)| \leq \widetilde{v}(k) \widetilde{o}(|k-\ell|), \quad \text { a.e. } k, \ell \in \mathbb{R}^{d} \\
& \lim _{t \downarrow 0} \widetilde{o}(t)=0
\end{aligned}
$$

[DG.4]

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{ess} . \sup } \int_{\left([-K, K]^{d}\right)^{c}}|v(x, k)|^{2} \mathrm{~d} k=\mathrm{o}\left(K^{0}\right)
$$

where

$$
\left([-K, K]^{d}\right)^{\mathrm{c}}:=\mathbb{R}^{d} \backslash(I \times \cdots \times I), \quad I:=[-K, K]
$$

and, $\mathrm{o}\left(t^{0}\right)$ satisfies $\lim _{t \rightarrow 0} \mathrm{o}\left(t^{0}\right)=0$.
Let m be defined by (3). Let

$$
\begin{equation*}
D:=\frac{1}{2} \inf _{0<\epsilon^{\prime}<\frac{\|v\|}{\|v / \sqrt{\omega}\|^{2}}}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right) . \tag{17}
\end{equation*}
$$

Here, $v / \sqrt{\omega}$ is a multiplication operator by the function $v(x, k) / \sqrt{\omega(k)}$ from $L^{2}\left(\mathbb{R}^{N}\right)$ to $L^{2}\left(\mathbb{R}^{N}\right) \otimes L^{2}\left(\mathbb{R}^{d}\right)$. In the case $m>0$, we can establish the existence of a ground state of H_{DG} :

Theorem 4.4. Let $m>0$. Suppose that [DG.1]-[DG.4] and [H.4] hold, and suppose

$$
\Sigma(A)-\|v\| D-E_{0}\left(H_{\mathrm{DG}}\right)>0
$$

Then, $H_{\text {DG }}$ has purely discrete spectrum in

$$
\left[E_{0}\left(H_{\mathrm{DG}}\right), \min \left\{E_{0}\left(H_{\mathrm{DG}}\right)+m, \Sigma(A)-\|v\| D\right\}\right) .
$$

In particular H_{DG} has a ground state.
Remark. In the case where A has compact resolvent, this theorem has been proved in [5]. A new aspect here is in that A does not necessarily have compact resolvent. Also our method is different from that in [5].

4.1 Proof of Proposition 4.3

Lemma 4.5. Let $M(x)=\left(\int_{\mathbb{R}^{d}}|v(x, k)|^{2} \mathrm{~d} k\right)^{1 / 2}, x \in \mathbb{R}^{N}$ and $M: L^{2}\left(\mathbb{R}^{N}\right)$ $\rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ be a multiplication operator by the function $M(x)$. Then

$$
\|v f\|^{2}=\|M f\|^{2}, \quad f \in L^{2}\left(\mathbb{R}^{N}\right) .
$$

In particular, $\|v\|=\|M\|=\left(\operatorname{esss}^{s} \sup _{x \in \mathbb{R}^{N}} \int_{\mathbb{R}^{d}}|v(x, k)|^{2} \mathrm{~d} k\right)^{1 / 2}$ hold.
Proof. By the Fubini's theorem, we have

$$
\|v f\|^{2}=\int_{\mathbb{R}^{d}} \mathrm{~d} k \int_{\mathbb{R}^{N}} \mathrm{~d} x|v(x, k)|^{2}|f(x)|^{2}=\int_{\mathbb{R}^{N}}\left(|f(x)|^{2} \int_{\mathbb{R}^{d}}|v(x, k)|^{2} \mathrm{~d} k\right) \mathrm{d} x .
$$

This means the result.
The adjoint v^{*} has the following form:
Lemma 4.6. For all $g \in \mathcal{H} \otimes L^{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\left(v^{*} g\right)(x)=\int_{\mathbb{R}^{d}} v(x, k)^{*} g(x, k) \mathrm{d} k, \quad \text { a.e. } x \in \mathbb{R}^{d} \tag{18}
\end{equation*}
$$

Proof. For all $f \in \mathcal{H}$, we have

$$
\begin{aligned}
\langle g, v f\rangle & =\int \mathrm{d} x \int \mathrm{~d} k g(x, k)^{*} v(x, k) f(x) \\
& =\int \mathrm{d} x\left(\int g(x, k)^{*} v(x, k) \mathrm{d} k\right) f(x) .
\end{aligned}
$$

Since f is arbitrary, this proves (18).

Lemma 4.7. $\widetilde{a}(v)$ is

$$
\begin{aligned}
& D(\widetilde{a}(v))=\left\{\Psi \in \mathcal{F} \mid \sum_{n=0}^{\infty}(n+1) \int_{\mathbb{R}^{N+d n}} \mathrm{~d} x \mathrm{~d} k_{1} \cdots \mathrm{~d} k_{n}\right. \\
& \left.\quad\left|\int_{\mathbb{R}^{d}} \mathrm{~d} k v(k, x)^{*} \Psi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right)\right|^{2}<\infty\right\} \\
& (\widetilde{a}(v) \Psi)^{(n)}\left(x, k_{1}, \ldots, k_{n}\right) \\
& =\sqrt{n+1} \int_{\mathbb{R}^{d}} v(x, k)^{*} \Psi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right), \quad \text { a.e. } \quad(\Psi \in D(\widetilde{a}(v)))
\end{aligned}
$$

Proof. Using Lemma 4.6, we have

$$
\begin{equation*}
\left(v^{*} \otimes I_{n}\right) \Psi^{(n+1)}\left(x, k_{1}, \ldots, k_{n}\right)=\int_{\mathbb{R}^{d}} v^{*}(x, k) \Psi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right) \mathrm{d} k \tag{19}
\end{equation*}
$$

This is invariant for all permutations of k_{1}, \ldots, k_{n}. Therefore, using Proposition 4.2 , we get

$$
(\widetilde{a}(v) \Psi)^{(n)}\left(x, k_{1}, \ldots, k_{n}\right)=\sqrt{n+1} \int_{\mathbb{R}^{d}} v(x, k)^{*} \Psi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right) \mathrm{d} k
$$

Lemma 4.8. Suppose that [DG.1] and [DG.2] hold. Then, $D(\widetilde{a}(v))$ ว $D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$ and

$$
\|\widetilde{a}(v) \Phi\| \leq\|v / \sqrt{\omega}\|\left\|I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right\|, \quad \Phi \in D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)
$$

Proof. $\quad \mathrm{By}(19)$, we have for all $\Phi \in D(\widetilde{a}(v))$

$$
\begin{aligned}
\left\|(\widetilde{a}(v) \Phi)^{(n)}\right\|^{2}= & (n+1) \int_{\mathbb{R}^{d n+N}} \mathrm{~d} x \mathrm{~d} k_{1} \cdots \mathrm{~d} k_{n} \mid \int_{\mathbb{R}^{d}} \sqrt{\omega(k)} \\
& \times\left.\frac{1}{\sqrt{\omega(k)}} v(x, k)^{*} \Phi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right) \mathrm{d} k\right|^{2}
\end{aligned}
$$

Using the Schwarz inequality, one has

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{d}} \sqrt{\omega(k)} \frac{1}{\sqrt{\omega(k)}} v(x, k)^{*} \Phi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right) \mathrm{d} k\right|^{2} \\
& \leq \int_{\mathbb{R}^{d}}\left|\frac{v(x, k)^{*}}{\sqrt{\omega(k)}}\right|^{2} \mathrm{~d} k \cdot \int_{\mathbb{R}^{d}} \omega(k)\left|\Phi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right)\right|^{2} \mathrm{~d} k
\end{aligned}
$$

Hence, for every $\Phi \in \mathcal{D}_{0} \cap D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$, we have

$$
\begin{aligned}
&\left\|(\widetilde{a}(v) \Phi)^{(n)}\right\|^{2} \\
& \leq\left(\underset{x}{\operatorname{ess} . \sup } \int_{\mathbb{R}^{d}}\left|\frac{v(x, k)^{*}}{\sqrt{\omega(k)}}\right|^{2} \mathrm{~d} k\right)(n+1) \times \\
& \int_{\mathbb{R}^{d n+N}} \mathrm{~d} x \mathrm{~d} k_{1} \cdots \mathrm{~d} k_{n} \mathrm{~d} k \omega(k)\left|\Phi^{(n+1)}\left(x, k, k_{1}, \ldots, k_{n}\right)\right|^{2} \\
&=\left(\underset{x}{\operatorname{eess} . \sup } \int_{\mathbb{R}^{d}}\left|\frac{v(x, k)^{*}}{\sqrt{\omega(k)}}\right|^{2} \mathrm{~d} k\right) \times \\
& \int_{\mathbb{R}^{d n+N}} \mathrm{~d} x \mathrm{~d} k_{1} \cdots \mathrm{~d} k_{n+1} \sum_{j=1}^{n+1} \omega\left(k_{j}\right)\left|\Phi^{(n+1)}\left(x, k_{1}, \ldots, k_{n+1}\right)\right|^{2} \\
&=\left\|\frac{v}{\sqrt{\omega}}\right\|\left\|\left(I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right)^{(n+1)}\right\|^{2} .
\end{aligned}
$$

Therefore

$$
\|\widetilde{a}(v) \Phi\| \leq\left\|\frac{v}{\sqrt{\omega}}\right\|\left\|\left(I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right)\right\|^{2}
$$

Since, $\mathcal{D}_{0} \cap D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$ is a core of $I \otimes H_{\mathrm{b}}^{1 / 2}$, one can extend this inequality to all $\Phi \in D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$, and $D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right) \subset D(\widetilde{a}(v))$ holds.
Lemma 4.9. On $\mathcal{D}_{0}, \widetilde{a}(v)$ and $\widetilde{a}^{*}(v)$ satisfy the following commutation relation:

$$
\left[\widetilde{a}(v), \widetilde{a}(v)^{*}\right]=\int_{\mathbb{R}^{d}}|v(\cdot, k)|^{2} \mathrm{~d} k
$$

where the right hand side is a multiplication operator by the function : $x \mapsto$ $\int_{\mathbb{R}^{d}}|v(x, k)|^{2} \mathrm{~d} k$.

Proof. Let $\Phi \in \mathcal{D}_{0}$. By the definition of $\widetilde{a}^{*}(v)$, and using Proposition 4.2, we get

$$
\begin{aligned}
\left(\left[\widetilde{a}^{*}(v), \widetilde{a}(v)\right] \Phi\right)^{(n)}= & \left(\widetilde{a}(v) \widetilde{a}(v)^{*} \Phi\right)^{(n)}-\left(\widetilde{a}(v)^{*} \widetilde{a}(v) \Phi\right)^{(n)} \\
= & \sqrt{n+1} I_{\mathcal{H}} \otimes S_{n}\left(v^{*} \otimes I_{n}\right)\left(\widetilde{a}(v)^{*} \Phi\right)^{(n+1)} \\
& -\sqrt{n}\left(I \otimes S_{n}\right)\left(v \otimes I_{n-1}\right)(\widetilde{a}(v) \Phi)^{(n-1)}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left(\left[\widetilde{a}^{*}(v), \widetilde{a}(v)\right] \Phi\right)^{(n)}\left(x, k_{1}, \ldots, k_{n}\right) \\
& =(n+1) \int_{\mathbb{R}^{d}} v(x, k)^{*}\left(I \otimes S_{n+1}\left(v \otimes I_{n-1}\right) \Phi^{(n)}\right)\left(x, k, k_{1}, \ldots, k_{n}\right) \mathrm{d} k \\
& \quad-n \frac{1}{n} \sum_{j=1}^{n} v\left(x, k_{j}\right)\left(v^{*} \otimes I_{n-1} \Phi^{(n)}\right)\left(x, k_{1}, \ldots, \widehat{k_{j}}, \ldots, k_{n}\right) \\
& =\int_{\mathbb{R}^{d}} \mathrm{~d} k v(x, k)^{*}\left(v(x, k) \Phi^{(n)}\left(x, k_{1}, \ldots, k_{n}\right)\right. \\
& \left.\quad+\sum_{j=1}^{n} v\left(x, k_{j}\right) \Phi^{(n)}\left(x, k, k_{1}, \ldots, \widehat{k_{j}}, \ldots, k_{n}\right)\right) \\
& \quad-\sum_{j=1}^{n} v\left(x, k_{j}\right) \int_{\mathbb{R}^{d}} \mathrm{~d} k v(x, k)^{*} \Phi^{(n)}\left(x, k, k_{1}, \ldots, \widehat{k_{j}}, \ldots, k_{n}\right) \\
& =\left(\int_{\mathbb{R}^{d}}|v(x, k)|^{2}\right) \Phi\left(x, k_{1}, \ldots, k_{n}\right) .
\end{aligned}
$$

Here ${ }^{\wedge}$, indicates the omission of the object wearing the hat.
Lemma 4.10. Assume, [DG.1] and [DG.2]. Then $D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right) \subset D\left(\widetilde{a}^{*}(v)\right)$ and for all $\Phi \in D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$,

$$
\begin{equation*}
\left\|\widetilde{a}^{*}(v) \Phi\right\|^{2} \leq\|v / \sqrt{\omega}\|^{2}\left\|I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right\|^{2}+\|v\|^{2}\|\Phi\|^{2} \tag{20}
\end{equation*}
$$

Proof. For all $\Phi \in \mathcal{D}_{0} \cap D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$, we have

$$
\begin{aligned}
\left\|\widetilde{a}^{*}(v) \Phi\right\|^{2} & =\left\langle\Phi, \widetilde{a}(v) \widetilde{a}^{*}(v) \Phi\right\rangle=\left\langle\Phi, \widetilde{a}^{*}(v) \widetilde{a}(v) \Phi\right\rangle+\left\langle\left(\int_{\mathbb{R}^{d}}|v(\cdot, k)|^{2}\right) \Phi, \Phi\right\rangle \\
& \leq\|\widetilde{a}(v) \Phi\|^{2}+\|v\|^{2}\|\Phi\|^{2}
\end{aligned}
$$

Thus we can apply Lemma 4.8 to obtain the result.
Now we can prove Proposition 4.3:
Proof of Proposition 4.3. By Lemma 4.8 and 4.10, the operator $\widetilde{\phi}(v)$ is $I \otimes H_{\mathrm{b}}^{1 / 2}$-bounded. Hence $\widetilde{\phi}(v)$ is infinitesimally small with respect to $I \otimes H_{\mathrm{b}}$. Namely, for all $\epsilon>0$, there exists a constant $c_{\epsilon}>0$, such that,

$$
\|\widetilde{\phi}(v) \Phi\| \leq \epsilon\left\|I \otimes H_{\mathrm{b}} \Phi\right\|+c_{\epsilon}\|\Phi\|, \quad \Phi \in D\left(I \otimes H_{\mathrm{b}}\right)
$$

Since $A \geq 0$, we have

$$
\|\widetilde{\phi}(v) \Phi\| \leq \epsilon\left\|H_{0} \Phi\right\|+c\|\Phi\|, \quad \Phi \in D\left(H_{0}\right) .
$$

Thus we can apply the Kato-Rellich theorem to obtain the conclusion of Proposition 4.3.

4.2 Proof of Theorem 4.4

In this subsection we suppose that the assumption of Theorem 4.4 holds. Let $\mathcal{F}_{\mathrm{b}, \mathrm{V}}, \omega_{V}, H_{\mathrm{b}, \mathrm{V}}, H_{0, V}, \mathcal{F}_{V}, \Gamma_{V}, \chi_{\ell, V}(k)$ be an object already defined in Section 3, respectively. Suppose that χ_{K} is a characteristic function of $[-K, K]$.

For a parameter $K>0$, we define $v_{K} \in \mathrm{~B}\left(\mathcal{H}, \mathcal{H} \otimes L^{2}\left(\mathbb{R}^{d}\right)\right)$ by

$$
\left(v_{K} f\right)(x, k):=\chi_{[-K, K]}(k) v(x, k) f(x) .
$$

and $v_{K, V} \in \mathrm{~B}\left(\mathcal{H}, \mathcal{H} \otimes L^{2}\left(\mathbb{R}^{d}\right)\right)$ by

Lemma 4.11. The following hold:

$$
\begin{align*}
& \left\|v_{K}-v_{K, V}\right\| \rightarrow 0(V \rightarrow \infty), \quad\left\|v_{K}-v\right\| \rightarrow 0(K \rightarrow \infty) \tag{21}\\
& \left\|\frac{v_{K}}{\sqrt{\omega}}-\frac{v_{K, V}}{\sqrt{\omega_{V}}}\right\| \rightarrow 0(V \rightarrow \infty), \quad\left\|\frac{v}{\sqrt{\omega}}-\frac{v_{K}}{\sqrt{\omega}}\right\| \rightarrow 0(K \rightarrow \infty) . \tag{22}
\end{align*}
$$

Proof. By [DG.3] and [DG.4], we have

$$
\begin{aligned}
\left\|v_{K}-v_{K, V}\right\|^{2} & =\underset{x \in \mathbb{R}^{N}}{\operatorname{ess} s \sup ^{N}} \int_{\mathbb{R}^{d}}\left|\chi_{K}(k) v(x, k)-\sum_{\substack{\ell \in \Gamma_{V} \\
\left|\ell_{i}\right|<K}} v(x, \ell) \chi_{\ell, V}(k)\right|^{2} \mathrm{~d} k \\
& =\underset{x \in \mathbb{R}^{N}}{\operatorname{ess} s \operatorname{R}^{N}} \int_{\substack{\mathbb{R}^{d}}} \sum_{\substack{\ell \in \Gamma_{V} \\
| |_{i} \mid<K}} \chi_{\ell, V}(k)|v(x, k)-v(x, \ell)|^{2} \mathrm{~d} k \\
& \leq \operatorname{ess.sup}_{x \in \mathbb{R}^{N}} \int_{\substack{\mathbb{R}^{d}}} \sum_{\substack{\ell \in \Gamma_{V} \\
\left|e_{i}\right|<K}} \chi_{\ell, V}(k)|\widetilde{v}(k)|^{2} \widetilde{o}(|k-\ell|)^{2} \mathrm{~d} k \\
& \leq \int_{\mathbb{R}^{d}} \sum_{\substack{\ell \in \Gamma_{V} \\
\left|\varepsilon_{i}\right|<K}} \chi_{\ell, V}(k)|\widetilde{v}(k)|^{2} \widetilde{o}(|k-\ell|)^{2} \mathrm{~d} k .
\end{aligned}
$$

It follows from the property of \widetilde{o} that for every $\epsilon>0$, there exists a constant $V_{0}>0$ such that, for all $V>V_{0}$,

$$
\chi_{\ell, V}(k) \widetilde{o}(|k-\ell|)^{2} \leq \epsilon \chi_{\ell, V}(k)
$$

Therefore,

$$
\left\|v_{K}-v_{K, V}\right\|^{2} \leq \epsilon \int_{\mathbb{R}^{d}} \sum_{\substack{\ell \in \Gamma_{V} \\\left|\ell_{i}\right|<K}} \chi_{\ell, V}(k)|\widetilde{v}(k)|^{2} \mathrm{~d} k=\epsilon\|\widetilde{v}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

Hence the first one of (21) holds. The second one is a direct result of condition [DG.4] :

$$
\begin{aligned}
\left\|v_{K}-v\right\|^{2} & =\underset{x}{\operatorname{ess} . \sup } \int_{\mathbb{R}^{d}}\left|\chi_{K}(k)-1\right|^{2}|v(x, k)|^{2} \mathrm{~d} k \\
& =\underset{x}{\operatorname{ess} . \sup } \int_{\left([-K, K]^{d}\right)^{\mathrm{c}}}|v(x, k)|^{2} \mathrm{~d} k=\mathrm{o}\left(K^{0}\right) \rightarrow 0(K \rightarrow \infty)
\end{aligned}
$$

Using [H.4], one can easily check (22) .
We introduce two operators:

$$
\begin{aligned}
H_{\mathrm{DG}}(K) & :=A \otimes I+I \otimes H_{\mathrm{b}}+\widetilde{\phi}\left(v_{K}\right), \\
H_{\mathrm{DG}}(K, V) & :=A \otimes I+I \otimes H_{\mathrm{b}, \mathrm{~V}}+\widetilde{\phi}\left(v_{K, V}\right)
\end{aligned}
$$

Lemma 4.12. (i) $H_{\mathrm{DG}}(K)$ is self-adjoint with $D\left(H_{\mathrm{DG}}(K)\right)=D\left(H_{0}\right)$, bounded from below, and essentially self-adjoint on any core of H_{0}.
(ii) For sufficiently large $V>0, H_{\mathrm{DG}}(K, V)$ is self-adjoint with domain $D\left(H_{\mathrm{DG}}(K, V)\right)=D\left(H_{0}\right)$, bounded from below, and essentially selfadjoint on any core of H_{0}.

Proof. Similar to the proof of Proposition 4.3.
Lemma 4.13. For all $z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\begin{aligned}
\lim _{V \rightarrow \infty}\left\|\left(H_{\mathrm{DG}}(K, V)-z\right)^{-1}-\left(H_{\mathrm{DG}}(K)-z\right)^{-1}\right\| & =0 \\
\lim _{K \rightarrow \infty}\left\|\left(H_{\mathrm{DG}}(K)-z\right)^{-1}-\left(H_{\mathrm{DG}}-z\right)^{-1}\right\| & =0
\end{aligned}
$$

Proof. Similar to the proof of [2, Lemma 3.5].

Lemma 4.14. The operator $H_{\mathrm{DG}}(K, V)$ is reduced by \mathcal{F}_{V}.
Proof. We identify $v(x, \ell)$ with multiplication operator by $v(\cdot, \ell)$. By abuse of symbols, we denote $\chi_{\ell, V}(\cdot)$ by $\chi_{\ell, V}(k)$. Then

$$
\begin{aligned}
\left(\widetilde{a}^{*}\left(v(x, \ell) \chi_{\ell, V}(k)\right) \Phi\right)^{(n)} & =\sqrt{n}\left(I \otimes S_{n}\right)\left(v(x, \ell) \chi_{\ell, V}(k) \otimes I\right) \Phi^{(n-1)} \\
& =\sqrt{n} v(x, \ell) S_{n}\left(\chi_{\ell, V} \otimes \Phi^{(n-1)}\right) \\
& =\chi(x, \ell) \sqrt{n} S_{n}\left(\chi_{\ell, V} \otimes \Phi^{(n-1)}\right) .
\end{aligned}
$$

Hence, we have

$$
\tilde{a}^{*}\left(v(x, \ell) \chi_{\ell, V}(k)\right) \Phi=v(x, \ell) \otimes a^{*}\left(\chi_{\ell, V}\right) \Phi
$$

Therefore, we get

$$
\begin{equation*}
\widetilde{a}^{*}\left(v_{K, V}\right)=\sum_{\substack{\ell \in \Gamma_{V} \\\left|\ell_{i}\right|<K}} v(\cdot, \ell) \otimes a^{*}\left(\chi_{\ell, V}\right) \tag{23}
\end{equation*}
$$

Hence, its adjoint is

$$
\begin{equation*}
\widetilde{a}\left(v_{K, V}\right)=\sum_{\substack{\ell \in \Gamma_{V} \\\left|\ell_{i}\right|<K}} v(\cdot, \ell)^{*} \otimes a\left(\chi_{\ell, V}\right) \tag{24}
\end{equation*}
$$

This means that the operator $H_{\mathrm{DG}}(K, V)$ is a special case of the GSB Hamiltonian(see [2]). Hence, by [2, Lemma 3.7], $H_{\mathrm{DG}}(K, V)$ is reduced by \mathcal{F}_{V}.

Lemma 4.15. $H_{\mathrm{DG}}(K, V)\left\lceil\mathcal{F}_{V}^{\perp} \geq E_{0}\left(H_{\mathrm{DG}}(K, V)\right)+m\right.$
Proof. Similar to the proof of [2, Lemma 3.10].
Lemma 4.16. For all $\Phi \in D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right)$, and for all $\epsilon^{\prime}>0$,

$$
|\langle\Phi, \widetilde{\phi}(v) \Phi\rangle| \leq \frac{\epsilon^{\prime}}{\|v\|}\left\|\frac{v}{\sqrt{\omega}}\right\|^{2}\left\|I \otimes H_{\mathrm{b}}^{1 / 2}\right\|^{2}+\frac{\|v\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right)\|\Phi\|^{2}
$$

Proof. For all $\Phi \in D\left(I \otimes H_{\mathrm{b}}^{1 / 2}\right), \epsilon^{\prime}>0$,

$$
\begin{aligned}
|\langle\Phi, \widetilde{\phi}(v) \Phi\rangle| & \leq \frac{1}{\sqrt{2}}\left(\epsilon\|\widetilde{a}(v) \Phi\|^{2}+\frac{1}{4 \epsilon}\|\Phi\|^{2}+\epsilon\left\|\widetilde{a}^{*}(v) \Phi\right\|^{2}+\frac{1}{4 \epsilon}\|\Phi\|^{2}\right) \\
& \leq \frac{1}{\sqrt{2}}\left(2 \epsilon\left\|\frac{v}{\sqrt{\omega}}\right\|^{2}\left\|I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right\|^{2}+\epsilon\|v\|^{2}\|\Phi\|^{2}+\frac{1}{2 \epsilon}\|\Phi\|^{2}\right) \\
& =\sqrt{2} \epsilon\left\|\frac{v}{\sqrt{\omega}}\right\|^{2}\left\|I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right\|^{2}+\frac{\|v\|}{2}\left(\sqrt{2} \epsilon\|v\|+\frac{1}{\sqrt{2} \epsilon\|v\|}\right)\|\Phi\|^{2}
\end{aligned}
$$

where we have used Lemma 4.8 and 4.10. Let $\sqrt{2} \epsilon\|v\|=: \epsilon^{\prime}$. Then, for all $\epsilon^{\prime}>0$, we have

$$
|\langle\Phi, \widetilde{\phi}(v) \Phi\rangle| \leq \frac{\epsilon^{\prime}}{\|v\|}\left\|\frac{v}{\sqrt{\omega}}\right\|^{2}\left\|I \otimes H_{\mathrm{b}}^{1 / 2} \Phi\right\|^{2}+\frac{\|v\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right)\|\Phi\|^{2}
$$

Proof of Theorem 4.4. From (23) and (24), $H_{\mathrm{DG}}(K, V)$ is equal to the special case of the GSB model. Therefore, $H_{\mathrm{DG}}(K, V)\left\lceil\mathcal{F}_{V}\right.$ has the same form with $H_{\mathrm{DG}}(K, V)$. Using Lemma 4.16 we have on $D\left(H_{0}\right) \cap \mathcal{F}_{V}$

$$
\begin{align*}
& H_{\mathrm{DG}}(K, V) \\
& =A \otimes I+I \otimes H_{\mathrm{b}, \mathrm{~V}}+\widetilde{\phi}\left(v_{K, V}\right) \\
& \geq A \otimes I+I \otimes H_{\mathrm{b}, \mathrm{~V}}-\frac{\epsilon^{\prime}}{\left\|v_{K, V}\right\|}\left\|\frac{v_{K, V}}{\sqrt{\omega_{V}}}\right\|^{2} I \otimes H_{\mathrm{b}, \mathrm{~V}}-\frac{\left\|v_{K, V}\right\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right) \\
& =A \otimes I+\left(1-\frac{\epsilon^{\prime}}{\left\|v_{K, V}\right\|}\left\|\frac{v_{K, V}}{\sqrt{\omega_{V}}}\right\|^{2}\right) I \otimes H_{\mathrm{b}, \mathrm{~V}}-\frac{\left\|v_{K, V}\right\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right), \tag{25}
\end{align*}
$$

where $\epsilon^{\prime}>0$ is an arbitrary constant. By Lemma $3.10, H_{\mathrm{b}, \mathrm{V}}\left\lceil\mathcal{F}_{\mathrm{b}, \mathrm{V}}\right.$ has compact resolvent. Thus, for $\epsilon^{\prime}>0$ satisfying

$$
\begin{equation*}
1-\frac{\epsilon^{\prime}}{\left\|v_{K, V}\right\|}\left\|\frac{v_{K, V}}{\sqrt{\omega_{V}}}\right\|^{2}>0 \tag{26}
\end{equation*}
$$

the bottom of the essential spectrum of (25) is equal to

$$
\Sigma(A)-\frac{\left\|v_{k, V}\right\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right) .
$$

Let, D_{K} and $D_{K, V}$ be D with v replaced by $v_{K}, v_{K, V}$, respectively. It is easy to see that

$$
\lim _{K \rightarrow \infty} D_{K}=D, \quad \lim _{V \rightarrow \infty} D_{K, V}=D_{K}
$$

By Lemma 4.13, one has

$$
\lim _{K \rightarrow \infty} E_{0}\left(H_{\mathrm{DG}}(K)\right)=E_{0}\left(H_{\mathrm{DG}}\right), \quad \lim _{V \rightarrow \infty} E_{0}\left(H_{\mathrm{DG}}(K, V)\right)=E_{0}(\mathrm{DG}(K))
$$

From the assumption of Theorem 4.4, for all $K>0$, there exists a constant V_{0} such that for $V>V_{0}$,

$$
\Sigma(A)-\frac{\left\|v_{K, V}\right\|}{2} D_{K, V}-E_{0}\left(H_{\mathrm{DG}}(K, V)\right)>0
$$

By the definition of $D_{K, V}$, for all $K>0$ and $V>V_{0}$, and for all ϵ^{\prime} which satisfies (26), we have

$$
\Sigma(A)-\frac{\left\|v_{K, V}\right\|}{2}\left(\epsilon^{\prime}+\frac{1}{\epsilon^{\prime}}\right)>E_{0}\left(H_{\mathrm{DG}}(K, V)\right)
$$

Therefore, by Theorem 2.1, we have that $H_{\mathrm{DG}}(K, V)\left\lceil\mathcal{F}_{V}\right.$ has purely discrete spectrum in

$$
\left[E_{0}\left(H_{\mathrm{DG}}(K, V)\right), \Sigma(A)-\left\|v_{K, V}\right\| D_{K, V}\right)
$$

This fact and Lemma 4.15 mean that $H_{\mathrm{DG}}(K, V)$ has purely discrete spectrum in

$$
\left[E_{0}\left(H_{\mathrm{DG}}(K, V)\right), \min \left\{E_{0}\left(H_{\mathrm{DG}}(K, V)\right)+m, \Sigma(A)-\left\|v_{K, V}\right\| D_{K, V}\right\}\right)
$$

Finally, we use Lemma 3.13 and Lemma 4.13, to conclude that H_{DG} has purely discrete spectrum in the interval

$$
\left[E_{0}\left(H_{\mathrm{DG}}\right), \min \left\{E_{0}\left(H_{\mathrm{DG}}\right)+m, \Sigma(A)-\|v\| D\right\}\right)
$$

Acknowledgements

We would like to thank Professor A. Arai of Hokkaido University for proposing a problem, discussions and helpful comments.

References

[1] A. Arai, Fock Spaces and Quantum Fields, Nippon-Hyouronsha, Tokyo, 2000(in Japanese).
[2] A. Arai and M. Hirokawa, On the existence and uniqueness of ground states of a generalized spin-boson model, J. Funct. Anal. 151 (1997), 455-503.
[3] A. Arai and M. Hirokawa, Ground states of a general class of quantum field Hamiltonians, Rev. Math. Phys. 8 (2000), 1085-1135.
[4] A. Arai and H. Kawano, Enhanced binding in a general class of quantum field models. Rev. Math. Phys. 4 (2003), 387-423.
[5] J. Dereziński and C. Gérard, Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (1999), 383-450.
[6] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I, Academic Press, New York, 1972.
[7] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. II, Academic Press, New York, 1975.
[8] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. IV, Academic Press, New York, 1978.
[9] B. Simon and R. Hoegh-Krohn, Hypercontractive semigroups and two dimensional self coupled Bose fields, J. Funct. Anal. 9 (1972), 121-180.

[^0]: *Tadahiro Miyao
 ${ }^{\dagger}$ Itaru Sasaki

