Stability of Discrete Ground State

Tadahiro Miyao and Itaru Sasaki
Department of Mathematics,
Hokkaido University,

Sapporo 060-0810, Japan
e-mail: s993165@math.sci.hokudai.ac.jp *
e-mail: i-sasaki@math.sci.hokudai.ac.jp T

September 14, 2004

Abstract

We present new criteria for a self-adjoint operator to have a ground
state. As an application, we consider models of “quantum particles”
coupled to a massive Bose field and prove the existence of a ground
state of them, where the particle Hamiltonian does not necessarily

have compact resolvent.
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1 INTRODUCTION

Let T be a self-adjoint operator on a Hilbert space H, and bounded from
below. We say that T has a discrete ground state if the bottom of the
spectrum of T is an isolated eigenvalue of T'. In that case a non-zero vector
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in ker(T' — Ep(T)) is called a ground state of 7. Let S be a symmetric
operator on H. Suppose that T has a discrete ground state and S is T-
bounded. By the regular perturbation theoryl 80XII[ it is already known
that T+ AS has a discrete ground state for “sufficiently small” A € R. Our
alm is to present new criteria for 7'+ AS to have a ground state.

In Section 2, we prove an existence theorem of a ground state which
is useful to show the existence of a ground state of models of quantum
particles coupled to a massive Bose field.

In Section 3, we consider the GSB modell 20with a self-interaction term
of a Bose field, which we call the GSB + ¢? model. We consider only
the case where the Bose field is massive. The GSB model — an abstract
system of quantum particles coupled to a Bose field — was proposed i 200
In0O 20 A. Arai and M. Hirokawa proved the existence and uniqueness of
the GSB model in the case where the particle Hamiltonian A has compact
resolvent. Shortly after that, they proved the existence of a ground state
of the GSB model in the case where A does not have necessarily compact
resolventd] 4030 In this paper, using a theorem in Section 2, we prove the
existence of a ground state of the GSB + ¢? model in the case where A
does not necessarily have compact resolvent.

In Section 4, we consider an extended version of the Nelson type model,
which we call the Derezinski-Gérard modeld 50 The Derezinski-Gérard
model introduced i1 500 and J. Dereziniski and C. Gérard prove an existence
of a ground state for their model under some conditions including that A
has compact resolvent. In Section 4, we prove the existence of a ground
state of the Derezinski-Gérard model in the case where A does not have
compact resolvent. Qur strategy to establish a ground state is the same as
in Section 3.

2 BASIC RESULTS

Let H be a separable complex Hilbert space. We denote by (-, ) the
scalar product on Hilbert space H and by ||-||# the associated norm. Scalar
product (f, g)# is linear in g and antilinear in f. We omit H in (-, )3 and
I|I||l7¢, respectively if there is no danger of confusion. For a linear operator
T in Hilbert space, we denote by D(T') and o(7T) the domain and the
spectrum of T respectively. If T is self-adjoint and bounded from below,
then we define

Eo(T) :=info(T), X(T):=infoess(T),



where 0eg(T") is the essential spectrum of 7'. If T" has no essential spectrum,
then we set ¥(T') = oo. For a self-adjoint operator T', we denote the
form domain of 7" by Q(T'). In this paper, an eigenvector of a self-adjoint
operator T with eigenvalue Ey(7T') is called a ground state of T (if it exists).
We say that T has a ground state if dimker(T — Eo(T)) > 0.

The basic results are as follows:

Theorem 2.1. Let H be a self-adjoint operator on 'H, and bounded from
below. Suppose that there exists a self-adjoint operator V. on H satisfying
the following conditions (i)-(iii):

(i) D(H) C D(V).

(ii) 'V is bounded from below, and (V') > 0.

(i) H—-Eo(H)>V on D(H).

Then H has purely discrete spectrum in the interval [Eo(H ), Eo(H)+X(V)).
In particular, H has a ground state.

Proof. For all uy,...,u,—1 € H, we have
inf (U, HU) — Ey(H) > inf (U, V),
VEL.h.[up,...,upy 1]+ VEL.h.[uy,...,upy 1]+
Ie||=1,ueD(H) Iw|=1,ue D(H)

where L.h.[- - - ] denotes the linear hull of the vectorsin [---]. Since D(H) C
D(V), we have that

inf (U, V) > inf (U, V).
WEL.h.[uy,...,up_1]+ WEL.h.[ug,...,upy 1]+
[wl|=1,2€D(H) I ®l|=1,2€D(V)

Hence, for all n € N

,un(H) - EO(H) > ﬂn(v)

where
pn(H) := sup inf (U, HD).

UlyeoyUn—1 €H PEL N [ug,..y up_1]t
|@||=1,veD(H)

By the min-max principle 0 80 Theorem XIII.10), limy,— o0 pin(H) = X(H)
and lim,, o0 11, (V') = X(V'). Therefore we obtain

S(H) — Eo(H) > S(V) > 0.

This means that H has purely discrete spectrum in [Eg(H ), Eo(H)+X(V)).
|



Theorem 2.2. Let H be a self-adjoint operator on 'H, and bounded from
below. Suppose that there exists a self-adjoint operator V. on H satisfying
the following conditions (i)-(iii):

(i) QH) Q).
(ii) 'V is bounded from below, and (V') > 0.
(i) H—Eo(H)>V on Q(H).
Then H has purely discrete spectrum in the interval [Eo(H ), Eo(H)+%(V)).

In particular, H has a ground state.

Proof. Similar to the proof of Theorem 2.1. 1

We apply Theorems 2.1 and 2.2 to a perturbation problem of a self-adjoint
operator.

Theorem 2.3. Let A be a self-adjoint operator on H with Eo(A) = 0, and
let B be a symmetric operator on D(A). Suppose that A+ B is self-adjoint
on D(A) and that there exist constants a € [0,1) and b > 0 such that

[, BY)| < alw, Av) +b]|6]*, ¢ € D(A).
Assume
b+ Ey(A+ B)
1—a
Then A+ B has purely discrete spectrum in [Eq(A+ B), (1 —a)X(A) —b).
In particular, A+ B has a ground state.

< 3(A). (1)

Proof. By the assumption we have
A+B—-Ey(A+B)>(1—a)A—b—Ey(A+ B)

on D(A), and (1—a)X(A)—b—Ey(A+DB) > 0. Hence we can apply Theorem
2.1, to conclude that A+ B has purely discrete spectrum in [Eg(A+ B), (1—
a)X(A) — b). In particular, A 4+ B has a ground state. i
Remark. Tt is easily to see that —b < Fy(A + B) < b. Therefore condition
(1) is satisfied if
2b
l1-a

< 3(A).



Theorem 2.4. Let H, K be complex separable Hilbert spaces. Let A and B
be self-adjoint operators on H and K respectively. Suppose that Ey(A) =
Ey(B) =0. We set

Th =ARI1+1®B.

Let Z be a symmetric sesquilinear form on Q(Ty), and assume that there
exist constants a1 € [0,1), ag € [0,1) and b > 0 such that, for all ¥ € Q(Tp)

‘Z(\I/, \Il)’ < a1<\Il7A & I\I}>form + CLQ(‘I’,I & B\I/>f0rm + bH\I/HZ,

where (U, A @ IW)gorm = ||AY? @ IW||2. Therefore, by the KLMN theorem
there exists a unique self-adjoint operator T on H ® K such that Q(T) =
Q(Ty) and T =Ty + Z in the sense of sesquilinear form on Q(Ty). We set

s:=min{(1 — a;)X(A), (1 — a2)X(B)}.
Assume
s> b+ Fy(T). (2)

Then, T has purely discrete spectrum in the interval [Eo(T),s — b). In
particular, T has a ground state.

Proof. Similar to the proof of Theorem 2.3. 1

Remark. It is easy to see that —b < Ey(T") < b. Therefore the condition
(2) is satisfied if
s > 2b.

Remark. Theorem 2.4 is essentially same as(d 40 Theorem B.100 But our
proof is very simple.

3 Ground States of a General Class of Quantum Field Hamil-
tonians

We consider a model which is an abstract unification of some quantum
field models of particles interacting with a Bose field. It is the GSB model
O 20with a self-interaction term of the field.

Let ‘H be a separable complex Hilbert space and Fy, be the Boson Fock

space over L?(R?) :
7o @[ @ )

n=0
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The Hilbert space of the quantum field model we consider is
F:=H®F,.
Let w : RY — [0,00) be Borel measurable such that 0 < w(k) < oo for all
most everywhere (a.e.)k € R?. We denote the multiplication operator by
the function w acting in L?(R%) by the same symbol w. We set
Hb = dI b (w)

the second quantization of w (e.g.0 70 Section X.70). We denote by a(f),
f € L*(R%), the smeared annihilation operators on Fj,. It is a densely
defined closed linear operator on F,(R?) (e.g. 070 Section X.70). The
adjoint a(f)*, called the creation operator, and the annihilation operator
a(g), g € L>(R?) obey the canonical commutation relations

[a(f);al9)"] = {f,9), [a(f),a(9)] =0, [a(f)",a(g)"] =0
for all f,g € L?(R%) on the dense subspace
Fo :={v = (™), € Fp|there exists a number ng such that
™ =0 for all n > ne},

where [X,Y] = XY — Y X. The symmetric operator

1 *
o(f) = E[a(f) +a(f)l;

called the Segal field operator, is essentially self-adjoint on Fy(e.g. O 70
Section X.70). We denote its closure by the same symbol. Let A be a
positive self-adjoint operator on ‘H with Ey(A) = 0. Then, the unperturbed
Hamiltonian of the model is defined by

Hy=AxI+1® H,

with domain D(Hp) = D(A® I) N D(I ® Hy,). For g, f; € LA(RY) j =
1,...,J, and Bj(j = 1,...,J) a symmetric operator on H, we define a
symmetric operator

J
Hi = B;®d(g)),

Jj=1

J
Hy:=> T1®¢(f;).

Jj=1



The Hamiltonian of the model we consider is of the form
H(\ p) := Ho + AHy + pHa,

where A € R and p > 0 are coupling parameters.
For H(A,u) to be self-adjoint, we shall need the following conditions
[H.1)-[H.3]:
[H.1] g; € D(w™?), f; € DWY)NDw™2),j=1,...,J.
[H.2] D(AY?) c ﬂjle(Bj) and there exist constants a; > 0, b; > 0,
j=1,...,J, such that,

IBjull < a;| AY2ull + bjllull, u e D(AY?).

J
13 Y agllg Vel < 1.

Jj=1

Proposition 3.1. Assume [H.1], [H.2] and [H.3]. Then, H(\, ) is self-
adjoint with D(H(\, p)) = D(Hy) C D(Hi) N D(Hz2) and bounded from
below. Moreover, H(X, 1) is essentially self-adjoint on every core of Hy.

Remark. This proposition has no restriction of the coupling parameter p >
0.

* % ok
To perform a finite volume approximation, we need an additional condi-
tion:

[H.4] The function w(k) (k € R?) is continuous with

lim w(k) = oo,
i (k)

and there exist constants v > 0, C' > 0 such that
w(k) —w(k)| < Clk = K711+ w(k) +w(k)], kK € RY.

Let

m = kienﬂgdw(k). (3)

If A has compact resolvent, we can prove the extension of the previous
theorem 20 Theorem 1.200



Theorem 3.2. Consider the case m > 0. Suppose that A has entire purely
discrete spectrum. Assume Hypotheses [H.1]-[H.4]. Then, H(\ p) has
purely discrete spectrum in the interval [Eo(H (A, p)), Eo(H (A, 1)) + m).
In particular, H(\, 1) has a ground state.

Remark. This theorem has no restriction of the coupling parameter p > 0.

Remark. In the case m > 0, the condition [H.1] equivalent to the following:

gi € L*(RY), f,e D(WVw), j=1,...,J.

For a vector v = (vy,...,v;) € R and h = (hy,...,hy) € @jzlLQ(Rd),
we define

J
M,(h) = vk
j=1

We set
J J
9= (gla"'vgJ> S @LQ(RCI)7 f = (fla"'7fJ) € @LZ(Rd)ﬂ
Jj=1 J=1

and
a=(ay,...,ay), b=(b1,...,by).
For 0, €, €, we introduce the following constants:
C@,e = HMa(g/\/‘;) + EMa(g)a
Dy = Ma(g/Vw)/20 + € My(g/v/w),
Eeer = Ma(g)/8e + My(g/vw)/2¢ + My(9)/ V2.
Let the condition [H.3] be satisfied. Then, we define

A Mo (gv/w) 1
Iy := < 2 ’ ’/\|Ma(g/ﬁ)> ’ AN Ma(g/v/w) # 0

[0,00], |)“Ma(g/\/‘;) =0

It is easy to see that [1/2,1] C I, 4. Therefore, for all 6 € I, g,

1= 0 Ma(g/ V) > 0,
| M/ vE)

_T>O.




We define for 6 € I 4,
So:={(e,€)]e,e >0, [A\[Cpe <1, |A\Dye < 1}.

Next we set
Th.e,e = (1 - |)“C9,E)E(A) - ’)"Eeﬁ'?

and
T:={(0,¢,¢) RO € I, (e,€) € Sp, Tgecer > Eo(H(N\, 1))}

Theorem 3.3. Consider the case m > 0. Suppose that oess(A) # (. As-
sume Hypothesis [H.1]-[H.4], and T # 0. Then, H(\, ) has purely discrete
spectrum in the interval

[Bo(H O ) min{m + Eo(HOu ), swp_racerd). ()

In particular, H(\, ) has a ground state.

Remark. T # () is necessary condition for A to have a discrete ground
state. Conversely, if A has a discrete ground state, then T # () holds for
sufficiently small \, u. Therefore the condition T # () is a restriction for the
coupling constants A, u.

3.1 Proof of Proposition 3.1
In what follows, we write simply
H:=H\p).
For D a dense subspace of L?(R?), we define
Fin(D) := Lh[{Q,a(h1)*---a(h,)*"QneNhj € D,j=1,...,n}|,

where Q := (1,0,0,...) is the Fock vacuum in F,. We introduce a dense
subspace in F
D, := D(A)@Fa,(D(w)),

where @ denotes algebraic tensor product. The subspace D,, is a core of
Hy.



Let
Hasg := Hy + A\Hq

be a GSB Hamiltonian. The Hamiltonian H and Hgsp has the following
relation:

Proposition 3.4. Let D(A) C D(By), j = 1,...,J and f; € D(w'/?).
Assume that Hgsp is bounded from below. Then, for all ¥ € D,,,

I(Hase — Eo)||* + [|nH2¥|* < |[(H — Eo)¥|* + D[ |, (5)
where D = ,uz;»lzl w2 £;)1? and

Eo:= inf (¥, Hggp¥).
‘I’Ef\l(lﬂ]GSB)
=1

Proof. Tt is enough to show (5) the case A = p = 1. First we consider the
case where f; € D(w). Inequality (5) is equivalent to

—2Re((Hasg — Eo)¥, HyW) < D||¥|*. (6)
By Hgsg — Eg > 0, we have
((Hass — Eo)¥, 1@ ¢(f;)*¥) =([I @ ¢(f;), (Hass — Eo)|V, I @ ¢(f;)¥)

+ ((Hass — Eo)I @ ¢(f;)¥, 1@ ¢(f;)V)
Z<[I® (b(fj)?HGSB - EO]\II7I® ¢(f])\11>

Therefore we have

2Re((Hass — Eo)V, ¢(f;)°0) > —[IVw fj21%]>.

This means inequality (6). Next, we set f; € D(y/w). Then, there exists a
sequence { fj,}22 ) C D(w) such that fj, — f;, w2 fn — w'/2f; (n — o).
By limiting argument, (6) holds with f; € D(w'/?).

Lemma 3.5. Suppose that Hgsp is self-adjoint with D(Hgsg) = D(Hy),
essentially self-adjoint on D,,, and bounded from below. Let f; € D(wl/z) N
D(w™?). Then H is self-adjoint with D(H) = D(Hy) and essentially
self-adjoint on any core of Hgsp with

I(Hesp — Eo)¥|* + [lnHo®|* < ||(H — Eo)¥|* + D|[W|*, ¥ € D(Ho).

10



Proof. Tt is well known that D(H,) C D(é(f;)?), and ¢(f;)? is Hy-
bounded (e.g.0 10 Lemma 13-160). Namely, there exist constants n > 0,
6 > 0 such that

J
|32 et < nimvll+olwll, v e (). ()
j=1

Since Hggp is self-adjoint on D(Hy), by the closed graph theorem, we have
[HoW|| < Al[Hes¥|| + v[|¥]], ¥ € D(Ho), (8)
where A and v are non-negative constant independent of W. Hence
[ HoW|| < nA|[Hasp¥ | + (nv + 0)[[¥]|, ¥ € D(Ho).

We fix a positive number po such that po < 1/(uA). Then, by the Kato-
Rellich theorem, H (A, pg) is self-adjoint on D(Hgsp), bounded from below
and essentially self-adjoint on any core of Hggg. For a constant a (0 <
a < 1), we set p, := (14 a)”up. Since Hgsp is self-adjoint on D(Hy), for
each j =1,...,J we have D(A) C D(B). Thus by Proposition 3.4, for all
v eD,

I(Hase — Eo)¥|* + [l Ho W[ < [|(H(, pn) — Eo)¥|* + D|[¥|]%.

If H(\, uy,) is self-adjoint on D(Hgsp), bounded from below and essentially
self-adjoint on any core of Hgsp, then H (A, ip+1) has the same property.
On the other hand, we have u,, — oo (n — 00). Hence we conclude that H
is self-adjoint with D(H) = D(Hgsg), bounded from below and essentially
self-adjoint on any core of Hgsp. |

Now, we assume conditions [H.1],[H.2] and [H.3].

Then Hggp is self-adjoint on D(Hj), bounded from below and essentially
self-adjoint on any core of Hy(seed 20). Hence, the assumptions of Lemma
3.5 hold. Thus Proposition 3.1 follows. |l

3.2 Proofs of Theorems 3.2 and 3.3
Throughout this subsection, we assume Hypotheses [H.1]-[H.4] and m >

0.

11



For a parameter V' > 0, we define the set of lattice points by

2174 2mn;
FV:: T _{k_(kla7kd>’kj_ﬂ—n]7n.7€Z’j_1’7d}

V Vv

and we denote by [2(T'y/) the set of [? sequences over I'y,. For each k € Ty,
we introduce

Ok, V) = [kl—%,kl—l—%) X [/{:d—%,kd—i—%) C RY,

the cube centered about k. By the map

U P(Tv) 3 {hibiery, — (V/20)72 3" v () € LA(RY),
leTy

we identify [2(I'y') with a subspace in L?(R?), where x;/(+) is the charac-
teristic function of the cube C(I,V) C RY. It is easy to see that [2(T'y) is
a closed subspace of L2(R). Let

oo n
Fiy = Fu(l®(Tv)) = P [ ®52(Fv)] ;
n=0 s
the boson Fock space over ZZ(I‘V). We can identify F3, v the closed subspace
of F, by the operator I'(U) := &2, ®" U, where we define ®°U = 0. For
each k € R?, there exists a unique point ki € 'y such that k € C(ky, V).

Let
wy (k) = w(ky), keR?

be a lattice approximate function of w(k) and let
Hb,V = dF(wV)

be the second quantization of wy . We define a constant

Cy = CdY (%) <23n + 1) :

where C' and + were defined in [H.4]. In what follows we assume that
Cy < 1.

This is satisfied for all sufficiently large V.

12



Lemma 3.6. U 20 Lemma 3.10). We have
D(Hy,v) = D(Hp),
and
2CYy
1-Cy
First we consider the case where g;’s and f;’s are continuous, and finally,

by limiting argument, we treat a general case. For a constant K > 0, we
define g; i, fjr, and g; kv, fj K,y as follows:

gix (k) == xxc (k) - xx(ka)gi (k). girv(k) == > gi(Oxev(k),
e
fix (k) == xx (k) - xx(ka) f5(k),  fixv (k)= > fi(Oxev(k),

LETY, | 4;| <K
i=1,...,d

|(Hy, — Hyv) ¥ = |Hy Y|, W€ D(Hy).

where x g denotes the characteristic function of [— K, K.

Lemma 3.7. Forallj=1,...,J,

Jim lgs kv =gkl =0, lim lgjry /vy — gk /Vwl =0,
—00 V—oo

Jim g5 = g5l =0, Aimlgj.x/vVw = g/ vwl =0,
Jim ([ figy = firll =0, M (| f v/ Vo = fix/vVel =0,
dim ik~ £l =0, dim | fjx/ Ve = 1/ Vel =0,

Jim [Vwfic = Vefill=0, i [Vovfiky = Vel =0.

Proof.  Similar to the proof of] 20 Lemma 3.100 i
We introduce a new operator:
HO,V =AQI+1I® Hb,V7

J

Hix =) B;©¢(gjK),
j=1

J
Hygy =Y Bj®d(gxyv),
j=1

13



7
Hj g = ZI ® o(fik)?

j=1
J
Hs gy = ZI ® ¢(fixv)%
j=1
and define

Hy :=Hy+ \Hy i + pHs i,
Hygyv :=Hoy + AHy kv + pHo g v.

Lemma 3.8. (i) Hg is self-adjoint with D(Hg) = D(Hy) C D(H; k)
ND(Hs k), bounded from below, and essentially self-adjoint on any
core of Hy.

(ii) For all large V, Hg v is self-adjoint with D(Hgky) = D(Hy) C
D(Hy kv) N D(Ha k), bounded from below, and essentially self-
adjoint on any core of Hyy .

Proof. Similar to the proof of Proposition 3.1. 1
Lemma 3.9. For all z € C\R, and K > 0,

lim [|(Hx —2)"' = (H —2)7Y| =0,

K—oo

Jm [|(Hry — 2)7 = (Hg —2)7'| =0

Proof. Similar to the proof of] 20 Lemma 3.50 i

The following fact is well known:

Lemma 3.10. The operator Hy, v is reduced by Fy,v and Hy, v [Fp v equal
to the second quantization of wy [12(T'v) on Fv.

Lemma 3.11. Hg y is reduced by Fy .

Proof.  Similar to the proof of] 20 Lemma 3.700 i
Lemma 3.12. We have

Hyy[Fy > Eo(Hg ) +m.

14



Proof. Similar to the proof of] 20 Lemma 3.100 i

Lemma 3.13. Let T, and T be a self-adjoint operators on a separable
Hilbert space and bounded from below. Suppose that T,, — T in norm resol-
vent sense as n — oo and T, has purely discrete spectrum in the interval
[Eo(Th), Eo(Ty) + cn) with some constant c,. If ¢ := limsup,,_ ., ¢, > 0,
then T has purely discrete spectrum in [Eo(T'), Eo(T) + ¢).

Proof. There exists a sequence {c,,;}32; C {cn}p2; so that ¢, — c(j —
o0). So, for all € > 0 and for sufficiently large j, the spectrum of T),; in
[Eo(Th, ), Eo(Ty,)+c—e) is discrete. Therefore, applying] 20Lemma 3.120]

J J

we find that the spectrum of T" in [Ey(T), Eo(T') + ¢ — €) is discrete. Since
€ > 0 is arbitrary, we get the conclusion. |

Now, if A has compact resolvent, by a method similar to the proof of
0 20 Theorem 1.20 we can prove Theorem 3.2. Therefore, we only prove
Theorem 3.3.

The following inequality is known 20 (2.12)0

|<\Ij7 HI‘II>| < Ce,€<‘117 A® I\I/> + D9,€<\Ilv I® Hb\Il> + EE,G/H\I/H27
where W € D(Hy) is arbitrary. Thus we have,

H>(1-[ACh)A® I+ (1= |NDpe )] ® Hy + pHy — [N Ec o
Let I) g(K), Cpe(K), Do (K) and E.o(K) are Iy 4, Cpe, Dy, Ec o with
gj, [ replaced by g; k., fjx respectively, and let Iy ,(K,V), Cy(K,V),
Dy (K,V) and E.(K,V) are I g4, Cpe, Do, Ece with gj, f; and w
replaced by g; kv, fj kv and wy respectively. Then we have

Lemma 3.14. The following operator inequalities hold:

Hi >(1— |NCpo(K)A® I+ (1 — |\ Dpo(K)I® H,
+ pHo g — [N Eco(K) on  D(Hy),
Hy v >(1 = |NCop.e(K,V)A® I + (1 — |\ Do (K, K)) @ Hyy
+ pHs v — [MEee(K,V) on D(Hy).

Proof. Similar to the calculation ofJ 20 (2.12)0 i
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By Lemma 3.7, we have

lim C€7€(K’ V) = CO,E(K)7 lim CG,e(K) = 09767 (9)
V—o0 K—oo

lim D97€/(K, V) = Dg % (K), lim Dg el(K) = D@ ey (10)
V—o0 ’ K—oo ’ ’

lim E..(K,V) = E.(K), lim Eeo(K) = Eeo. (11)
V—o0 K—oo

Let (0,¢,€') € T, namely
T0,e,c! — (1 — ‘)\’0976)2(14) — |/\|E€’E/ > E()(H)
Formulas (9)-(11) and Lemma 3.9 imply that for all large V' there exists a
constant Ky > 0 such that for all K > K,
(1 = |A\[Cpe(K,V))E(A) = |(MNEee (K, V) > Ey(Hg,v), (12)
‘)\‘CQ’C(K, V) <1, ’)\’DQ’E/(K, V) < 1. (13)
By Lemma 3.11, Hg y is reduced by Fy. Therefore, Hg y satisfies the
following inequality:
Hpv[Fv 2(1 = [NCoe(K,V))A® I[Fy
+ (1 = [A[Dg, (K, V))I ® Hp,v[Fv
— A Eee (K, V). (14)
Since Hy, v [Fp,v has compact resolvent, the bottom of essential spectrum
of the right hand side of (14) is equal to
(1= [A[Co,e (K, V))E(A) — [A[Ee e (K, V).

By Lemma 3.12, we have Eo(Hk v [Fy) = Eo(Hg,v). Thus, applying
Theorem 2.1 with Hg v [Fy, we have that Hg v [Fy has purely discrete
spectrum in [Ey(Hg,v), (1 — [N Cpe(K,V))E4 — Ece(K,V)). Since this
fact and Lemma 3.12, Hg v has purely discrete spectrum in
[Eo(Hk,v),min{Ey(Hg,v) +m, (1 —|ACp(K,V))Ea — Ece(K,V)}).

By Lemma 3.9 and Lemma 3.13, we have that for all sufficiently large
K > 0, Hg has purely discrete spectrum in [Eg(Hg ), min{ Eo(Hg )+m, (1—
(M| Co,e(K))E(A) — |A|Eeer (K)}). Similarly, H has purely discrete spectrum
in [Eo(H (A, p)), min{m + Eo(H (X, it)), Tg.c.e' }). Since (0,¢,€') € T is arbi-
trary, H has purely discrete spectrum in (4). Finally, we have to consider
the case where g;’s and f;’s are not necessarily continuous. But, that ar-
gument were already discussed in0 40 So we skip that argument. |l
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4  Ground State of the Derezinski-Gérard Model

We consider a model discussed by J. Derezinski and C. Gérardd 500 We
take the Hilbert space of the particle system is taken to be

H = L*(RY).
The Hilbert space for the Dereziniski-Gérard (DG) model is given by
F:=H® Fp(L*RY).
We identify F as
H® é) L*(RY)

s

n=0
Hence, if we denote that ¥ € (U(™) € F, each ™ belongs to H @
[@2L?(RY)]. We denote by B(K,J) the set of bounded linear operators
from K to J. For v € B(H, H ® L?(R%)), we define an operator a*(v) by

(@ ()W) = V(I ® Sp) (0 @ Iyn-1 p2gay)) Y, (0> 1),
¥ e D(a*(v)) == {qf = (p()> e f( > @ () w) ™ < oo} .
n=0

We set

Dy := {U = (¥(M)>® € F|there exists a constant ng € N,
such that, for all n > ng, (™ = 0}.

Throughout this section, we write simply I, := @rL2(Rd)- 1t is easy to see
that:
Proposition 4.1. a*(v) is a closed linear operator and Dy is a core of
a*(v).

So we set

the adjoint operator of a*(v).

17



Proposition 4.2. The operator a(v) has the following properties:

D(a(w)) = {‘I’ = ()| S+ )7 @ S (0" © L)W < oo
n=0

(15)
(@)0)™ = /n ¥ 1Ly @ Sp(v* @ L) 0D ¥ e D(a(v)), (16)
and Dy is a core of a(v).

Proof. For ® € F, ¥V € D(a*(v)),

o)

(@3 @)T) = >~ (@), Vn(l @ S,) (0 @ L) T )

n=1

=> Vn+1(v*® Lo w)

n=0

=3 (Vn+1(Iy @ Sp)(v* @ I,)® D, g ),
n=0

This implies (15) and (16). It is easy to prove that Dy is a core of a(v). M
An analogue of the Segal field operator is defined by
~ 1 .,
v):=—(a(v)+a (v)).
¢(v) \/i( (v) +a"(v))

Let A be a non-negative self-adjoint operator on H with Ey(A) = 0.
Then the Hamiltonian of the DG model is defined by

Hpg =A@ I+I1® Hy+ ¢(v).

We call it the Derezinski-Gérard Hamiltonian. Here Hy, is the second quan-
tization of w introduce in Section 3. Let

Hy:=A®I+1® H,.

Throughout this section we assume the following conditions:

[DG.1] There is a Borel measurable function v(z, k) € C, (x € RN,k € RY),
such that

(vf)(@ k) = v(z, k) f(x), feL*RY).

18



We need also the following assumption:

IDG.2] .

U@ Rk < s

w(k)

ess.sup /
r€RN  JR4
Proposition 4.3. Assume [DG.1] and [DG.2]. Then Hpg is self-adjoint

with D(Hpg) = D(Hp), and essentially self-adjoint on any core of Hy.

For a finite volume approximation, we introduce the following hypotheses:

[DG.3] There exists a nonnegative function v € L?(RY) and function 6 : R —

R, such that
ess.sup |v(z, k) — v(z, 0)| <T(k)o(|k —€]), ae kLR
zeR”
limo(t) = 0.
tll%l o(t)=0

[DG.4]
ess.sup/ lv(z, k)|?dk = o(KY).
zER™ ([-K,K]%)e

where
(K, K1N¢ :=RIN\N (I x---x1I), I:=[-K,K]
and, o(t?) satisfies lim; o o(t°) = 0.

Let m be defined by (3). Let

D=

N |

ianvH (e' + é) (17)

'
O < T

Here, v/y/w is a multiplication operator by the function v(z,k)/\/w(k)
from L2(RN) to L?>(RY) ® L?*(R%). In the case m > 0, we can establish the
existence of a ground state of Hpg:

Theorem 4.4. Let m > 0. Suppose that [DG.1]-[DG.4] and [H.4] hold, and
suppose

Y(A) — ||v||D — Eo(Hpg) > 0.
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Then, Hpg has purely discrete spectrum in
[Eo(Hpe), min{ Eo(Hpg) +m, X(A) — [[v]|D}).
In particular Hpg has a ground state.

Remark. In the case where A has compact resolvent, this theorem has been
proved in0 50 A new aspect here is in that A does not necessarily have
compact resolvent. Also our method is different from that in 500

4.1 Proof of Proposition 4.3

Lemma 4.5. Let M(z) = ([ga [v(z,k)|?dk)Y2, 2 € RY and M : L2(RY)
— L2(RN) be a multiplication operator by the function M(x). Then

lofII* = IMfI?  f € L*RY).
In particular, ||[v]| = | M| = (ess.supgepn [ga [v(z,k)[*dk)!/* hold.

Proof. By the Fubini’s theorem, we have

los? = [ an [ aslote PP = [ (15 [ ote.kyPar) as

This means the result. |

The adjoint v* has the following form:

Lemma 4.6. For all g € H® L*(RY),
(v*g)(z) = /Rdv(a;,k)*g(at,k)dk, a.e.x € RY, (18)
Proof. For all f € 'H, we have
(gr0f) = [ dn [ dkglo. ) ol 1)1 (2)

- /dx(/g(x,k)*v(x,k)dk)f(x)-

Since f is arbitrary, this proves (18). i
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Lemma 4.7. a(v) is

D(a(v)) = {‘11 eF i(n +1) /RNHH dxdky - - - dky,
n=0

2
/dkv(k:,x)*\l!(”“)(:n,k,kl,...,kn)‘
Rd

@)0) ™ (2, ky, .. k)
=vn+1 / (2, k) U (2 k k. k),  ae. (¥ e D(a)))

<)

Proof. Using Lemma 4.6, we have

(v*®In)\IJ(”“)(m,k1,...,kn):/ 0 (2, k)UK ke, L Ky ) dE
Rd

(19)
This is invariant for all permutations of k1, ..., k,. Therefore, using Propo-
sition 4.2, we get
@) ®) ™ (2, ky, .. kn) =V + 1 / o(z, k)OO (2 k kL k) dk

Lemma 4.8. Suppose that [DG.1] and [DG.2] hold. Then, D(a(v)) D
D(I® HY?) and

la()e| < [lo/vallll © HY?®|, @ e D(I o HY?).
Proof. By(19), we have for all ® € D(a(v))

(@) )™ |2 =(n + 1)/ dedl - dky| [ /o(R)
Rdn+N ]Rd
1

2
o(z, k) o (2, ki, kn)dk‘ .

X

w(k)

Using the Schwarz inequality, one has

w #vx *pnt+1) (4 2
| [V st b b )

/ v(z, k
<
Rd

(. k)" 2dk E) @t (2 k. k k,)|2dk
m ’ Rdw( )| (‘Tv s Vly e e ey n)| .
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Hence, for every ® € Dy N D(I ® H1/2) we have

@) @)™
) (n+1)x

/ dzdk; - - dkndkw(k)\tb("“)(x, koki, .o k)|
Ra

) »
n+1

/Rd ., dodkr - dknﬂz DO (2, Ky, k)

:‘f

Therefore

( )

v(z, k)* |2
w(k)

(e B m]

fa(v) @\\<](f‘(\\f®ﬂﬁ/2q>)\\2.

Since, Dy ﬂD(I®H1/ ) is a core of I ® H, /2, one can extend this inequality
to all ® € D(I ® H.'?), and D(I @ Hl/z) C D(a(v)) holds. |

Lemma 4.9. On Dy, a(v) and a*(v) satisfy the following commutation
relation:

[a(v),a()] = | [o(- k)[dk.
Rd

where the right hand side is a multiplication operator by the function : x —
Jga lv(z, k)[>dk.

Proof. Let ® € Dy. By the definition of a*(v), and using Proposition 4.2,
we get

([@*(v), a(v)] @)™ =(G@(v)a(v)*®)™ — (@(v)*a(v)e)™
=vn+ 11y ® S, (v* @ I,,)(a(v)*®) "D
— V(I @ Sy)(ve® In—l)(a(”)(p)(nil)-
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Hence, we have
([a* (v), a(v)]®) ™ (2, ky, ..., k)
= (n+1) / v(z, k) (I @ Spi1(v @ L)) (2, k, ki, . . ., k) dk
]Rd
1 & ~
—n_ Zv(w, ki) (0" @ L 1@ (2, Ky, Ky K

Jj=1

- / dk v(z, k)* (v(x, k)™ (2, ki, ... k)
R4

+Zv(x,kj)q>(">(x,k,kl,...,@,...,m)
=1

—Zv(m,kj)/ Ak (a, k)™ (2, k k1, . kg )
=1 Re

= ( |v(a:,k)|2> O(z, k..., k).
Rd
Here '’ indicates the omission of the object wearing the hat. 1

Lemma 4.10. Assume, [DG.1] and [DG.2]. Then D(I®Hé/2) C D(a*(v))
and for all ® € D(I ® Hé/Z),

~x% 1/2

[@ @)@ < lo/velIT @ Hy?®|* + ||v]?] @] (20)

Proof. For all ® € Dy N D(I ® Hy'?), we have

& @l = (@3 (0)2) = @3 o)+ (( [ o6.0?) o.0)

Rd
< [la(w)®)|* + [l ] *| @[
Thus we can apply Lemma 4.8 to obtain the result. |

Now we can prove Proposition 4.3:

Proof of Proposition 4.3. By Lemma 4.8 and 4.10, the operator 55(@) is

I ®Ht1)/ % bounded. Hence 5(1}) is infinitesimally small with respect to I® Hj,.
Namely, for all € > 0, there exists a constant ¢, > 0, such that,

$(0)@]| < €I ® Hy®|| +cc|®], @€ D(I® Hy).
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Since A > 0, we have
16(0)®|| < el Ho®| + cl|®l, @ € D(Hy).

Thus we can apply the Kato-Rellich theorem to obtain the conclusion of
Proposition 4.3. i

4.2 Proof of Theorem 4.4

In this subsection we suppose that the assumption of Theorem 4.4 holds.
Let Fyv, wv, Hyv, Hov, Fv, I'v, xev(k) be an object already defined
in Section 3, respectively. Suppose that g is a characteristic function of
[_K’ K] .

For a parameter K > 0, we define vg € B(H, H ® L*(R%)) by

(v f)(@, k) == X[k k) (k)o(z, k) f(2).
and vk, € B(H,H ® L*(RY)) by
ey k) =D xevk ) f(z).

LET Y, [4; | <K
i=1,...,d

Lemma 4.11. The following hold:
lok — vk vl = 0(V —o0), [lok —vl| = 0(K — o). (21)
Wobv ke v
Vo Ve o
Proof. By [DG.3] and [DG.4], we have

ko, k) = 3 v, Oxey (k)] di

0(V — o), K‘HO(K_WO). (22)
(.AJ

lvg — vk |I” = eSS-Sup/
z€RN  JRd4

teTy,
|2;|<K
:ess.sup/ Z va o(x, k) — ($,£)|2dk
zeRN Lery,
e, 1<K
Sess.sup/ Z xev (k) [o(k)|*o(|k — ¢])*d
z€RN  JR4 L€y,
|¢; 1<K
/ S e (R)[5(k) 26k — €))%
eTy,
;1<K

24



It follows from the property of o that for every € > 0, there exists a constant
Vo > 0 such that, for all V' > V),

xev (k)o(|k — €))* < exev (k).
Therefore,

vk —vgv|? < E/Rd Z xev (k) [o(k)[*dk = €|’5||%2(Rd)-

¢ery,
1651 <K

Hence the first one of (21) holds. The second one is a direct result of
condition [DG.4|0

o = ol* =esssup [ Pac(h) = 1o, bk
T R

= ess.sup/ lv(z, k)|>dk = o(K%) — 0 (K — o0).
([~ K K]%)e

T

Using [H.4], one can easily check (22)0 i

We introduce two operators:

Hpa(K) :=A® I +1® Hy,+ ¢(vg),
Hpc(K,V) =A@ I +1& Hyy + o(vkv).
Lemma 4.12. (i) Hpg(K) is self-adjoint with D(Hpg(K)) = D(Hy),
bounded from below, and essentially self-adjoint on any core of Hy.
(ii)  For sufficiently large V' > 0, Hpg (K, V) is self-adjoint with domain

D(Hpg(K,V)) = D(Hy), bounded from below, and essentially self-
adjoint on any core of Hy.

Proof. Similar to the proof of Proposition 4.3. |
Lemma 4.13. For all z € C\R,

Jim ([(Hpa(K, V) = )7 = (Hpa(K) = 2)7' =0,
i (|(Hpa(K) = 2) 7" = (Hpe — 2) '] = 0.
Proof. Similar to the proof of] 20 Lemma 3.50 i
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Lemma 4.14. The operator Hpg (K, V') is reduced by Fy .

Proof. We identify v(x, ¢) with multiplication operator by v(-, ¢). By abuse
of symbols, we denote x, v () by x¢,v (k). Then

(@ (0o, Oxe (k) @) = Vii(I @ Su) (vl Oxey (k) @ DB
= \/ﬁv(a:, K)Sn(XZ,V ® (I)(n_l))
= X(xvg)\/ﬁsn(XZ,V & q)(nil))'

Hence, we have

a”(v(z, O)xev (k)@ = v(z,£) © a”(xe,v)®-

Therefore, we get

Hence, its adjoint is

a(vgy) = Z v(-, 0)" @ alxey)- (24)
e

This means that the operator Hpg(K,V) is a special case of the GSB
Hamiltonian(seed) 20). Hence, by 20 Lemma 3.70 Hpg (K, V) is reduced

by Fv.
Lemma 4.15. Hpg(K,V)[Fi: > Eo(Hpa(K,V)) +m
Proof.  Similar to the proof of] 20 Lemma 3.100 i

Lemma 4.16. For all ® € D(I ® H&m), and for all € > 0,

|@¢@@M§ﬁm

v |2 1/2 ]l 1
ol e s+ T (¢ 5 ) el
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Proof. For all ® € D(I ® HY?), ¢ >0,

(0.50)8)| < = (ela)®lP + o [91P + @2l + 2]?)

1 v |2 1/2 212 212 L 2
< - 26H7H 1® 20|+ eo]?@] + ||
ﬂ( i R eiPlelR + o o
) ol
V3 11®Hé/2<1>||2+(f Joll + >H<I>II2
2 fn ||

vl

where we have used Lemma 4.8 and 4.10. Let v/2¢||v|| =: €. Then, for all
€ > 0, we have

~ v |2 1/2 o]l 1
(@, 6(v) —= [ 11 ® 5Pl + (¢ + S ) o)™

i
Proof of Theorem /4.4. From (23) and (24), Hpg(K,V) is equal to the
special case of the GSB model. Therefore, Hpg(K,V)[Fy has the same
form with Hpg (K, V). Using Lemma 4.16 we have on D(Hp) N Fy
Hpg(K,V)
= AT +1® Hyy + ovky)

VK,V

v vl </ 1)
[®Hyy —+—21 (€ + =
||UKV||HVWV‘ 2 €

UK,V H I H o Hva‘/H / l 25
H T}V ) ® b,V 2 € + 6/ 9y ( )

where ¢ > 0 is an arbitrary constant. By Lemma 3.10, Hy, v[Fp v has
compact resolvent. Thus, for € > 0 satisfying

>AQI+1® Hyy —

=ART+ <1 -
IIUK,vll

el (29

Jov

the bottom of the essential spectrum of (25) is equal to

Y(A) - el <6'+1,> .

lor vl

2 €
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Let, Di and Dg y be D with v replaced by vk, vk v, respectively. It is
easy to see that

lim Dx =D, lim Dxy = Dg.
V—oo

—0Q

By Lemma 4.13, one has
Aim_Eo(Hpa(K)) = Eo(Hpg),  lim Ey(Hpa (K, V)) = Eo(DG(K)).

From the assumption of Theorem 4.4, for all K > 0, there exists a constant
Vi such that for V' > Vj,

v
S(A) — ”KQ’V”DW — Eo(Hpg(K,V)) > 0.

By the definition of Dk y, for all K > 0 and V' > Vp, and for all ¢ which
satisfies (26), we have

S(A) — ””;V” (é + :) > Eo(Hpa (K, V).

Therefore, by Theorem 2.1, we have that Hpg(K,V)[Fy has purely dis-
crete spectrum in

[Eo(Hpc (K, V), X(A) — lvk,v | Dr,v)-

This fact and Lemma 4.15 mean that Hpg (K, V') has purely discrete spec-
trum in

[Eo(Hpa (K, V)), min{ Eo(Hpa (K, V)) +m, %(A) — [lvk v [ Drv}).

Finally, we use Lemma 3.13 and Lemma 4.13, to conclude that Hpg has
purely discrete spectrum in the interval

[Eo(Hpc), min{ Ey(Hpa) + m, %(A) — [Jv]|D})
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