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Abstract

We present new criteria for a self-adjoint operator to have a ground
state. As an application, we consider models of “quantum particles”
coupled to a massive Bose field and prove the existence of a ground
state of them, where the particle Hamiltonian does not necessarily
have compact resolvent.

Key words: Ground state; discrete ground state; generalized spin-
boson model; Fock space; Dereziński-Gérard model.

1 INTRODUCTION

Let T be a self-adjoint operator on a Hilbert space H, and bounded from
below. We say that T has a discrete ground state if the bottom of the
spectrum of T is an isolated eigenvalue of T . In that case a non-zero vector
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in ker(T − E0(T )) is called a ground state of T . Let S be a symmetric
operator on H. Suppose that T has a discrete ground state and S is T -
bounded. By the regular perturbation theory［8，XII］, it is already known
that T +λS has a discrete ground state for “sufficiently small” λ ∈ R. Our
aim is to present new criteria for T + λS to have a ground state.

In Section 2, we prove an existence theorem of a ground state which
is useful to show the existence of a ground state of models of quantum
particles coupled to a massive Bose field.

In Section 3, we consider the GSB model［2］with a self-interaction term
of a Bose field, which we call the GSB + φ2 model. We consider only
the case where the Bose field is massive. The GSB model — an abstract
system of quantum particles coupled to a Bose field — was proposed in［2］.
In［2］, A. Arai and M. Hirokawa proved the existence and uniqueness of
the GSB model in the case where the particle Hamiltonian A has compact
resolvent. Shortly after that, they proved the existence of a ground state
of the GSB model in the case where A does not have necessarily compact
resolvent［4，3］. In this paper, using a theorem in Section 2, we prove the
existence of a ground state of the GSB + φ2 model in the case where A
does not necessarily have compact resolvent.

In Section 4, we consider an extended version of the Nelson type model,
which we call the Dereziński-Gérard model［5］. The Dereziński-Gérard
model introduced in［5］, and J. Dereziński and C. Gérard prove an existence
of a ground state for their model under some conditions including that A
has compact resolvent. In Section 4, we prove the existence of a ground
state of the Dereziński-Gérard model in the case where A does not have
compact resolvent. Our strategy to establish a ground state is the same as
in Section 3.

2 BASIC RESULTS

Let H be a separable complex Hilbert space. We denote by 〈·, ·〉H the
scalar product on Hilbert space H and by ‖·‖H the associated norm. Scalar
product 〈f, g〉H is linear in g and antilinear in f . We omit H in 〈·, ·〉H and
‖·‖H, respectively if there is no danger of confusion. For a linear operator
T in Hilbert space, we denote by D(T ) and σ(T ) the domain and the
spectrum of T respectively. If T is self-adjoint and bounded from below,
then we define

E0(T ) := inf σ(T ), Σ(T ) := inf σess(T ),
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where σess(T ) is the essential spectrum of T . If T has no essential spectrum,
then we set Σ(T ) = ∞. For a self-adjoint operator T , we denote the
form domain of T by Q(T ). In this paper, an eigenvector of a self-adjoint
operator T with eigenvalue E0(T ) is called a ground state of T (if it exists).
We say that T has a ground state if dim ker(T − E0(T )) > 0.

The basic results are as follows:

Theorem 2.1. Let H be a self-adjoint operator on H, and bounded from
below. Suppose that there exists a self-adjoint operator V on H satisfying
the following conditions (i)-(iii):

(i) D(H) ⊂ D(V ).
(ii) V is bounded from below, and Σ(V ) > 0.
(iii) H −E0(H) ≥ V on D(H).

Then H has purely discrete spectrum in the interval [E0(H), E0(H)+Σ(V )).
In particular, H has a ground state.

Proof. For all u1, . . . , un−1 ∈ H, we have

inf
Ψ∈L.h.[u1,...,un−1]⊥
‖Ψ‖=1,u∈D(H)

〈Ψ,HΨ〉 − E0(H) ≥ inf
Ψ∈L.h.[u1,...,un−1]⊥
‖Ψ‖=1,u∈D(H)

〈Ψ, V Ψ〉,

where L.h.[· · · ] denotes the linear hull of the vectors in [· · · ]. Since D(H) ⊂
D(V ), we have that

inf
Ψ∈L.h.[u1,...,un−1]⊥
‖Ψ‖=1,Ψ∈D(H)

〈Ψ, V Ψ〉 ≥ inf
Ψ∈L.h.[u1,...,un−1]⊥
‖Ψ‖=1,Ψ∈D(V )

〈Ψ, V Ψ〉.

Hence, for all n ∈ N
µn(H)− E0(H) ≥ µn(V ).

where
µn(H) := sup

u1,...,un−1∈H
inf

Ψ∈L.h.[u1,...,un−1]⊥
‖Ψ‖=1,Ψ∈D(H)

〈Ψ, HΨ〉.

By the min-max principle (［8，Theorem XIII.1］), limn→∞ µn(H) = Σ(H)
and limn→∞ µn(V ) = Σ(V ). Therefore we obtain

Σ(H)−E0(H) ≥ Σ(V ) > 0.

This means that H has purely discrete spectrum in [E0(H), E0(H)+Σ(V )).
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Theorem 2.2. Let H be a self-adjoint operator on H, and bounded from
below. Suppose that there exists a self-adjoint operator V on H satisfying
the following conditions (i)-(iii):

(i) Q(H) ⊂ Q(V ).
(ii) V is bounded from below, and Σ(V ) > 0.
(iii) H −E0(H) ≥ V on Q(H).

Then H has purely discrete spectrum in the interval [E0(H), E0(H)+Σ(V )).
In particular, H has a ground state.

Proof. Similar to the proof of Theorem 2.1.

We apply Theorems 2.1 and 2.2 to a perturbation problem of a self-adjoint
operator.

Theorem 2.3. Let A be a self-adjoint operator on H with E0(A) = 0, and
let B be a symmetric operator on D(A). Suppose that A+B is self-adjoint
on D(A) and that there exist constants a ∈ [0, 1) and b ≥ 0 such that

|〈ψ, Bψ〉| ≤ a〈ψ,Aψ〉+ b‖φ‖2, ψ ∈ D(A).

Assume
b + E0(A + B)

1− a
< Σ(A). (1)

Then A + B has purely discrete spectrum in [E0(A + B), (1− a)Σ(A)− b).
In particular, A + B has a ground state.

Proof. By the assumption we have

A + B − E0(A + B) ≥ (1− a)A− b− E0(A + B)

on D(A), and (1−a)Σ(A)−b−E0(A+B) > 0. Hence we can apply Theorem
2.1, to conclude that A+B has purely discrete spectrum in [E0(A+B), (1−
a)Σ(A)− b). In particular, A + B has a ground state.

Remark. It is easily to see that −b ≤ E0(A + B) ≤ b. Therefore condition
(1) is satisfied if

2b

1− a
< Σ(A).
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Theorem 2.4. Let H,K be complex separable Hilbert spaces. Let A and B
be self-adjoint operators on H and K respectively. Suppose that E0(A) =
E0(B) = 0. We set

T0 := A⊗ I + I ⊗B.

Let Z be a symmetric sesquilinear form on Q(T0), and assume that there
exist constants a1 ∈ [0, 1), a2 ∈ [0, 1) and b ≥ 0 such that, for all Ψ ∈ Q(T0)

|Z(Ψ,Ψ)| ≤ a1〈Ψ, A⊗ IΨ〉form + a2〈Ψ, I ⊗BΨ〉form + b‖Ψ‖2,

where 〈Ψ, A⊗ IΨ〉form = ‖A1/2 ⊗ IΨ‖2. Therefore, by the KLMN theorem
there exists a unique self-adjoint operator T on H ⊗ K such that Q(T ) =
Q(T0) and T = T0 + Z in the sense of sesquilinear form on Q(T0). We set

s := min{(1− a1)Σ(A), (1− a2)Σ(B)}.
Assume

s > b + E0(T ). (2)

Then, T has purely discrete spectrum in the interval [E0(T ), s − b). In
particular, T has a ground state.

Proof. Similar to the proof of Theorem 2.3.

Remark. It is easy to see that −b ≤ E0(T ) ≤ b. Therefore the condition
(2) is satisfied if

s > 2b.

Remark. Theorem 2.4 is essentially same as［4，Theorem B.1］. But our
proof is very simple.

3 Ground States of a General Class of Quantum Field Hamil-

tonians

We consider a model which is an abstract unification of some quantum
field models of particles interacting with a Bose field. It is the GSB model
［2］with a self-interaction term of the field.

Let H be a separable complex Hilbert space and Fb be the Boson Fock
space over L2(Rd) :

Fb :=
∞⊕

n=0

[
n⊗
s

L2(Rd)

]
.
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The Hilbert space of the quantum field model we consider is

F := H⊗Fb.

Let ω : Rd → [0,∞) be Borel measurable such that 0 < ω(k) < ∞ for all
most everywhere (a.e.)k ∈ Rd. We denote the multiplication operator by
the function ω acting in L2(Rd) by the same symbol ω. We set

Hb := dΓb(ω)

the second quantization of ω (e.g.［7，Section X.7］). We denote by a(f),
f ∈ L2(Rd), the smeared annihilation operators on Fb. It is a densely
defined closed linear operator on Fb(Rd) (e.g. ［7，Section X.7］). The
adjoint a(f)∗, called the creation operator, and the annihilation operator
a(g), g ∈ L2(Rd) obey the canonical commutation relations

[a(f), a(g)∗] = 〈f, g〉, [a(f), a(g)] = 0, [a(f)∗, a(g)∗] = 0

for all f, g ∈ L2(Rd) on the dense subspace

F0 :={ψ = (ψ(n))∞n=0 ∈ Fb|there exists a number n0 such that

ψ(n) = 0 for all n ≥ n0},
where [X,Y ] = XY − Y X. The symmetric operator

φ(f) :=
1√
2
[a(f)∗ + a(f)],

called the Segal field operator, is essentially self-adjoint on F0(e.g. ［7，
Section X.7］). We denote its closure by the same symbol. Let A be a
positive self-adjoint operator on H with E0(A) = 0. Then, the unperturbed
Hamiltonian of the model is defined by

H0 := A⊗ I + I ⊗Hb

with domain D(H0) = D(A ⊗ I) ∩ D(I ⊗ Hb). For gj , fj ∈ L2(Rd) j =
1, . . . , J , and Bj(j = 1, . . . , J) a symmetric operator on H, we define a
symmetric operator

H1 :=
J∑

j=1

Bj ⊗ φ(gj),

H2 :=
J∑

j=1

I ⊗ φ(fj)2.
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The Hamiltonian of the model we consider is of the form

H(λ, µ) := H0 + λH1 + µH2,

where λ ∈ R and µ ≥ 0 are coupling parameters.
For H(λ, µ) to be self-adjoint, we shall need the following conditions

[H.1]-[H.3]:

[H.1] gj ∈ D(ω−1/2), fj ∈ D(ω1/2) ∩D(ω−1/2), j = 1, . . . , J .
[H.2] D(A1/2) ⊂ ∩J

j=1D(Bj) and there exist constants aj ≥ 0, bj ≥ 0,
j = 1, . . . , J , such that,

‖Bju‖ ≤ aj‖A1/2u‖+ bj‖u‖, u ∈ D(A1/2).

[H.3] |λ|
J∑

j=1

aj‖gj/
√

ω‖ < 1.

Proposition 3.1. Assume [H.1], [H.2] and [H.3]. Then, H(λ, µ) is self-
adjoint with D(H(λ, µ)) = D(H0) ⊂ D(H1) ∩ D(H2) and bounded from
below. Moreover, H(λ, µ) is essentially self-adjoint on every core of H0.

Remark. This proposition has no restriction of the coupling parameter µ ≥
0.

* * *

To perform a finite volume approximation, we need an additional condi-
tion:

[H.4] The function ω(k) (k ∈ Rd) is continuous with

lim
|k|→∞

ω(k) = ∞,

and there exist constants γ > 0, C > 0 such that

|ω(k)− ω(k′)| ≤ C|k − k′|γ [1 + ω(k) + ω(k′)], k, k′ ∈ Rd.

Let
m := inf

k∈Rd
ω(k). (3)

If A has compact resolvent, we can prove the extension of the previous
theorem［2，Theorem 1.2］.
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Theorem 3.2. Consider the case m > 0. Suppose that A has entire purely
discrete spectrum. Assume Hypotheses [H.1]-[H.4]. Then, H(λ, µ) has
purely discrete spectrum in the interval [E0(H(λ, µ)), E0(H(λ, µ)) + m).
In particular, H(λ, µ) has a ground state.

Remark. This theorem has no restriction of the coupling parameter µ ≥ 0.
Remark. In the case m > 0, the condition [H.1] equivalent to the following:

gj ∈ L2(Rd), fj ∈ D(
√

ω), j = 1, . . . , J.

For a vector v = (v1, . . . , vJ) ∈ RJ and h = (h1, . . . , hJ) ∈ ⊕J
j=1L

2(Rd),
we define

Mv(h) =
J∑

j=1

vj‖hj‖.

We set

g = (g1, . . . , gJ) ∈
J⊕

j=1

L2(Rd), f = (f1, . . . , fJ) ∈
J⊕

j=1

L2(Rd),

and
a = (a1, . . . , aJ), b = (b1, . . . , bJ).

For θ, ε, ε′, we introduce the following constants:

Cθ,ε := θMa(g/
√

ω) + εMa(g),

Dθ,ε′ := Ma(g/
√

ω)/2θ + ε′Mb(g/
√

ω),

Eε,ε′ := Ma(g)/8ε + Mb(g/
√

ω)/2ε′ + Mb(g)/
√

2.

Let the condition [H.3] be satisfied. Then, we define

Iλ,g :=





( |λ|Ma(g
√

ω)
2

,
1

|λ|Ma(g/
√

ω)

)
, |λ|Ma(g/

√
ω) 6= 0

[0,∞], |λ|Ma(g/
√

ω) = 0

It is easy to see that [1/2, 1] ⊂ Iλ,g. Therefore, for all θ ∈ Iλ,g,

1− θ|λ|Ma(g/
√

ω) > 0,

1− |λ|Ma(g/
√

ω)
2θ

> 0.
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We define for θ ∈ Iλ,g,

Sθ := {(ε, ε′)|ε, ε′ > 0, |λ|Cθ,ε < 1, |λ|Dθ,ε′ < 1}.
Next we set

τθ,ε,ε′ := (1− |λ|Cθ,ε)Σ(A)− |λ|Eε,ε′ ,

and

T :=
{
(θ, ε, ε′) ∈ R3|θ ∈ Iλ,g, (ε, ε′) ∈ Sθ, τθ,ε,ε′ > E0(H(λ, µ))

}
.

Theorem 3.3. Consider the case m > 0. Suppose that σess(A) 6= ∅. As-
sume Hypothesis [H.1]-[H.4], and T 6= ∅. Then, H(λ, µ) has purely discrete
spectrum in the interval

[
E0(H(λ, µ)),min{m + E0(H(λ, µ)), sup

(θ,ε,ε′)∈T
τθ,ε,ε′}

)
. (4)

In particular, H(λ, µ) has a ground state.

Remark. T 6= ∅ is necessary condition for A to have a discrete ground
state. Conversely, if A has a discrete ground state, then T 6= ∅ holds for
sufficiently small λ, µ. Therefore the condition T 6= ∅ is a restriction for the
coupling constants λ, µ.

* * *

3.1 Proof of Proposition 3.1

In what follows, we write simply

H := H(λ, µ).

For D a dense subspace of L2(Rd), we define

Ffin(D) := L.h[{Ω, a(h1)∗ · · · a(hn)∗Ω|n ∈ N, hj ∈ D, j = 1, . . . , n}],
where Ω := (1, 0, 0, . . .) is the Fock vacuum in Fb. We introduce a dense
subspace in F

Dω := D(A)⊗̂Ffin(D(ω)),

where ⊗̂ denotes algebraic tensor product. The subspace Dω is a core of
H0.
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Let
HGSB := H0 + λH1

be a GSB Hamiltonian. The Hamiltonian H and HGSB has the following
relation:

Proposition 3.4. Let D(A) ⊂ D(Bj), j = 1, . . . , J and fj ∈ D(ω1/2).
Assume that HGSB is bounded from below. Then, for all Ψ ∈ Dω,

‖(HGSB −E0)Ψ‖2 + ‖µH2Ψ‖2 ≤ ‖(H − E0)Ψ‖2 + D‖Ψ‖2, (5)

where D = µ
∑J

j=1 ‖ω1/2fj‖2 and

E0 := inf
Ψ∈D(HGSB)

‖Ψ‖=1

〈Ψ,HGSBΨ〉.

Proof. It is enough to show (5) the case λ = µ = 1. First we consider the
case where fj ∈ D(ω). Inequality (5) is equivalent to

−2Re
〈
(HGSB − E0)Ψ,H2Ψ

〉 ≤ D‖Ψ‖2. (6)

By HGSB − E0 ≥ 0, we have
〈
(HGSB −E0)Ψ, I ⊗ φ(fj)2Ψ

〉
=

〈
[I ⊗ φ(fj), (HGSB − E0)]Ψ, I ⊗ φ(fj)Ψ

〉

+
〈
(HGSB −E0)I ⊗ φ(fj)Ψ, I ⊗ φ(fj)Ψ

〉

≥〈
[I ⊗ φ(fj),HGSB − E0]Ψ, I ⊗ φ(fj)Ψ

〉
.

Therefore we have

2Re
〈
(HGSB − E0)Ψ, φ(fj)2Ψ

〉 ≥ −‖√ωfj‖2‖Ψ‖2.

This means inequality (6). Next, we set fj ∈ D(
√

ω). Then, there exists a
sequence {fjn}∞n=0 ⊂ D(ω) such that fjn → fj , ω1/2fjn → ω1/2fj (n →∞).
By limiting argument, (6) holds with fj ∈ D(ω1/2).

Lemma 3.5. Suppose that HGSB is self-adjoint with D(HGSB) = D(H0),
essentially self-adjoint on Dω, and bounded from below. Let fj ∈ D(ω1/2)∩
D(ω−1/2). Then H is self-adjoint with D(H) = D(H0) and essentially
self-adjoint on any core of HGSB with

‖(HGSB −E0)Ψ‖2 + ‖µH2Ψ‖2 ≤ ‖(H − E0)Ψ‖2 + D‖Ψ‖2, Ψ ∈ D(H0).
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Proof. It is well known that D(Hb) ⊂ D(φ(fj)2), and φ(fj)2 is Hb-
bounded (e.g.［1，Lemma 13-16］). Namely, there exist constants η ≥ 0,
θ ≥ 0 such that

∥∥∥
J∑

j=1

φ(fj)2ψ
∥∥∥ ≤ η‖Hbψ‖+ θ‖ψ‖, ψ ∈ D(Hb). (7)

Since HGSB is self-adjoint on D(H0), by the closed graph theorem, we have

‖H0Ψ‖ ≤ λ‖HGSBΨ‖+ ν‖Ψ‖, Ψ ∈ D(H0), (8)

where λ and ν are non-negative constant independent of Ψ. Hence

‖H2Ψ‖ ≤ ηλ‖HGSBΨ‖+ (ην + θ)‖Ψ‖, Ψ ∈ D(H0).

We fix a positive number µ0 such that µ0 < 1/(µλ). Then, by the Kato-
Rellich theorem, H(λ, µ0) is self-adjoint on D(HGSB), bounded from below
and essentially self-adjoint on any core of HGSB. For a constant a (0 <
a < 1), we set µn := (1 + a)nµ0. Since HGSB is self-adjoint on D(H0), for
each j = 1, . . . , J we have D(A) ⊂ D(B). Thus by Proposition 3.4, for all
Ψ ∈ Dω

‖(HGSB − E0)Ψ‖2 + ‖µnH2Ψ‖2 ≤ ‖(H(λ, µn)−E0)Ψ‖2 + D‖Ψ‖2.

If H(λ, µn) is self-adjoint on D(HGSB), bounded from below and essentially
self-adjoint on any core of HGSB, then H(λ, µn+1) has the same property.
On the other hand, we have µn →∞ (n →∞). Hence we conclude that H
is self-adjoint with D(H) = D(HGSB), bounded from below and essentially
self-adjoint on any core of HGSB.

Now, we assume conditions [H.1],[H.2] and [H.3].
Then HGSB is self-adjoint on D(H0), bounded from below and essentially

self-adjoint on any core of H0(see［2］). Hence, the assumptions of Lemma
3.5 hold. Thus Proposition 3.1 follows.

3.2 Proofs of Theorems 3.2 and 3.3

Throughout this subsection, we assume Hypotheses [H.1]-[H.4] and m >
0.
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For a parameter V > 0, we define the set of lattice points by

ΓV :=
2πZd

V
:=

{
k = (k1, . . . , kd)

∣∣∣kj =
2πnj

V
, nj ∈ Z, j = 1, . . . , d

}

and we denote by l2(ΓV ) the set of l2 sequences over ΓV . For each k ∈ ΓV

we introduce

C(k, V ) :=
[
k1 − π

V
, k1 +

π

V

)
× · · · ×

[
kd − π

V
, kd +

π

V

)
⊂ Rd,

the cube centered about k. By the map

U : l2(ΓV ) 3 {hl}l∈ΓV
7→ (V/2π)d/2

∑

l∈ΓV

hlχl,V (·) ∈ L2(Rd),

we identify l2(ΓV ) with a subspace in L2(Rd), where χl,V (·) is the charac-
teristic function of the cube C(l, V ) ⊂ Rd. It is easy to see that l2(ΓV ) is
a closed subspace of L2(Rd). Let

Fb,V := Fb(l2(ΓV )) =
∞⊕

n=0

[
n⊗
s

l2(ΓV )

]
,

the boson Fock space over l2(ΓV ). We can identify Fb,V the closed subspace
of Fb by the operator Γ(U) := ⊕∞n=0 ⊗n U , where we define ⊗0U = 0. For
each k ∈ Rd, there exists a unique point kV ∈ ΓV such that k ∈ C(kV , V ).
Let

ωV (k) := ω(kV ), k ∈ Rd

be a lattice approximate function of ω(k) and let

Hb,V := dΓ(ωV )

be the second quantization of ωV . We define a constant

CV := Cdγ
( π

V

)(
1

2m
+ 1

)
,

where C and γ were defined in [H.4]. In what follows we assume that

CV < 1.

This is satisfied for all sufficiently large V .
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Lemma 3.6. (［2，Lemma 3.1］). We have

D(Hb,V) = D(Hb),

and
‖(Hb −Hb,V)Ψ‖ =

2CV

1− CV
‖HbΨ‖, Ψ ∈ D(Hb).

First we consider the case where gj ’s and fj ’s are continuous, and finally,
by limiting argument, we treat a general case. For a constant K > 0, we
define gj,K , fj,K , and gj,K,V , fj,K,V as follows:

gj,K(k) := χK(k1) · · ·χK(kd)gj(k), gj,K,V (k) :=
∑

`∈ΓV ,|`i|<K
i=1,...,d

gj(`)χ`,V (k),

fj,K(k) := χK(k1) · · ·χK(kd)fj(k), fj,K,V (k) :=
∑

`∈ΓV ,|`i|<K
i=1,...,d

fj(`)χ`,V (k),

where χK denotes the characteristic function of [−K,K].

Lemma 3.7. For all j = 1, . . . , J ,

lim
V→∞

‖gj,K,V − gj,K‖ = 0, lim
V→∞

‖gj,K,V /
√

ωV − gj,K/
√

ω‖ = 0,

lim
K→∞

‖gj,K − gj‖ = 0, lim
K→∞

‖gj,K/
√

ω − gj/
√

ω‖ = 0,

lim
V→∞

‖fj,K,V − fj,K‖ = 0, lim
V→∞

‖fj,K,V /
√

ωV − fj,K/
√

ω‖ = 0,

lim
K→∞

‖fj,K − fj‖ = 0, lim
K→∞

‖fj,K/
√

ω − fj/
√

ω‖ = 0,

lim
K→∞

‖√ωfj,K −√ωfj‖ = 0, lim
V→∞

‖√ωV fj,K,V −
√

ωfj,K‖ = 0.

Proof. Similar to the proof of［2，Lemma 3.10］.

We introduce a new operator:

H0,V := A⊗ I + I ⊗Hb,V,

H1,K :=
J∑

j=1

Bj ⊗ φ(gj,K),

H1,K,V :=
J∑

j=1

Bj ⊗ φ(gj,K,V ),
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H2,K :=
J∑

j=1

I ⊗ φ(fj,K)2,

H2,K,V :=
J∑

j=1

I ⊗ φ(fj,K,V )2,

and define

HK :=H0 + λH1,K + µH2,K ,

HK,V :=H0,V + λH1,K,V + µH2,K,V .

Lemma 3.8. (i) HK is self-adjoint with D(HK) = D(H0) ⊂ D(H1,K)
∩D(H2,K), bounded from below, and essentially self-adjoint on any
core of H0.

(ii) For all large V , HK,V is self-adjoint with D(HK,V ) = D(H0) ⊂
D(H1,K,V ) ∩ D(H2,K,V ), bounded from below, and essentially self-
adjoint on any core of H0,V .

Proof. Similar to the proof of Proposition 3.1.

Lemma 3.9. For all z ∈ C\R, and K > 0,

lim
K→∞

‖(HK − z)−1 − (H − z)−1‖ = 0,

lim
V→∞

‖(HK,V − z)−1 − (HK − z)−1‖ = 0.

Proof. Similar to the proof of［2，Lemma 3.5］.

The following fact is well known:

Lemma 3.10. The operator Hb,V is reduced by Fb,V and Hb,VdFb,V equal
to the second quantization of ωV dl2(ΓV ) on Fb,V.

Lemma 3.11. HK,V is reduced by FV .

Proof. Similar to the proof of［2，Lemma 3.7］.

Lemma 3.12. We have

HK,V dF⊥V ≥ E0(HK,V ) + m.
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Proof. Similar to the proof of［2，Lemma 3.10］.

Lemma 3.13. Let Tn and T be a self-adjoint operators on a separable
Hilbert space and bounded from below. Suppose that Tn → T in norm resol-
vent sense as n → ∞ and Tn has purely discrete spectrum in the interval
[E0(Tn), E0(Tn) + cn) with some constant cn. If c := lim supn→∞ cn > 0,
then T has purely discrete spectrum in [E0(T ), E0(T ) + c).

Proof. There exists a sequence {cnj}∞j=1 ⊂ {cn}∞n=1 so that cnj → c(j →
∞). So, for all ε > 0 and for sufficiently large j, the spectrum of Tnj in
[E0(Tnj ), E0(Tnj )+c−ε) is discrete. Therefore, applying［2，Lemma 3.12］,
we find that the spectrum of T in [E0(T ), E0(T ) + c− ε) is discrete. Since
ε > 0 is arbitrary, we get the conclusion.

Now, if A has compact resolvent, by a method similar to the proof of
［2，Theorem 1.2］, we can prove Theorem 3.2. Therefore, we only prove
Theorem 3.3.

The following inequality is known［2，(2.12)］:

|〈Ψ,H1Ψ〉| ≤ Cθ,ε〈Ψ, A⊗ IΨ〉+ Dθ,ε〈Ψ, I ⊗HbΨ〉+ Eε,ε′‖Ψ‖2,

where Ψ ∈ D(H0) is arbitrary. Thus we have,

H ≥ (1− |λ|Cθ,ε)A⊗ I + (1− |λ|Dθ,ε′)I ⊗Hb + µH2 − |λ|Eε,ε′ .

Let Iλ,g(K), Cθ,ε(K), Dθ,ε(K) and Eε,ε′(K) are Iλ,g, Cθ,ε, Dθ,ε, Eε,ε′ with
gj , fj replaced by gj,K , fj,K respectively, and let Iλ,g(K,V ), Cθ,ε(K,V ),
Dθ,ε(K, V ) and Eε,ε′(K, V ) are Iλ,g, Cθ,ε, Dθ,ε, Eε,ε′ with gj , fj and ω
replaced by gj,K,V , fj,K,V and ωV respectively. Then we have

Lemma 3.14. The following operator inequalities hold:

HK ≥(1− |λ|Cθ,ε(K))A⊗ I + (1− |λ|Dθ,ε′(K))I ⊗Hb

+ µH2,K − |λ|Eε,ε′(K) on D(H0),

HK,V ≥(1− |λ|Cθ,ε(K, V ))A⊗ I + (1− |λ|Dθ,ε′(K,K))I ⊗Hb,V

+ µH2,K,V − |λ|Eε,ε′(K, V ) on D(H0).

Proof. Similar to the calculation of［2，(2.12)］.
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By Lemma 3.7, we have

lim
V→∞

Cθ,ε(K, V ) = Cθ,ε(K), lim
K→∞

Cθ,ε(K) = Cθ,ε, (9)

lim
V→∞

Dθ,ε′(K, V ) = Dθ,ε′(K), lim
K→∞

Dθ,ε′(K) = Dθ,ε′ , (10)

lim
V→∞

Eε,ε′(K, V ) = Eε,ε′(K), lim
K→∞

Eε,ε′(K) = Eε,ε′ . (11)

Let (θ, ε, ε′) ∈ T, namely

τθ,ε,ε′ = (1− |λ|Cθ,ε)Σ(A)− |λ|Eε,ε′ > E0(H).

Formulas (9)-(11) and Lemma 3.9 imply that for all large V there exists a
constant K0 > 0 such that for all K > K0,

(1− |λ|Cθ,ε(K, V ))Σ(A)− |λ|Eε,ε′(K, V ) > E0(HK,V ), (12)

|λ|Cθ,ε(K,V ) < 1, |λ|Dθ,ε′(K,V ) < 1. (13)

By Lemma 3.11, HK,V is reduced by FV . Therefore, HK,V satisfies the
following inequality:

HK,V dFV ≥(1− |λ|Cθ,ε(K, V ))A⊗ IdFV

+ (1− |λ|Dθ,ε′(K, V ))I ⊗Hb,VdFV

− |λ|Eε,ε′(K,V ). (14)

Since Hb,VdFb,V has compact resolvent, the bottom of essential spectrum
of the right hand side of (14) is equal to

(1− |λ|Cθ,ε(K, V ))Σ(A)− |λ|Eε,ε′(K, V ).

By Lemma 3.12, we have E0(HK,V dFV ) = E0(HK,V ). Thus, applying
Theorem 2.1 with HK,V dFV , we have that HK,V dFV has purely discrete
spectrum in [E0(HK,V ), (1 − |λ|Cθ,ε(K, V ))ΣA − Eε,ε′(K,V ) ). Since this
fact and Lemma 3.12, HK,V has purely discrete spectrum in

[E0(HK,V ), min{E0(HK,V ) + m, (1− |λ|Cθ,ε(K, V ))ΣA −Eε,ε′(K,V )}).
By Lemma 3.9 and Lemma 3.13, we have that for all sufficiently large
K > 0, HK has purely discrete spectrum in [E0(HK), min{E0(HK)+m, (1−
|λ|Cθ,ε(K))Σ(A)−|λ|Eε,ε′(K)}). Similarly, H has purely discrete spectrum
in [E0(H(λ, µ)),min{m + E0(H(λ, µ)), τθ,ε,ε′}). Since (θ, ε, ε′) ∈ T is arbi-
trary, H has purely discrete spectrum in (4). Finally, we have to consider
the case where gj ’s and fj ’s are not necessarily continuous. But, that ar-
gument were already discussed in［4］. So we skip that argument.
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4 Ground State of the Dereziński-Gérard Model

We consider a model discussed by J. Dereziński and C. Gérard［5］. We
take the Hilbert space of the particle system is taken to be

H = L2(RN ).

The Hilbert space for the Dereziński-Gérard (DG) model is given by

F := H⊗Fb(L2(Rd)).

We identify F as
∞⊕

n=0

[
H⊗

n⊗
s

L2(Rd)

]
.

Hence, if we denote that Ψ ∈ (Ψ(n))∞n=0 ∈ F , each Ψ(n) belongs to H ⊗
[⊗n

s L2(Rd)]. We denote by B(K,J ) the set of bounded linear operators
from K to J . For v ∈ B(H,H⊗ L2(Rd)), we define an operator ã∗(v) by

(ã∗(v)Ψ)(0) := 0,

(ã∗(v)Ψ)(n) :=
√

n(IH ⊗ Sn)(v ⊗ I⊗n−1
s L2(Rd))Ψ

(n−1), (n ≥ 1),

Ψ ∈ D(ã∗(v)) :=

{
Ψ = (Ψ(n))∞n=0 ∈ F

∣∣∣
∞∑

n=0

‖(ã∗(v)Ψ)(n)‖2 < ∞
}

.

We set

D0 := {Ψ = (Ψ(n))∞n=0 ∈ F|there exists a constant n0 ∈ N,

such that, for all n ≥ n0, Ψ(n) = 0}.

Throughout this section, we write simply In := I⊗n
s L2(Rd). It is easy to see

that:

Proposition 4.1. ã∗(v) is a closed linear operator and D0 is a core of
ã∗(v).

So we set
ã(v) := (ã∗(v))∗

the adjoint operator of ã∗(v).
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Proposition 4.2. The operator ã(v) has the following properties:

D(ã(v)) =

{
Ψ = (Ψ(n))∞n=0

∣∣∣
∞∑

n=0

(n + 1)‖(IH ⊗ Sn)(v∗ ⊗ In)Ψ(n+1)‖2 < ∞
}

(15)

(ã(v)Ψ)(n) =
√

n + 1IH ⊗ Sn(v∗ ⊗ In)Ψ(n+1), Ψ ∈ D(ã(v)), (16)

and D0 is a core of ã(v).

Proof. For Φ ∈ F , Ψ ∈ D(ã∗(v)),

〈Φ, ã∗(v)Ψ〉 =
∞∑

n=1

〈Φ(n),
√

n(IH ⊗ Sn)(v ⊗ In−1)Ψ(n−1)〉

=
∞∑

n=0

√
n + 1〈v∗ ⊗ InΦ(n+1), Ψ(n)〉

=
∞∑

n=0

〈√
n + 1(IH ⊗ Sn)(v∗ ⊗ In)Φ(n+1),Ψ(n)

〉
.

This implies (15) and (16). It is easy to prove that D0 is a core of ã(v).

An analogue of the Segal field operator is defined by

φ̃(v) :=
1√
2
(ã(v) + ã∗(v)).

Let A be a non-negative self-adjoint operator on H with E0(A) = 0.
Then the Hamiltonian of the DG model is defined by

HDG := A⊗ I + I ⊗Hb + φ̃(v).

We call it the Dereziński-Gérard Hamiltonian. Here Hb is the second quan-
tization of ω introduce in Section 3. Let

H0 := A⊗ I + I ⊗Hb.

Throughout this section we assume the following conditions:

[DG.1] There is a Borel measurable function v(x, k) ∈ C, (x ∈ RN , k ∈ Rd),
such that

(vf)(x, k) = v(x, k)f(x), f ∈ L2(Rd).

18



We need also the following assumption:

[DG.2]

ess.sup
x∈RN

∫

Rd

∣∣∣∣∣
v(x, k)√

ω(k)

∣∣∣∣∣
2

dk < ∞.

Proposition 4.3. Assume [DG.1] and [DG.2]. Then HDG is self-adjoint
with D(HDG) = D(H0), and essentially self-adjoint on any core of H0.

For a finite volume approximation, we introduce the following hypotheses:

[DG.3] There exists a nonnegative function ṽ ∈ L2(Rd) and function õ : R→
R, such that

ess.sup
x∈Rn

|v(x, k)− v(x, `)| ≤ ṽ(k)õ(|k − `|), a.e. k, ` ∈ Rd

lim
t↓0

õ(t) = 0.

[DG.4]

ess.sup
x∈Rn

∫

([−K,K]d)c
|v(x, k)|2dk = o(K0).

where

([−K, K]d)c := Rd \ (I × · · · × I), I := [−K,K]

and, o(t0) satisfies limt→0 o(t0) = 0.

Let m be defined by (3). Let

D :=
1
2

inf
0<ε′< ‖v‖

‖v/
√

ω‖2

(
ε′ +

1
ε′

)
. (17)

Here, v/
√

ω is a multiplication operator by the function v(x, k)/
√

ω(k)
from L2(RN ) to L2(RN )⊗L2(Rd). In the case m > 0, we can establish the
existence of a ground state of HDG:

Theorem 4.4. Let m > 0. Suppose that [DG.1]-[DG.4] and [H.4] hold, and
suppose

Σ(A)− ‖v‖D −E0(HDG) > 0.
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Then, HDG has purely discrete spectrum in

[E0(HDG), min{E0(HDG) + m,Σ(A)− ‖v‖D}).

In particular HDG has a ground state.

Remark. In the case where A has compact resolvent, this theorem has been
proved in［5］. A new aspect here is in that A does not necessarily have
compact resolvent. Also our method is different from that in［5］.

4.1 Proof of Proposition 4.3

Lemma 4.5. Let M(x) = (
∫
Rd |v(x, k)|2dk)1/2, x ∈ RN and M : L2(RN )

→ L2(RN ) be a multiplication operator by the function M(x). Then

‖vf‖2 = ‖Mf‖2, f ∈ L2(RN ).

In particular, ‖v‖ = ‖M‖ = (ess.supx∈RN

∫
Rd |v(x, k)|2dk)1/2 hold.

Proof. By the Fubini’s theorem, we have

‖vf‖2 =
∫

Rd

dk

∫

RN

dx|v(x, k)|2|f(x)|2 =
∫

RN

(
|f(x)|2

∫

Rd

|v(x, k)|2dk

)
dx.

This means the result.

The adjoint v∗ has the following form:

Lemma 4.6. For all g ∈ H ⊗ L2(Rd),

(v∗g)(x) =
∫

Rd

v(x, k)∗g(x, k)dk, a.e. x ∈ Rd. (18)

Proof. For all f ∈ H, we have

〈g, vf〉 =
∫

dx

∫
dkg(x, k)∗v(x, k)f(x)

=
∫

dx
(∫

g(x, k)∗v(x, k)dk
)
f(x).

Since f is arbitrary, this proves (18).
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Lemma 4.7. ã(v) is

D(ã(v)) =
{

Ψ ∈ F
∣∣∣∣
∞∑

n=0

(n + 1)
∫

RN+dn

dxdk1 · · · dkn

∣∣∣∣
∫

Rd

dkv(k, x)∗Ψ(n+1)(x, k, k1, . . . , kn)
∣∣∣
2

< ∞
}

(ã(v)Ψ)(n)(x, k1, . . . , kn)

=
√

n + 1
∫

Rd

v(x, k)∗Ψ(n+1)(x, k, k1, . . . , kn), a.e. (Ψ ∈ D(ã(v)))

Proof. Using Lemma 4.6, we have

(v∗ ⊗ In)Ψ(n+1)(x, k1, . . . , kn) =
∫

Rd

v∗(x, k)Ψ(n+1)(x, k, k1, . . . , kn)dk.

(19)
This is invariant for all permutations of k1, . . . , kn. Therefore, using Propo-
sition 4.2, we get

(ã(v)Ψ)(n)(x, k1, . . . , kn) =
√

n + 1
∫

Rd

v(x, k)∗Ψ(n+1)(x, k, k1, . . . , kn)dk.

Lemma 4.8. Suppose that [DG.1] and [DG.2] hold. Then, D(ã(v)) ⊃
D(I ⊗H

1/2
b ) and

‖ã(v)Φ‖ ≤ ‖v/
√

ω‖‖I ⊗H
1/2
b Φ‖, Φ ∈ D(I ⊗H

1/2
b ).

Proof. By(19), we have for all Φ ∈ D(ã(v))

‖(ã(v)Φ)(n)‖2 =(n + 1)
∫

Rdn+N

dxdk1 · · · dkn

∣∣∣
∫

Rd

√
ω(k)

× 1√
ω(k)

v(x, k)∗Φ(n+1)(x, k, k1, . . . , kn)dk
∣∣∣
2
.

Using the Schwarz inequality, one has
∣∣∣
∫

Rd

√
ω(k)

1√
ω(k)

v(x, k)∗Φ(n+1)(x, k, k1, . . . , kn)dk
∣∣∣
2

≤
∫

Rd

∣∣∣v(x, k)∗√
ω(k)

∣∣∣
2
dk ·

∫

Rd

ω(k)|Φ(n+1)(x, k, k1, . . . , kn)|2dk.
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Hence, for every Φ ∈ D0 ∩D(I ⊗H
1/2
b ), we have

‖(ã(v)Φ)(n)‖2

≤
(

ess.sup
x

∫

Rd

∣∣∣v(x, k)∗√
ω(k)

∣∣∣
2
dk

)
(n + 1)×

∫

Rdn+N

dxdk1 · · · dkndkω(k)|Φ(n+1)(x, k, k1, . . . , kn)|2

=

(
ess.sup

x

∫

Rd

∣∣∣v(x, k)∗√
ω(k)

∣∣∣
2
dk

)
×

∫

Rdn+N

dxdk1 · · · dkn+1

n+1∑

j=1

ω(kj)|Φ(n+1)(x, k1, . . . , kn+1)|2

=
∥∥∥ v√

ω

∥∥∥
∥∥(I ⊗H

1/2
b Φ)(n+1)

∥∥2
.

Therefore
‖ã(v)Φ‖ ≤

∥∥∥ v√
ω

∥∥∥
∥∥(I ⊗H

1/2
b Φ)

∥∥2
.

Since, D0∩D(I⊗H
1/2
b ) is a core of I⊗H

1/2
b , one can extend this inequality

to all Φ ∈ D(I ⊗H
1/2
b ), and D(I ⊗H

1/2
b ) ⊂ D(ã(v)) holds.

Lemma 4.9. On D0, ã(v) and ã∗(v) satisfy the following commutation
relation:

[ã(v), ã(v)∗] =
∫

Rd

|v(·, k)|2dk.

where the right hand side is a multiplication operator by the function : x 7→∫
Rd |v(x, k)|2dk.

Proof. Let Φ ∈ D0. By the definition of ã∗(v), and using Proposition 4.2,
we get

([ã∗(v), ã(v)]Φ)(n) =(ã(v)ã(v)∗Φ)(n) − (ã(v)∗ã(v)Φ)(n)

=
√

n + 1IH ⊗ Sn(v∗ ⊗ In)(ã(v)∗Φ)(n+1)

−√n(I ⊗ Sn)(v ⊗ In−1)(ã(v)Φ)(n−1).
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Hence, we have

([ã∗(v), ã(v)]Φ)(n)(x, k1, . . . , kn)

= (n + 1)
∫

Rd

v(x, k)∗(I ⊗ Sn+1(v ⊗ In−1)Φ(n))(x, k, k1, . . . , kn)dk

− n
1
n

n∑

j=1

v(x, kj)(v∗ ⊗ In−1Φ(n))(x, k1, . . . , k̂j , . . . , kn)

=
∫

Rd

dk v(x, k)∗
(
v(x, k)Φ(n)(x, k1, . . . , kn)

+
n∑

j=1

v(x, kj)Φ(n)(x, k, k1, . . . , k̂j , . . . , kn)
)

−
n∑

j=1

v(x, kj)
∫

Rd

dkv(x, k)∗Φ(n)(x, k, k1, . . . , k̂j , . . . , kn)

=
(∫

Rd

|v(x, k)|2
)

Φ(x, k1, . . . , kn).

Here ’̂’ indicates the omission of the object wearing the hat.

Lemma 4.10. Assume, [DG.1] and [DG.2]. Then D(I⊗H
1/2
b ) ⊂ D(ã∗(v))

and for all Φ ∈ D(I ⊗H
1/2
b ),

‖ã∗(v)Φ‖2 ≤ ‖v/
√

ω‖2‖I ⊗H
1/2
b Φ‖2 + ‖v‖2‖Φ‖2. (20)

Proof. For all Φ ∈ D0 ∩D(I ⊗H
1/2
b ), we have

‖ã∗(v)Φ‖2 = 〈Φ, ã(v)ã∗(v)Φ〉 = 〈Φ, ã∗(v)ã(v)Φ〉+
〈(∫

Rd

|v(·, k)|2
)

Φ, Φ
〉

≤ ‖ã(v)Φ‖2 + ‖v‖2‖Φ‖2.

Thus we can apply Lemma 4.8 to obtain the result.

Now we can prove Proposition 4.3:

Proof of Proposition 4.3. By Lemma 4.8 and 4.10, the operator φ̃(v) is
I⊗H

1/2
b -bounded. Hence φ̃(v) is infinitesimally small with respect to I⊗Hb.

Namely, for all ε > 0, there exists a constant cε > 0, such that,

‖φ̃(v)Φ‖ ≤ ε‖I ⊗HbΦ‖+ cε‖Φ‖, Φ ∈ D(I ⊗Hb).
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Since A ≥ 0, we have

‖φ̃(v)Φ‖ ≤ ε‖H0Φ‖+ c‖Φ‖, Φ ∈ D(H0).

Thus we can apply the Kato-Rellich theorem to obtain the conclusion of
Proposition 4.3.

4.2 Proof of Theorem 4.4

In this subsection we suppose that the assumption of Theorem 4.4 holds.
Let Fb,V, ωV , Hb,V, H0,V , FV , ΓV , χ`,V (k) be an object already defined
in Section 3, respectively. Suppose that χK is a characteristic function of
[−K, K].

For a parameter K > 0, we define vK ∈ B(H,H⊗ L2(Rd)) by

(vKf)(x, k) := χ[−K,K](k)v(x, k)f(x).

and vK,V ∈ B(H,H⊗ L2(Rd)) by

(vK,V f)(x, k) :=
∑

`∈ΓV ,|`i|<K
i=1,...,d

χ`,V (k)v(x, `)f(x).

Lemma 4.11. The following hold:

‖vK − vK,V ‖ → 0 (V →∞), ‖vK − v‖ → 0 (K →∞). (21)∥∥∥ vK√
ω
− vK,V√

ωV

∥∥∥ → 0 (V →∞),
∥∥∥ v√

ω
− vK√

ω

∥∥∥ → 0 (K →∞). (22)

Proof. By [DG.3] and [DG.4], we have

‖vK − vK,V ‖2 = ess.sup
x∈RN

∫

Rd

∣∣∣χK(k)v(x, k)−
∑
`∈ΓV
|`i|<K

v(x, `)χ`,V (k)
∣∣∣
2
dk

= ess.sup
x∈RN

∫

Rd

∑
`∈ΓV
|`i|<K

χ`,V (k)|v(x, k)− v(x, `)|2dk

≤ ess.sup
x∈RN

∫

Rd

∑
`∈ΓV
|`i|<K

χ`,V (k)|ṽ(k)|2õ(|k − `|)2dk

≤
∫

Rd

∑
`∈ΓV
|`i|<K

χ`,V (k)|ṽ(k)|2õ(|k − `|)2dk.
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It follows from the property of õ that for every ε > 0, there exists a constant
V0 > 0 such that, for all V > V0,

χ`,V (k)õ(|k − `|)2 ≤ εχ`,V (k).

Therefore,

‖vK − vK,V ‖2 ≤ ε

∫

Rd

∑
`∈ΓV
|`i|<K

χ`,V (k)|ṽ(k)|2dk = ε‖ṽ‖2
L2(Rd).

Hence the first one of (21) holds. The second one is a direct result of
condition [DG.4]：

‖vK − v‖2 = ess.sup
x

∫

Rd

|χK(k)− 1|2|v(x, k)|2dk

= ess.sup
x

∫

([−K,K]d)c
|v(x, k)|2dk = o(K0) → 0 (K →∞).

Using [H.4], one can easily check (22)．

We introduce two operators:

HDG(K) :=A⊗ I + I ⊗Hb + φ̃(vK),

HDG(K, V ) :=A⊗ I + I ⊗Hb,V + φ̃(vK,V ).

Lemma 4.12. (i) HDG(K) is self-adjoint with D(HDG(K)) = D(H0),
bounded from below, and essentially self-adjoint on any core of H0.

(ii) For sufficiently large V > 0, HDG(K,V ) is self-adjoint with domain
D(HDG(K, V )) = D(H0), bounded from below, and essentially self-
adjoint on any core of H0.

Proof. Similar to the proof of Proposition 4.3.

Lemma 4.13. For all z ∈ C\R,

lim
V→∞

‖(HDG(K,V )− z)−1 − (HDG(K)− z)−1‖ = 0,

lim
K→∞

‖(HDG(K)− z)−1 − (HDG − z)−1‖ = 0.

Proof. Similar to the proof of［2，Lemma 3.5］.
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Lemma 4.14. The operator HDG(K, V ) is reduced by FV .

Proof. We identify v(x, `) with multiplication operator by v(·, `). By abuse
of symbols, we denote χ`,V (·) by χ`,V (k). Then

(ã∗(v(x, `)χ`,V (k))Φ)(n) =
√

n(I ⊗ Sn)(v(x, `)χ`,V (k)⊗ I)Φ(n−1)

=
√

nv(x, `)Sn(χ`,V ⊗ Φ(n−1))

= χ(x, `)
√

nSn(χ`,V ⊗ Φ(n−1)).

Hence, we have

ã∗(v(x, `)χ`,V (k))Φ = v(x, `)⊗ a∗(χ`,V )Φ.

Therefore, we get

ã∗(vK,V ) =
∑
`∈ΓV
|`i|<K

v(·, `)⊗ a∗(χ`,V ). (23)

Hence, its adjoint is

ã(vK,V ) =
∑
`∈ΓV
|`i|<K

v(·, `)∗ ⊗ a(χ`,V ). (24)

This means that the operator HDG(K, V ) is a special case of the GSB
Hamiltonian(see［2］). Hence, by［2，Lemma 3.7］, HDG(K,V ) is reduced
by FV .

Lemma 4.15. HDG(K, V )dF⊥V ≥ E0(HDG(K, V )) + m

Proof. Similar to the proof of［2，Lemma 3.10］.

Lemma 4.16. For all Φ ∈ D(I ⊗H
1/2
b ), and for all ε′ > 0,

|〈Φ, φ̃(v)Φ〉| ≤ ε′

‖v‖
∥∥∥ v√

ω

∥∥∥
2
‖I ⊗H

1/2
b ‖2 +

‖v‖
2

(
ε′ +

1
ε′

)
‖Φ‖2.
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Proof. For all Φ ∈ D(I ⊗H
1/2
b ), ε′ > 0,

|〈Φ, φ̃(v)Φ〉| ≤ 1√
2

(
ε‖ã(v)Φ‖2 +

1
4ε
‖Φ‖2 + ε‖ã∗(v)Φ‖2 +

1
4ε
‖Φ‖2

)

≤ 1√
2

(
2ε

∥∥∥ v√
ω

∥∥∥
2
‖I ⊗H

1/2
b Φ‖2 + ε‖v‖2‖Φ‖2 +

1
2ε
‖Φ‖2

)

=
√

2ε
∥∥∥ v√

ω

∥∥∥
2
‖I ⊗H

1/2
b Φ‖2 +

‖v‖
2

(√
2ε‖v‖+

1√
2ε‖v‖

)
‖Φ‖2,

where we have used Lemma 4.8 and 4.10. Let
√

2ε‖v‖ =: ε′. Then, for all
ε′ > 0, we have

|〈Φ, φ̃(v)Φ〉| ≤ ε′

‖v‖
∥∥∥ v√

ω

∥∥∥
2
‖I ⊗H

1/2
b Φ‖2 +

‖v‖
2

(
ε′ +

1
ε′

)
‖Φ‖2.

Proof of Theorem 4.4. From (23) and (24), HDG(K,V ) is equal to the
special case of the GSB model. Therefore, HDG(K, V )dFV has the same
form with HDG(K, V ). Using Lemma 4.16 we have on D(H0) ∩ FV

HDG(K,V )

= A⊗ I + I ⊗Hb,V + φ̃(vK,V )

≥ A⊗ I + I ⊗Hb,V − ε′

‖vK,V ‖
∥∥∥ vK,V√

ωV

∥∥∥
2
I ⊗Hb,V − ‖vK,V ‖

2

(
ε′ +

1
ε′

)

= A⊗ I +
(

1− ε′

‖vK,V ‖
∥∥∥ vK,V√

ωV

∥∥∥
2
)

I ⊗Hb,V − ‖vK,V ‖
2

(
ε′ +

1
ε′

)
, (25)

where ε′ > 0 is an arbitrary constant. By Lemma 3.10, Hb,VdFb,V has
compact resolvent. Thus, for ε′ > 0 satisfying

1− ε′

‖vK,V ‖
∥∥∥ vK,V√

ωV

∥∥∥
2

> 0, (26)

the bottom of the essential spectrum of (25) is equal to

Σ(A)− ‖vk,V ‖
2

(
ε′ +

1
ε′

)
.
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Let, DK and DK,V be D with v replaced by vK , vK,V , respectively. It is
easy to see that

lim
K→∞

DK = D, lim
V→∞

DK,V = DK .

By Lemma 4.13, one has

lim
K→∞

E0(HDG(K)) = E0(HDG), lim
V→∞

E0(HDG(K, V )) = E0(DG(K)).

From the assumption of Theorem 4.4, for all K > 0, there exists a constant
V0 such that for V > V0,

Σ(A)− ‖vK,V ‖
2

DK,V − E0(HDG(K,V )) > 0.

By the definition of DK,V , for all K > 0 and V > V0, and for all ε′ which
satisfies (26), we have

Σ(A)− ‖vK,V ‖
2

(
ε′ +

1
ε′

)
> E0(HDG(K,V )).

Therefore, by Theorem 2.1, we have that HDG(K,V )dFV has purely dis-
crete spectrum in

[E0(HDG(K,V )), Σ(A)− ‖vK,V ‖DK,V ).

This fact and Lemma 4.15 mean that HDG(K, V ) has purely discrete spec-
trum in

[E0(HDG(K,V )),min{E0(HDG(K, V )) + m, Σ(A)− ‖vK,V ‖DK,V }).
Finally, we use Lemma 3.13 and Lemma 4.13, to conclude that HDG has
purely discrete spectrum in the interval

[
E0(HDG), min{E0(HDG) + m, Σ(A)− ‖v‖D})
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