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Associated actions and uniqueness of
cocyles

H BEA( Uk BE)

FEZEM (X,B,m) ICEATATHETHHEZ, LA LRAMHTRZVWIHER( = vT—
F) EHRTOPERESEG ., FEEROGHONAN—FR% I BRFROGEICHE
LLTBH., TLFEIFERL TWA( Krieger DEHE ), 7¥HIE, TV T—F & flow D[F
By 5 AHNFRTTHBI LAFMON TV S, UKL, Radon-Nikodym(R-N) T4 1
7V log 0L (z) ASHLLEYICED I, KRR, AEEE L TO flow( ass.flow) X, EMEH

dmT
dm

iC & AERZEM X xR OBEMBRASLSHEOZMIC, fow(z,u) € X xR — (z,u+t) € X xR
i L TELNAHERE flow ENTH 5,

ST, BEEZEATTHYRAMNLZBE( IBES)) 2FXTHAB. COHEIERN
I A7 VEAOERS T LWA, ZOLEDLH ICEBMETTHIBEEK f(z) EBo Th b,
FNHNERELESIE, FOXHICL T, ERER

(z,u) € X xR — (Tz,u+log (z)) e X xR

(z,u) e X xR = (Tz,u+ f(z)) e X xR

¥RA L, assflow BBONLDERFRRICL T flow SN E, TZTiX, THLTHEDL
5 flow DEIEAS, B f. RO ZR T2 EDL HICRETAPEHL MLV, &
it Wbif Krieger DEBED LB TH 5,

BE

A WA BE
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SUS 77 aBRBREDRF
N K

VTV IT Ay IBARICENT, SISV 1B RELIELLZIHRD
VDEDTHD, BRTIE. £T. S/ 0182 BNEDLSBETHRN
A%, XOFIZAWNTEMNLE.

1. o7V oT4v038BBOL T Vo740 vy IWARARERDI S,

2. ZHBE&LOR 1 XESER FICRLER) 2REXOVMERZHOD,

3. Euclid ZECHRENERZ S OBE EOME DIF o/ RO 2R (X
BAIC. BESKEBEROI VTV IT4voBNICEKYI TV o740 v O E
BAB, TOPT, —SZ B3 NHELEOZTHRIBEME. (KY—MKRIC,
ZZ TW\ARiemann 2HE&DOHIBBEICH LT, ENICERT S MBE2E. )

RICCNHDHT, ST/ DaBREREOERLGEDS TS V1 BAZHBE
DEEDHEFEHRD L, B, BESBELLTOEREZEZASEALRED
CEERE, BIC, RREAOEDHIREROVIGOBS. BUHLDIAUIL,
FHBABOERAEZSDT,. Morse i, Lysternik-Schnirelman category
ZRAVT, REOTHLOFREZB M. CHIIRIFERD Euler BHSOFFMEL Y
B,

COHULEREERIC, 5502189384 L T 0 Hamilton BEEDRZE
IC20WT® Arnold FREICODWTHEBETASATNSZLZNW DD

BN L. (Hamilton S RAHEEKROASZOERICDONTOERS.
SERETOBUMDIBE. Floer DH®E. Hamilton D "TxILF-—"

MINE VMBS D Chekanov DEEE) EIC, —RDIFEIC. Floer homology
ZHRWAHERTIZ. chain complex Z¥5RET. IERIF% A bubbling

M, "RRKRT"TERI B Z (D Floer homology Dig&. HIA (S E KA

Hamilton RDIBEIZIZ. bubbling (X"#EERXRIT1"OR|MTH D) ITKY.
HEOBEAERNBOEETIE2EARLTHOICASENWESEHI I LEHRBLE.
CHORETHS. ERIARD bubbling 2835 &(C&k Y. Floer homology
PEBIND-HOMERRZ,. F&. Kontsevich, Oh, KHDEEREHXBTHEL-T
WARZEBNLE, BROBET. ChBHRELZDKAICEIND LN
kMo,



77 v &SN INTERSECTION LOCAL TIME &#&BRERIZOVT

AL BlE (WNKRERFEREEER AR

77U iEE) (DEAR) PESBHEERETANENZE D Z LITOWTIE*
NRYIZEHEREDHDH LWVDOER, FOLIITERNHDONIFRAD - DEZ
HIERELEZDZLIZLT, RO—EOHERIZL Y 2T E 3RTDOHE LIS
TIIECREZRTHI LITEREKRL 2D, EEL 1 RTOBAIIEES E18EH
LIRBDTI I THBRTDHEESE2EZ TS,
EE

d RL7 7 U BB OEARIIHERE 1 TROZ L BRI T 5,

(1) d>25 DL EFEFRDHARV, (Kakutani 1944)

(2) d=4 DLERFREDLIRV, d=3 DL EXF_EANBHFEET S, (Dvoretzky,

Erdés & Kakutani 1950)

(3) d=2 DL ZFIHMEBRZEEDZERNBIFET S, (Dvoretzky, Erdos & Kaku-
tani 1954)

(4) d=3 DLIEF=ZERIFIFELR, (Dvoretzky, Erdés, Kakutani & Taylor
1957)

EITT7 7V ESDPRZ L ETCICERBS L RETIEREZE X 5, EiRFH
BROTHL LRI LWDTIEHR, {Bi}iso 277 7/ EB), 6, % Dirac D7 /4 B,
T={(st)eR?;0<s<t<1} LT

B(y,T) = f [T 6y(B: — B,)dtds

ERVe L &, HEREOEEZ 4(0,T) TRALTH SIECMEVTIIARVWES I,

IITiEd=22FY 2RITDLZITONVTERD I LITTHDEN Le Gall [6]
ICLVFER 1T H(0,T) = +oo £RBT EHBEHASNTVT, H7E L TH R
FEHITIA, ZORRETHETAHAVEHOTLE I DL—2DEXFHTith
2. B0, T) DELURERMTEZEZSZ L bHRALEVHETCHS B EL, X
{gn}2, % 8o @ mollifier &35 &, Varadhan [10] &> T

fj gn(By — B,)dtds — E [// gn(Bt — By)dtds

2 as. 2 L2 TRWRT S ERbhd, ZOEREE v(0,T) LB ZLIZTS, &
DL ZFROEBRHFATE B,

EHE (Le Gall [6])
T.={(s,t) eET;t—s>¢e} LB ERDBHBILT B, PFKIT L2 DERTH S,

I:fgﬁ(ﬂa TE) - E{ﬂ(os Te)] = 7(01 T)
lim A(y, T) — BBy, T)] = 7(0,T)



EiX Le Gall [6] 2L Y ¥(0,-) X (T,B(T)) LORIEL LTEETEHZ LD
N, Zhz77 7 EHO (renormalized) self-intersection local time & k&, Z
MUTIERD X 5 2R3 5 %

FH (Le Gall [7])
TORTEIVTN - TUH A - Tk — 35 n TN AOESE R, LT
BE

m (8 ip _ pR,) = —2nty(0,T)

n--»oo

DERIDER THILT 5.
Ik bo LHEBLT D LROEENBF/LND,

7 (Hamana [4])
T 2RFEIVTIN e FTUF L I x— I BB n ETICH X 5 ¥ p EFETHNEA
DfEEE QP L5k

(1’33") 27 QW) — EQWP)| = —4x%y(0,T)

n—roo

DERIDOFEBR THRILT 5.
FOEEIERS p ITHEFEL TOHRWI LI3IERITRRE,

BE MR

[1] A. Dvoretzky and P. Erdés, Some problems on random walk in space, Proc. Second Berkeley
Symp. Math. Statist. Probab., Berkeley, University of California Press, 1951, pp. 353-367.

[2] L. Flatto, The multiple range of two-dimensional recurrent walk, Ann. Probab. 4 (1976),
220-248.

[3] D. Geman and J. Horowitz, Occupation densities, Ann. Probab. 8 (1980), 1-67.

[4]) Y. Hamana The fluctuation result for the multiple point range of two dimensional recurrent
random walks, Ann. Probab. 25 (1997), 598-639.

[5] N.C. Jain and W.E. Pruitt, The range of random walk, Proc. Sixth Berkeley Symp. Math.
Statist. Probab., Berkeley, University of California Press, 1973, pp. 31-50.

[6] J.-F. Le Gall, Sur le temps local d’intersection du mouvement brounien plan et la méthode de
renormalisation de Varadhan, Séminaire de Probabilitiés XIX, Lecture Notes in Mathematics,
Vol. 1123, Springer-Verlag, 1985, pp. 314-331.

, Propriétés d’intersection des marches aléatoires I, Comm. Math. Phys. 104 (1986),

471-507.

, Sur la saucisse de Wiener les points multiple du mouvement brounien, Ann. Probab.
14 (1986), 1219-1244.

[9] F. Spitzer, Electrostatic capacity, heat flow, and Brounian motion, Z. Wahr. Verw. Geb. 3
(1964), 110-121.

[10] S.R.S. Varadhan, Appendiz to Euclidean quabtum field theory, In Local Quantum Theory. R.
Jost (ed), Academic Press.

7l

8]



{F Fﬂ \‘?f"i F M % 3,\ s A4 v REH o
L a2 Ew~ umw,
«T ¥ - s,

(v © ¢Ah).

c AR Mo LI 2 £ BM v EIR 21T 1AM Sns
@ v‘).l:»‘ii<: \:f\ﬂ%ﬁm
Cantir 48 44 29 Bowrbals 1 ¥-7 PPk 1 278 2 Ldn
Ly n»3 IXFE T BH ar n B 2303 =R M v
L EE wkn 3] v v (LA Lk, U 4o
T=KR/Z tlT. Tt =22+8 wed Z ¥t =77 320
12522 (k13 T oK BIZE T 5=22%F 453, Toik
i, o R ‘T/-r = RAz+ez) & £ 7% & ort
'%E ek 117 54, J&'\Zt i"’ a ?‘{’ﬁktk'& 71‘—7 3. Lo
ﬁi 12— TR L’jﬁ’ bo T& £ f?"( XY TLT A
a‘;‘mri*j; e 95T REL T Ta B HRE D
22 T/T ot cvrve%e . 2n 305109
>

27T < ot ko,

\ )\.\1

oyt

° 155 WA AEEE ¢ oKX b 1FLn il
—%‘i}% * + 2 vt WS T A l’%]'{?%”\d) £ Vh) 4

X =R vt c“-%\ 2 X o 1A -f?’f';-g:
Z t ALETREZ ot BETA v 13, 12 v ke
t’k(Al = { o IAl= No
1 (Al ¥ No
Yh T T, B,k - BPL e 3 0 TR | &
TR THI vz 3 LP('I,GB, ), 1€pgrve 2R Z
Aa 1793, 24, e Tl BT e v e 0 215y
T The Bl A BA L 3R 5P AL 21l

_7_



2 owlzx i #151% . co B w | v AL B A

Bz 12, 2% 3 %i—i\.’t -5 =« %L e g T
’Eﬂ (?T ‘VIE Ewx) EY) B A'i;g [T T TL‘LJ) o+

JEE T TS CHEIP A o 2 47[rs.I~- $Tevie oD 2344
‘z;.*h"f- /.Z —fi I S 4,c @ HE E Anmneg e/ el
z4 %g Sy o 2 7hel & 1T R REA] ERAFE

P = z
Lk B sz‘éék‘ : 47 22 R T < AR D,

F 52wt 3 B T F pRiy (T, 530 lem+dsec
wEvrE I Ha T B E T GG A K@
S\Efe 2 A" v skt =26 B VG2 (F) =303 N Ca
Vi Ry /\L?LR) v ) TR 2 E il q_uiﬁafff%
Z?@ P ALY

K NG

(Sl-flmx)l Ax) = af (S“E""\"‘")
ve ~ 1

(S Lifax)ttg{z,)T = aﬁ% &) L-’fwlfdn_)(P./
L AL R e> ax o AETZ#E R L Y v
% ‘c.Tg.p‘F ﬁ?fi ﬂ‘l IOT LT 3. >4, Lo L2 49 e
‘?ﬁ’q A{EIER 0 fa 1T o &ALE Loma 1 :s.
7 bS e kvt 2 % —P@(rﬁs o fE3 Erb =z L0t 3&,&)}5"]
(% 3 TR kz-i\rr." ?“lv}o'r. T3¢ ¥(At-j4’+ 3(4‘4)'% VR
Koo B 33

o FEWM H TR BT {FAIE BT h 2w vzt e
434 22 F P v F < b sH{ v L{’Z’ T RPLY) e ) K DY
e e P L R i e WA men Newmuan THn S AR
Ciks, ¢ = % B gs e F YTt 4o,
IRt Commes- T kegak ! o ﬁf ;fu b2 54\73\)\“ Ly 240 3 73
_g—




8§52 v ¥ B3 SXzdad

43
FhEL9 (20 o+ E3 bLotlhobthnsd EEM 0B #Z5 7

mfo Aoy BHEI =L 3 E<psh B BRoAI B bhTul, LaL
%0 Bl 2B 0B 40 hELETTE 1 HAZ tus Bz i BE L Bhh3 ey
P55 3 cAETHE) BhtT Fror R EI3, L1£m

Lo BEER ndele- o ¥ B 23 o Delijme 12 83 EZH (129) 212 |
w3

T Copet 23 Wer vt kB2 R B RBE o () 0 5yt 3

R;rh )~ FAut $en SEEE L AEB T34 A2 553, ?ff‘zi:—.‘-'%réaz
T:&mwé%nzm wel 5 M §ad) KpZigr4£3c ’33[, ii)é@ﬂ kjs $az%
o dit kErz) BLo1EE 0 % Bo Fﬁ#z@m 13
= F 24k nas 20§ Gt K7 B< Yo 15 #—ﬂt::’ Eu
*0 - ;a%?ﬁ%aﬁﬂ {1 A4 *éﬁ'ﬂf%fa) :}cj (X% 3% 13 /E.%T.smj

S’!!:E:rr; Ap_qu K,‘(“;( L.(
aba= ba
7 ‘!’Jafufcdfkﬁz :
wmm;.

#1. B HB& REFBTRL) A Er. 2-teie—0] ﬁzf‘]ﬁhl?u's R . $B7 Lt

BRI B MN-wlymy EE) LY Tu3 g $3<. =hB Lizp N-Jzic
o e wur £5,
M2, Bramsd (primitve fom) 243 BERER0 ZES5 1 H#73,

3. g 0t B o bl ypace (Gowlly 23y Sty affpeBf) @ k1= K3 frmed grou
OHRTEELE T3, SO F 27l) dancmnant BL D T F64 8
4t LD, TeD (620 BL AuT mhtame T HY T3, R P
dn 3 AHD it T /s

% -Mzm. 2 8 K/w,
I’;f;‘% TP tba= =
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Minimal regularity solutions of nonlinear wave equations

HANS LINDBLAD

ABSTRACT.

Inspired by the need to understand the complex systems of non-linear wave
equations which arise in physics, there has recently been much interest in
proving existence and uniqueness for solutions of nonlinear wave equations
with low regularity initial data.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case these are sharp, in
the sense that with slightly more regularity one can prove local existence.

We also present join work with Georgiev and Sogge proving global existence
for a certain class of semi-linear wave equation. This result was a conjec-
ture of Strauss following an initial result of Fritz John. We develop weighted
Strichartz estimates whose proof uses techniques from harmonic analysis tak-
ing into account the symmetries of the wave equation.

1991 Mathematics Subject Classification: 35L70
Keywords and Phrases: Non-linear wave equations, hyperbolic equations.

Introduction.

Recently there-has been much interest in proving existence and uniqueness of
solutions of nonlinear wave equations with low regularity initial data. One reason
is that many equations from physics can be written as a system of nonlinear wave
equations with a conserved energy norm. If one can prove local existence and
uniqueness assuming only that the energy norm of initial data is bounded then
global existence and uniqueness follow. Therefore it is interesting to find the
minimal amount of regularity of the initial data needed to ensure local existence
for the typical nonlinear wave equations.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case the counterexamples are
sharp, in the sense that with slightly more regularity one can prove local existence.
It is natural to look for existence in Sobolev spaces, since the Sobolev norms are
more or less the only norms that are preserved for a linear wave equation. The
counterexamples involve constructing a solution that develops a singularity along
a characteristic for all positive times. In the quasi-linear case it also involves con-
trolling the geometry of the characteristic set. The norm is initially bounded but
becomes infinite for all positive times, contradicting the existence of a solution in
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2 HANS LINDBLAD

the Sobolev space. The counterexamples are half a derivative more regular than
what is predicted by a scaling argument. The scaling argument use the fact that
the equations are invariant under a scaling to obtain a sequence of solutions for
which initial data is bounded in an appropriate Sobolev norm. The counterexam-
ples were not widely expected since for several nonlinear wave equations one does
obtain local existence down to the regularity predicted by scaling.

On the other hand, the classical local existence theorems for nonlinear wave
equations are not sharp in the semi-linear case. These results were proved us-
ing just the energy inequality and Sobolev's embedding theorem. Recently they
were improved using space-time estimates for Fourier integral operators known as
Strichartz’ estimates, and generalizations of these. There are many recent results in
this field, for example work by Klainerman-Machedon[14,15], Lindblad-Sogge[23],
Grillakis(7] Ponce-Sideris[25] and Tataru. In particular, Klainerman-Machedon
proved that for equations satisfying the ‘null condition’ [13], one can go down to
the regularity predicted by the scaling argument mentioned above. In joint work
with Sogge we prove local existence with minimal regularity for a simple class of
model semi-linear wave equations. We should mention that there is a somewhat
parallel development for KdV and nonlinear Schrodinger equations, for example
in work by Bourgain and Kenig-Ponce-Vega.

Whereas the techniques of harmonic analysis were essential in improving the
local existence results, the Strichartz estimates are not the best possible global
estimates since they do not catch the right decay as time tends to infinity if the
initial data has compact support. The classical method introduced by Klainerman
[12] to prove global existence for small initial data is to use the energy method
with the vector fields coming from the invariances of the equation. However, this
method requires quite a lot of regularity of initial data and also the energy method
alone does not give-optimal estimates for the solution since it is an estimate for
derivatives. We will present joint work with Georgiev and Sogge giving better
global estimates using techniques from harmonic analysis taking into account the
invariances or symmetries of the wave equation. We obtain estimates with mixed
norms in the angular and spherical variables, with Sogge, and weighted Strichartz’
estimates with Georgiev and Sogge. Using these new estimates we prove that
a certain class of semi-linear wave equations have global existence in all space
dimensions. This was a conjecture by Strauss, following an initial result by John.

1. Counterexamples to local existence. In this section we study quasi-linear
wave equations and ask how regular the initial data must be to ensure that a local
solution exists. We present counterexamples to local existence for typical model
equations. Greater detail of the construction can be found in Lindblad [19-22]. In
the semi-linear case the counter examples are sharp in the sense that for initial
data with slightly more regularity a local solution exists. This was shown recently
in Klainerman-Machedon [14-15], Ponce-Sideris[25] and Lindblad-Sogge[23] using
space time estimates know as Strichartz’ estimates and refinements of these. How-
ever for quasi-linear equations it is still unknown what the optimal result is; there
is a gap between the counterexamples we present and a recent improvement on
the classical existence result by Tataru[41] and Bahouri-Chemin[2].
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MINIMAL REGULARITY SOLUTIONS OF NONLINEAR WAVE EQUATIONS 3

Consider the Cauchy problem for a quasi linear wave equation:
Ou = G(u,u',u"), (¢,z) € Sr=[0,T)xR",
u(0,z) = f(z), u(0,2) = g(),
where G is a smooth function which vanishes to second order at the origin and
is linear in the third variable «’'. (Here O =87 — Y1, 82..) Let H” denote the

homogeneous Sobolev space with norm ||f||;, = || |Dz|" f||z2 where |D.| = vV=A;
and set

(1.1)

(1.2) [|e(t, -)||§ = f (| ID:iT_lﬂg(t,z)Iz + ] | D2 | ult, z)]z) dz.
We want to find the smallest possible v such that

(1.3) (f,9) € H'(R") x H""'(R"),

(1.4) supp f Usuppg C {z;|z| < 2}

implies that we have a local distributional solution of (1.1) for some T' > 0, satis-
fying
(1.5) (u, Beu) € Cb[[O,T};.E'I"(lR“) x H""1(R")).

To avoid certain peculiarities concerning nonuniqueness we also require that «
is a proper solution:

Definition 1.1. We say that u is a proper solution of (1.1) if it is a distributional
solution and if in addition u is the weak limit of a sequence of smooth solutions
u, to (1.1) with data (¢, * f, ¢. * g), where ¢,(z) = (z/e)e~™ for some function
¢ satisfying ¢ € C5°, [ ¢dz = 1.

Even if one has smooth data and hence a smooth solution there might still be
another distributional solution which satisfies initial data in the space given by
the norm (1.2). In fact, u(t,z) = 2H(t — |z|)/t satisfies Ou = »* in-the sense of
distribution theory. If ¥ < 1/2 then ||u(¢, )|l — 0 when ¢ — 0 by homogeneity.
Since u(t,z) = 0 is another solution with the same data it follows that we have
non-uniqueness in the class (1.5) if ¥ < 1/2. Definition 1.1 picks out the smooth
solution if there is one.

Our main theorem is the following:

Theorem 1.2. Consider the problem in 3 space dimensions, n = 3, with
Ou = (D'u)D*'u, D= (0:, —8),
u(oi 3) = f(z)l ﬂg(ﬂ, 3) = g(z)l

where 0<I1<k<2, 1[=0,1. Lety=k. Then there are data (f,g) satisfying
(1.3)-(1.4), with || f|| g+ + |lgll gr--+ arbitrarily small, such that (1.6) does not have
any proper solution satisfying (1.5) in S7 = [0,T) x B® for any T > 0.

(1.6)

Remark 1.8. Tt follows from the proof of the theorem above that the problem is
ill-posed if 4 = k. In fact there exists a sequence of data f,, g. € C§°({z; |z| < 1})
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4 HANS LINDBLAD

with || f|l g+ + [|gell gv-1 — O such that if T is the largest number such that (1.6)
has a solution u, € C*°([0,T:) x R*), we have that either T, — 0 or else there are
numbers ¢, —+ 0 with 0 < t, < T, such that ||u.(t.,-)||y = oo. It also follows from
the proof of the Theorem that either there is no distributional solution satisfying
(1.5) with 4 = k or else we have non-uniqueness of solutions in (1.5).

Remark 1.4. By a simple scaling argument one gets a counterexample to well-
posedness, but it'has lower regularity than our counterexamples:
n—4

(1.7) ‘f(k-!-T.

Indeed, if u is a solution of (1.6) which blows up when ¢ = T then w(t,z) =
e*~2u(t/e,z/e) is a solution of the same equation with lifespan T. = €T and
llue(0,-)|l, = e¥+(m=3)/2=7||y(0,-)||, = O if 7 satisfies (1.7). By contrast, our
counterexamples are designed to concentrate in one direction, close to a character-
istic. It appears that our construction has a natural generalization to any number
of space dimensions n, with the initial data lying in H7,

(1.8) 7<k+“43.

Remark 1.5. In Klainerman-Machedon[14,15] it was proved that for semi-linear
wave equations satisfying the “null condition” one can in fact get local existence
for data having the regularity (1.7) predicted by the scaling argument.

Now, there is a unique way to write (1.6) in the form

3
(1.9) Y 7*(u)dz,0:,u = F(u, Du)
3yk=0
where zo = t and ¢"(u) are symmetric. In the semi-linear case ¢/ = m", where
m* is given by (1.10). We now define the notion of a domain of dependence.

Definition 1.6. Assume that @ C R, x R® is an open set equipped with a
Lorentzian metric gjx € C(f2) such that inverse g/* satisfies

m%=1 mi=-1,35>0

3
jk ik
(1.10) Z |g°* —m?*| < 1/2, where {mﬂ‘:[}, oAk

Jik=0

Then (2 is said to be a domain of dependence for the metric g;; if for every compact
subset K C ) there exists a function smooth ¢(z) such that the open set # =
{(¢,z); t < ¢(z)} satisfies

(1.11) HcCQ, KcH
and
3
(112) Y ¢*(tz)Nj(@)Ne(z) >0, if t=4¢(z), N(z)=(1,-V:¢(z)).
Jyk=0

Since a solution u to (1.6) gives rise to a unique metric g; we say that {0 is a
domain of dependence for the solution u if it is a domain of dependence for g;;.
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MINIMAL REGULARITY SOLUTIONS OF NONLINEAR WAVE EQUATIONS 5

Lemma 1.7. There is an open set @ C R, x R® and a solution u € C=(R) of
(1.6) such that Q is a domain of dependence and writing

(1.13) 0 = {z; (t,z) € n}l
we have
(1.14) f (05, - B)*ult,2)) dz =00, t>0, and
1t H
(1.15) S f (8] 5 u(t,2))’ dz < 0o, when t=0.
|T=k ¥ e

Furthermore in the quasi linear case, k — 1 = 2, the norms ||D'ul|p=(q) can be
chosen to be arbitrarily small.

Proof of Theorem 1.2. From Lemmas 1.7 we get a solution u in a domain of
dependence  which has initial data fy(z) = u(0,2) € H*() and go(z) =
u(0,z) € H*1(f)). We can extend fp and go to f € H*(R®) and g € H* ' (R?),
see Stein[35]. If u is a proper solution of (1.6) in Sy = [0, 7] xR then by Definition
1.1, u is the distributional limit of a sequence of smooth solutions % with data
(@< * f, e * g). Hence the theorem follows from Lemma 1.7 and Lemma 1.8 below.

Lemma 1.8. Suppose u € C*(Q) is a solution to (1.6) where  is a domain of
dependence. In the quasi linear case, k — 1l = 2, assume also that |1 D ul| ey < 8.
Suppose also that u, € C®(St), where Sy = [0,T) x R®, and u, are solutions
of (1.6) with data (f,9.) where f, = f and g. = g in C™(Kp) for all compact
subsets of Ko of Qo = {z;(0,z) € R}. Then u, — u in 2N Sr.

The proof of Lemma 1.8 is standard. Note however, that it is essential that € is
a domain of dependence for Lemma 1.8 to be true; one needs exactly the condition
(1.12) in order to be able to use the energy method.

Let us now briefly describe how to construct of the solution  and the domain of
dependence Q in Lemma 1.7. First we find a solution (¢, ;) for the correspond-
ing equation in one space dimension, (1.16), which develops a certain singularity
along a non timelike curve z; = p(t), with x(0) = 0. Then u(t,z) = wi(¢,z;) is
also a solution of (1.8) in the set {(t,z); z; > p(t)}. Although this is a domain of
dependence, the singularity is too strong for the integral in (1.15) to be finite when
t = 0. Therefore we will construct a smaller domain of dependence, 2, satisfying
(1.20), such that the curve z; = pu(t), 22 = z3 = 0, still lies on 9. Because we
have blow-up for the nonlinear equations, the singularity that develops for positive
t > 0 is stronger than the singularity of initial data, and this makes the integral
(1.14) infinite for ¢ > 0, although it was finite at ¢ = 0.

One can find rather explicit solution formulas for the one dimensional equations;

(1.16) (8z, — B:)(Be + Bz, )us (t, 21) + (8zy — ) ur (t, 1) (82, — Be)* us (8, 21) = 0.
By choosing particular initial data

ul(oaxl) = X"(zl): 6l‘l""1(0| xl) - 0! ifk=0,1=0,
(1.17) uwi(0,z1) = —X'(z),  Bew1(0,z1) = x"(z1) + x'(z1)%, fk=11=0,
Uy (01 31) — 0: at“l(ot 2:1) = _x(a-j,] (21), if k 22,

DOCUMENTA MATHEMATICA + EXTRA VoLuMe ICM 1998 - 1-1000



6 HANS LINDBLAD
where
2y
(1.18) x(z1) = f —¢|log|s/4||*ds, 0<a<1/2,6>0
0

we get a solution
(1.19) u; € C=(N'), where Q' ={(t,z1);ult) <z <2-t}CR. xR

for some function p(¢) with 4(0) = 0, such that ' is a domain of dependence
and such that u;(¢,z,) has a singularity along z; = p(t). One sees this from
the solution formulas which can be found in Lindblad(21,22]. Essentially what is
happening is that the initial data (1.17)-(1.18) has a singularity when 2y = 0. For
the linear equation, usy — 4z,z, = 0, the singularity would just have propagated
along a characteristic, however the nonlinearity causes the solution to increase
and this strengthens the singularity for £ > 0. (This is the same phenomena that
causes blow-up for smooth initial data.)

Define Q@ & Ry X R® to be the largest domain of dependence for the metric
obtained from the solution u(t,z) = u; (¢,z,) (see (1.21)), such that

(1200 QCO' xR, Q={z;(0,z) € N} =By = {z;|z - (1,0,0)| < 1}.

(It follows from Definition 1.6 that the union and intersection of a finite number
of domains of dependence is a domain of dependence so indeed a maximal domain
exists.) It follows that u(t,z) = wu,(¢,z,) is a solution of (1.6) in N satisfying
(1.17) in §2p. The initial data (1.17)-(1.18) was chosen so that (1.15) just is finite
when ¢ = 0. In the semi-linear case the metric ¢'* is just m’* so Q' is a domain
of dependence if and only if 4/'(¢) > 1 and it follows that Q = Q' x R? N A, where
A = {(t,z);|z—(1,0,0)|+¢ < 1}. In thequasi-linearr case this is more complicated
and one must study the bicharacteristics for the operator

(1.21)
3

33—23;. —V(t-t—x;,zl-t)(azt—-ag)"’, with V(t+z1,31 -t) = (B,t—ag)‘u;(t, z).

i=1
Let €2; be as in (1.13) and
(1.22)  Si(z1) = {(22,23) € B?; (21,22,23) € ?u}, ar(z1) = - )d-'"z dzj.
1=y

With this notation the integral in (1.14) becomes

2—t
(1.23) [ e (@ = 20 (e 2)* de
u(t

The proof that this integral is infinite consists of estimating the two factors in
the integrand from below, close to z; = p(t). In the semi-linear case Si(z;) =
{(z2,z3); (21 = 1)® + 73 + 2% < (1 = t)?} s0 then ay(z;) = w(2 =t — ;) (z1 — ).
However, in the quasi-linear case, estimating a(z)) from below requires a detailed
analysis of the characteristic set 99, see Lindblad[22].
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MINIMAL REGULARITY SOLUTIONS OF NONLINEAR WAVE EQUATIONS 7

2. Global Existence

We will present sharp global existence theorems in all dimensions for small-
amplitude wave equations with power-type nonlinearities. For a given “power”
p > 1, we shall consider nonlinear terms F, satisfying

(2.1) | (8/8u)’ Fy(u) | < CjlufP~?, j=0,2.

The model case, of course, is Fp(u) = |uf?. If Ry'™ = Ry x R, and if f,g €
C$°(R™) are fixed, we shall consider Cauchy problems of the form
{ Ou = Fy(u), (t,z)€ R

u(0,z) = ef(z), 8:u(0,z) = eg(z),
where 00 = 8%/8t* — A.. Our goal is to find, for a given n, the range of powers
for which one always has a global weak solution of (2.2) if € > 0 is small enough.

In 1979, John [10] showed that for n = 3, (2.2) has global solutions if p > 1+v/2
and £ > 0 is small. He also showed that when p < 1++v/2 and F,(u) = |u|P there
is blow-up for most small initial data. It was shown sometime later by Schaeffer
[27] that there is blowup also for p = 1+ /2. After Johns work, Strauss made
the insightful conjecture in [37] that when n > 2, global solutions of (2.2) should
always exist if ¢ is small and p is greater than a critical power p that satisfy
(2.3) (n-1)p2—(n+1)p.—2=0, p.>2.

This conjecture was shortly verified when n = 2 by Glassey [6]. John’s blowup
results were then extended by Sideris [29], showing that for all n there can be
blowup for arbitrarily small data if p < p. In the other direction, Zhou [42]
showed that when n = 4, in which case p. = 2, there is always global existence for
small data if p > p.. This result was extended to dimensions n < 8 in Lindblad
and Sogge [24]. Here it was also shown that, under the assumption of spherical
symmetry, for arbitrary n > 3 global solutions of (2.2) exist if p > p and ¢ is small
enough. For odd spatial dimensions, the last result was obtained independently
by Kubo [16]. The conjecture was finally proved in all dimensions by Georgiev-
Lindblad-Sogge[5]. Here we will present that argument.

We shall prove Strauss conjecture using certain “weighted Strichartz estimates”
for the solution of the linear inhomogeneous wave equation

{ Duw(t,z) = F(t,z), (tz)€Ry™
0= w(or ] = afw(o: ')‘
This idea was initiated by Georgiev [4]. We remark that we only have to consider
powers smaller than the conformal power pont = (n + 3)/(n — 1) since it was
already known that there is global existence for larger powers. See, e.g., [23].

Let us, however, first recall the inequality for (2.6), that John [10] used;

"t(t - ]3|)p_2w"5wm‘+"") < Cp"tp(t - !zl)p{p—ﬂF"Lu(ni"”p

if F(t,z)=0,¢t—|z|<1,and 14+v2<p<3.
Unfortunately, no such pointwise estimate can hold in higher dimensions due to
the fact that fundamental solutions for (J are no longer measures when n > 4.
Despite this, it turns out that certain estimates involving simpler weights which
are invariant under Lorentz rotations (when R =0 );

(2.2)

(2.6)
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8 HANS LINDBLAD

Theorem 2.1. Suppose that n > 2 and that w solves the linear inhomogeneous
wave equation (2.6) where F(t,z) =0 if|z| >t+R—1, R>0. Then

27) It + R)* = |el*) " wllpomrtny < Conll((t + R)? — |2|*)F lzerce-n (ritnys
provided that 2 < ¢ < 2(n+1)/(n - 1) and
(2.8) T <n(l/2-1/q) —1/2, and 1 > 1/q.
One should see (2.7) as a weighted version of Strichartz [38,39] estimate;
(2-9) "w||:,3{n+1mn—n{nf‘_+“) < C"F“L:{ﬂ!luni—al{gf")-
If one interpolates between this inequality and (2.7), one finds that the latter
holds for a larger range of weights (see also our remarks for the radial case below).
However, for the sake of simplicity, we have only stated the ones that we will use.
Let us now give the simple argument showing how our inequalities imply the
proof of Strauss conjecture. Let u_y = 0, and for m = 0,1,2,3,... let u, be
defined recursively by requiring

{ Oum = Fy(tum-1)
ﬂm(ﬂ, 3) = Ef(zjg atum(os .’C) = Eg(z)!

where f,g € C§°(R"™) vanishing outside the ball of radius R — 1 centered at the
origin are fixed. Then if p. < p < (n + 3)/(n — 1), fix v satisfying

1/p(p+1) <y<((n=1)p-(n+1))/2(p+1)
and set
(2.10) Am = [|((t+ B)* = |2]*) tm]| Lo 14y

Because of the support assumptions on the data, domain of dependence con-
siderations imply that u,,, and hence Fp(un), must vanish if [z| > ¢t + R— 1. It
is also standard that the solution uy of the free wave equation Ouy = 0 with the
above data satisfies ug = O(g(1 +t)~("~1/2(1 4 |t — |z||)~("~1)/2). Using this one
finds that Ag = Cpe. Since we are assuming that

v<n(1/2-1/q) - 1/2, and py > 1/q, g=p+1,
if we apply (2.7) to the equation O(um — %g) = Fy(um—1) we therefore obtain

(¢ + R)? = |&f*) "um|| o+
< It + B)? = |2*)"uollze+s + Cull((¢ + R)? = |21*)7 [um—1 7| Lotarve
= [I((t + R)* = |2*)"wollzs+s + Cull((¢ + B)* — |2*) "um-1[1Zpss,
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MINIMAL REGULARITY SOLUTIONS OF NONLINEAR WAVE EQUATIONS 9

i.e. Apn < Ag+C1 AP, _,. From this we can inductively deduce that A, < 240, for
all m, if Ag = Coe is so small that C;(240)? < Ag. Similarly; we can get bounds
for differences showing that {u.} is a Cauchy sequence in the space associated
with the norm (2.10), so the limit exists and satisfies (2.2).

The proof of Theorem 2.1 uses a decomposition into regions, where the weights
(¢ — |z|?) are essentially constant, together with the invariance of the norms
and the equation under Lorentz transformations. In each case we get the desired
estimate by using analytic interpolation, Stein[34], between an L' — L* and an
L? - L? estimate with weights, for the Fourier integral operators associated with
the wave equation. See [5] for the complete proof and further references. In (5]
we also prove a stronger scale invariant weighted Strichartz estimate under the
assumption of radial symmetry. This assumption was later removed by Tataru[40]

Theorem 2.2. Let n be odd and assume that F is spherically symmetric and
supported in the forward light cone {(t,z) € R'*" : |z| < t}. Then if w solves
(2.6) and if2< g<2(n+1)/(n-1)

(211) [ = ") " wllgemirny < Coll(E* = [2*)P Fll garia-n sy,
if B<1/qg, a+B+v=2/q, where y=(n-1)(1/2-1/q).
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Elliptic and parabolic problems with moving boundaries

Joachim Escher, University of Kassel

In a lecture series of three sessions we discuss the following topics:

a) Nonlinear evolution equation of parabolic type
Many concrete moving boundary problems lead to abstract evolution equations of
the form

(1) u'(t) + ®(u(t)) =0, u(0) =

in some Banach space E, with some nonlinear operator ® : V' C Ey — Eg and a
given initial data ug € Ep. If problem (1) is of parabolic type in the sense that we
can associate to (1) an appropriate linearized problem involving the generator of an
analytic semigroup on Fj, then a satisfactory solution theory for (1) is available.
We briefly discuss in the quasi-linear case the results of H. Amann and in the fully
nonlinear case the results of S. Angenent and G. Da Prato, P. Grisvard.

b) Flow through porous media

The flow of a quasi-incompressible Newtonian fluid through a porous medium is
governed by an elliptic (in case of a rigid porous medium) and by a parabolic
(in case of deformable porous medium) equation for the corresponding velocity
potential, complemented with two conditions on the free boundary. It is shown
that these problems can be formulated and solved as a fully nonlinear evolution
equations of type (1).

c) Geometric evolution problems driven by mean curvature
Here we consider evolution equations for a family of hypersurfaces I' = {I'(t); t > 0}
governed by the evolution law

(2) V = F(H), I'(0) = T,

where V denotes the normal velocity of I and H(t) stands for the mean curvature
of I'. Moreover F is a given function and I’y a given initial data. We show that in

the case _
H — H (averaged mean curvature flow)

F(H) = Ar(l1—Ar)~'H (intermediate law)
ArH (surface diffusion flow)
problem (2) is a quasi-linear evolution equation of type (1). Moreover, in the

above cases the area of the hypersurface is shrinking during the evolution, while
the volume of the inclosed domain is preserved.
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The Free Boundary of a Thermal Wave in a Strongly
Absorbing Medium

G. S. Weiss
Tokyo Institute of Technology, O-okayama 2-12-1,
Meguro-ku, Tokyo-to, 152 Japan

In dimension n > 2 we obtain regularity of the free boundary d{u > 0} of non-negative solutions
of the heat equation with strong absorption

du — Au = —-1+T

u?, y€(0,1). (1)

Our approach is motivated by methods in Liapunov’s stability theory and by results concerning
the Plateau problem.

Equation (1) has been used in L. K. Martinson [?] and in Ph. Rosenan, S. Kamin [?] to
describe the transport of thermal energy in plasma. Alternatively it has been derived as the
asymptotic limit of a system proposed by C. Bandle and I. Stakgold in [?] as a simple model
for a reaction diffusion process.

This article contains a regularity result for 9{u > 0} in higher dimensions: suppose that u is
a solution of the Cauchy problem and that the initial data u” satisfy 0 < «* € C27(R") and
(«®)"7Au" € L=(R") : then d{u > 0} can be decomposed into a regular part R = {(t,z) €
((0,20) x R") N @{u > 0} : at least one blow-up limit of u at (t,x) is a half-plane solution }
such that d{u > 0} is locally in an open neighborhood of R a C#'*i.surface, and a singular
part £ which is ignored by spatial integration by parts in {u > 0}, i.e.

/ alc =/ CV,‘H"_I =/ CV;'H"_I
{ult)>0} Drea {ult)>0} ROfs=t}

for a.e. t € (0,20) and every ¢ € Cy"' (R") : here the reduced boundary dyeq{u(t) > 0} is the
set of free boundary points at which the outer normal of H. Federer [?, 4.5.5] exists. Let us
remark that while T is in the just mentioned sense a set of less relevance, it is in general not a
set of small measure: the steady-state solution (<32|x|) ™ eatisfies R = 0, =3{u>0}and
H"='(Z) > 0. Even worse, when perturbing the stationary equation to Au = g u7 where g is
a strictly positive C'*-function, we expect (in analogy to the counter-example by D. Schaeffer
in [?, 2.9] for the case 7 = 0) the appearance of free houndaries such that the relative boundary
of R is a set of positive n — 1-dimensional Hausdorff measure.

The method: we prove an “epiperimetric inequality”™ for the class of half-plane solutions H =
{ — (L}—'—T max(.r - V.U))‘T:" : v € 0B,(0)} and the boundary-adjusted energy

;’\I(r):/ (I‘""'I-é + max(e,0)'*) = —— v dH"
By(0) 1 -7 JoByo



if ¢ is any non-negative homogeneous function of degree l—f—; which is close enough to the some
h € H, then there exists a function v with the same boundary values on dB,(0) but with a
lower energy value

M(r) < (1=n8)M(c) + sM(h) . (2)

In hommage to the inequality derived by E. R. Reifenberg for the perimeter, we call (2) by
abuse of name “epiperimetric inequality.” Our proof however owes nothing to the proof of the
epiperimetric inequality in E. R. Reifenberg (?] or that in J. E. Taylor [?] as it works completely
by indirect methods.

The boundary-adjusted energy plays here the role of the Liapunov function, i.e. its scaled
version satisfies a monotonicity formula: defining

Ji+a)

Q{lnlln}(r) — r_"_ i ] (lv'l’ll'{fl‘h'”‘J + max["(t!)« ')! 0)I+1)
Belza)

= L e w(ty,-)* dH"™',
1 -7y DB (o)
the function r = Cr? + &, .,)(r) is non-decreasing for any (to,79) € d{u > 0} at which
|8¢(u'—7)| is Holder-continnons .
The epiperimetric inequality (2) leads now to the differential inequality

; 1 ;
max(®;, 20)(r) = Bieq,20)(0+), Cor”)' > -'\; max(®y, o) (1) = Rieg.ze) (0+), Car”)

which in turn implies Holder-continuity of r — ®(,, ,,)(r) and a convergence estimate for

ullo.zodr) v the unique blow-up limit ug .

This reminds very much of the use of Liapunov functions in the theory of linearized stability and
of Liapunov’s direct approach (compare e.g. to Theorem 18.7 and Remark 18.9 in H. Amann
[?]). The convergence result itself on the other hand is reminiscent of a result by J. K. Hale and
P. Massatt for differentiable gradient systems. by which one obtains single-point w-limit sets in
the case that the multiplicity of the eigenvalue 0 at critical points is 1 ( [?, Theorem 4.3]). Let
us however point out that our method also works for the obstacle problem where the second
variation of the energy vanishes in more than one direction and that our energy M is not of
class C? , so a linearization regardless of the direction is not possible. This also means that we
cannot apply the center manifold theorem and test the local center manifold for coincidence
with the invariant manifold H in order to obtain our result.

Finally we derive mainly by topological methods the relative openness and C* '+ regularity
of the set R .



I'-Limit for the Extended
Fisher-Kolmogorov equation

Danielle Hilhorst
Analyse Numérique et EDP,
Université de Paris-Sud (Bat 425),
F-91405 Orsay Cedex, France, email: Danielle.Hilhorst@math.u-psud.fr

Lambert A. Peletier
Mathematical Institute, Leiden University,
NL-2300 RA Leiden, The Netherlands, email: peletier@wi.leidenuniv.nl
Reiner Schatzle !

Mathematisches Institut der Albert-Ludwigs-Universitat Freiburg, Eckerstrafie 1,
D-79104 Freiburg, Germany, email: schaetz@mathematik.uni-freiburg.de

Abstract: We consider the Extended Fisher-Kolmogorov equation
2 2 [

Gu + e“yA u~Au+;§F[u)=0 (1)
where F(t) := %(tz-l):! is a double-well potential and v > 0. For v =0 this
is the ordinary Allen-Cahn equation. The equation for the stationary waves is
the ordinary differential equation

U™ —~U" + F'(U) =0 (2)
with appropriate boundary conditions. In this paper, we present estimates on
the second derivatives of solutions of (2) which enable to prove that bumps of

these solutions have to have a minimal size, hence cannot accumulate.
As main result, we prove that the area functional is the I'—Limit of

3
£7(u) = f €Y\ Aup + E|Vul? + 1F(u)
2 2 €
2
which is a Ljapunov functional of (1).

Keywords: fourth order equation, Gamma convergence, kinks.

AMS Subject Classification: 35 J 20, 49 J 45, 35 K 22, 35 G 30.

!The work of R. Schitzle was supported by the ESF.
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Phase transformation, phase field equations and
curvature dependent interface motion:
—models, analysis and computation, part [ and part II

C. M. Elliott
School of Mathematical Sciences
University of Sussex, Brighton BN1 9QM
United Kingdom

The subjects of these lectures were (I) Phase transformations and curvature
dependent interface motion and (II) Vortex density mean field models for type II

superconductors.

In (I) we discussed the existence and stability of forced curvature flow for graphs
in the plane, phase field equations including double obstacle potentials and degen-
erate mobility functions for the Cahn-Hilliard equations and sharp interface limit
including motion by mean curvatures and surface diffusion which is motion by the
surface Laplacian.

In (II) we discussed an averaged model for the motion of vortices in Type II
superconductors on the macroscopic scale. These lead to a first order system (or
degenerate parabolic) for a vorticity density coupled to an elliptic system for the
magnetic field. Existence and uniqueness results were presented for two dimensional
reduction in the cases of a long cylindrical domain in either a parallel or transverse
applied magnetic field. The resulting systems are a scaler elliptic equation coupled
to either a conservation law or a Hamilton-Jacobi equation.



Sapporo, 17.09.1998

ABSTRACT

A UNIFORM CONSTRUCTION METHOD FOR ALL FINITE
SPORADIC SIMPLE GROUPS

GERHARD O. MICHLER
INSTITUTE FOR EXPERIMENTAL MATHEMATICS
UNIVERSITY OF ESSEN, GERMANY

In their recent book “The classification of the finite simple groups, No. 17,
p. 45 Gorenstein, Lyons and Solomon write: “The most serious problem (of
the revision project) concerns the sporadic groups, whose development of their
properties form a very elaborate chapter of simple group theory, spread across a
large number of journal articles. Moreover, some of the results are unpublished.”
Furthermore, the 26 sporadic simple groups have been constructed so far by
many different adhoc construction methods.

Recently H. Gollan [3] has given a new computer construction of Lyons’ simple
group Ly which is independent of Sims’ unpublished work. In [4] the speaker
has generalized Gollan’s methods in such a way that any sporadic simple group
G characterized by the centralizer H = Cg(u) of some involution u can be
constructed by the same procedure, provided sufficiently large computers are
available.

This approach to the revision project of the sporadic simple groups is mathe-
matically very easy. It requires the performance of many calculations with dense
matrices over small finite fields or large permutations. However, these compu-
tations are easily described and will be documented professionally.

Construction Method

Let u be an involution of the finite group H which is assumed to be isomorphic
to the centralizer Cg(u;) of an involution u; of some finite simple group G. Let
F = GF(q) be a finite field of odd characteristic p > 0. Let

@: H — GLn(q)

“be a faithful semi-simple n-dimensional representation of H over F' such that
the eigenspace V; of u belonging to the eigenvalue 1 is a proper F H-submodule
of V = F".

Suppose that it has been proved that there is an isomorphism

H := o(H) = Cg(uy).

Then there exists a simple subgroup G of G L, (g) with involution # = ¢(u) and
centralizer Cg(@) = H which is isomorphic to G, if all the conditions of the
following steps can be verified:
(1) Construct a subgroup M in GL,(q) such that D = M N H is a proper
subgroup of H for which the restriction Vipisa semi-simple FD-module.
1



Then find a matrix

t € CgL,(q)(H) \ CoL,(q)(D)/CqLn(q)(M)
such that V is a simple FG-module for the subgroup G = (H,t=1Mt) of
GLn(q). i
(2) Check that H < Cg(u).
(3) Applying the Cooperman-Finkelstein-York-Tselman algorithm [1] and H.
Gollan’s [3] double coset trick to the FG-module V and its restriction Via
one obtains a permutation representation

7 : G — S, with stabilizer H.

Check that H = H. If so, then |G| = |H|m.

(4) Compute the number f = |Fix(%)| of fixed points of the permutation ().
Determine a complete set of representatives #; = i, Z3,. .., % of all invo-
lutions Z of H with trace ir(Z) = tr(@) such that for each i = 1,2,...,r
the following conditions hold:

(a) IFix(zH)| =F y
(b) There is a coset HZ; € Fix(z;) with (#)** = Z;. Then check that

F=1+ 1+ +|34).

If so, then Ci(@) = H.
(5) Show that G is a simple group.

In order to show that this approach of the revision project of the sporadic
simple groups is promising we outline in the lecture the recent existence proof of
the large Janko group J4 given by Cooperman, Lempken, Weller and the speaker

2].
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ABSTRACT

We propose an optimal control strategy for carrier mediated transport across biological
membranes in an attempt to evaluate the functions quantitatively and to create an artificial
membrane. The transport system was described by the substrate, unloaded and loaded forms
of the carrier where the binding sites were facing to  the outside and inside of the
membrane with the corresponding control inputs. The temporal behavior of the transport
was expressed by alinear four-states model employing the conservation law. We assigned
the state variables for the concentrations of the loaded and unloaded carriers on both sides of
the unit membrane areca. Two control inputs were set on each individual state variable so
as to describe the producing and converting processes. The cost function to evaluate the
performance of the transport involved the temporal static concentration changes in the loaded
and unloaded carriers and the control inputs for driving the system.  Minimizing this cost
function resulted in a smooth and non wasteful transport with the least energy consumption.
The relative magnitude of minimizing these quantities was characterized by the weighting
coefficients and we defined that the optimal transport state is achieved when this cost
function has been minimized. We utilized reported experimental data of Na/glucose cotransport
for the initial condition and rate constants. Since transport by the carrier is a recycling
process, we set a rigorous terminal condition as the target state for the optimally controlled
transport. The optimized system equations and co-state equations were solved numerically as
a multiple points boundary value problem.

The influences of a given weighting coefficient were observed not only on the time course
of its proper variable but extended to those of other variables. The changes in the time course
could be explained by the compensatory action of the optimized control input so as to prevent
excessive increase or decrease of the materials. Finally we showed the successful simulation
of experimental data by the present method. The present method is available for evaluating the

function of biological transport and for creating an artificial membrane.

key words ; Biological Membrane, Carrier, Substrate, Optimal Control, Performance Function.



Crystal base of arbitrary rank 2 cases and
Chebyshev polynomials

P E &S ERRERTEREER
I i1 finite index set & L . (ai ;)i jer t* symmetrizable GCM. g (& £ IfIBEL
Tk ¥ % Kac-Moody Lie algebra, {a;}ier 1d simple roots, {h;}ics 13 coroots
EL, aij = (hi,a;) Z#l72TD LT B, P i weight lattice P* |3 dual weight

lattice & ¥ 50 BB U,(g) 12 e, fili € I), ¢"(h € P*) TEREN 5 Q(q)-
algebra £ T5, TZT, AD X I % 3HED crystal (base) EEX 5 !

(i) A€ PISHL T, Ry :={ra} idRTEHINS 1 KITD crystal L35 .
wt(ra) = A, €i(ra) = —(hi, A), @i(ra) =0, &(ra) = fi(ra) = 0.
(ii) U; (g) @ crystal base (L(ox), B(c0))o

(iii) dominant integral weight A =&t L TEE# highest weight module V(X)) @
crystal base (L(A), B()))o

KO F&M i’z ¥ index O BRF o = - - ik, ip1, - i2,01 & fix THo
ik # k41 and §{k|ix =i} = oo for any i € I.
KD crystal @ strict embedding 2XfFHEY 5 .
¥, : B(oo) < Z% := {(-+ -, @k, - -,02,01)|ax € Z and a; =0 for k > 0},

B(\) @ highest weight vector % uy &8 {o KD L 9 7% crystal O strict
embedding A*fFEET %,

&, : B(\) = B(c0) ® Rj.
PLE®D 2 2@ crystal @ embedding @, & ¥, * L TAZH5 .
¥V .= (¥, ®id) o ®) : B(\) <= B(co) ® Ry = Z¥ @ Ry =: Z[)].

#Z T, T embedding |= X % B(\) @ exact % image ¥ LLTFO £ H 2L TR
L TH B, Q™ %KD L 9 % infinite dimensional vector space & 5 .

Q% :={&=(--,Zk, ", T2, %1)|2; € Q and z; = 0 for [ > 0}.

5L, Z%[\ i Q® O lattice point &fkk F—HEh b, SITEDL IR
BIRG) L= (i )eo) Z ix LTBL k2 1IEHLTED 21>k T =i &%




BENDLD, ) R l<k Tiy=ip ERB/RODLOD, FELLZWE &
035, ERF ¢ = (ig) WAL TRD LI % Q®° LD linear form £ ERX 5 .

H} () = zp+ Z (hiy,, ;)5 + Tpeers
k<j<kit)
ﬁ{—)(f) e T + Ek( P <;,(h~.,,,a.,)mJ + Tpi-) if k> 0
% {h‘i’A)+i:1<J<k ti,!a‘lj)xj + I if k=0.

Z ZTR®D L 9 % piecewise linenar operator ¥ E#$ 4 © k> 1 & linear form
w(Z) =c+ Z,‘ wjz; (¢, p; € Q) KL T

(+) .
S = ) (@) — B (F) i >0,
W(f) { ©(&) — erBy(F) if i <O

4B, jel LT, ki € Z>, Yip=g *WIBNOHFEFE ETH, =
ZT.iellIHLT ,\m(f) = —;3{ W@ LB
HERRDY o = (i) XL T

N = {Si--SiTioll 20,5k 2 1}U{S;,--- S M@ 20, jk > 1,i € T}
LA = {z€Z%[\ CQ%|p(z) >0 for any ¢ € Z,[A]}

& 5 <{ , embedding oM @ exact % image M (B(A) RO L H ik S s .
Theorem 1. £,[\]30=(---,0,0) 25, ¥V (B(\\) = L,[\] Th 5,
ZZT [N & o SfHBEL 72 B(X) @ polyhedral realization &5,

CDEHEFEFED rank 2 © Kac-Moody algebra (¥ L THEBAL THhb, £
3, I={1,2},¢=(--,2,1,2,1) £ B, Cartan data &

(hl,al) = (hg,ﬂcg) = 2, (hl,ﬂ'g) = —C1, (hz,al) = —(C3.

TEHZ2 B, 72 L.ct =¢c2 =0D ¢y, c0 EHICHFEAERTHE, 22T,
X=ceo—-2¢BE&, 885 a = aqic1,¢2) (1 >0) % ap=0,a1 =1, k>1
WXL T

asyx = 1 Pe—1(X), azks1 = Pi(X) + Pe-1(X), (1)
TEHT S, 2D Chebyshev polynomial Pi(X) I3°KX® generating function T5-
R

1

ZPE(X)z (1 = XZ +22) (2)

k>0

S 51 aj(er,e) = ale, 1) EEHFKT S, tadDHEDH D Chebyshev polyno-
mials & ay DEEBIXRD LI %5

P(X)=1,P(X)=X, P,(X)=X*-1, P(X) = X® -2X,



az =c, a3 =ci1c2 — 1, a4 = ey(eree — 2),
as = (c1c2 — 1)(c1ca — 2) = 1, ag = c1(c1c2 — 1)(erc2 — 3),
ay = cmz(clcg = 2)(6102 — 3) - 1.

27T, ‘:‘:'clmax=‘max(clsc2) %01.{.1 <QLB|\PDIET S, (f:f.fl.,s T
RTDI>0Ta>0DE &l lpax =+00 £ T 5, )o THE, crea =0 (resp.
1,2,3) DE & lyax = 2 (resp. 3,4,6) ThHI DD B, 2512 ciey < 3 %
FJifa;m“:O, FLT1I<I<lpax Tay>0&,%5, —FH, crea >42% 1
X>20LEP(X)>0(k>0) ThAT EHDIZNDTa>0(>1) &1
D, TOFEIL lnax = +00 185,

Theorem 2. rank 2 ® £ &, dominant integral weight A = miA; + maA,
(m1,ms € Zxo) IHL T TN @ image 3 RTHEZHNS :

zr = 0 for k > lnax, m1 > 71,
a1 — 412141 2 0,

ma + @, T — ;T4 2> 0,

for 1. <8 < luux

Im (¥NV) = ¢ (-, 22,71) € 23 : (3)

Z 2T lmax < +o0 DA Im (P,) i finite rank @ lattice & FN TV T,
ZHITTE., Lie algebras g = A; x Ay, Az, By or Cy, Go DFEICHIGL TW»
5o #/8 lmax = 2 (resp. 3,4,6) D& Xid lax I positive root DL —KL T
b‘%@fi)&)o
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Bilinear estimates in BM O and the Navier-Stokes equations

ANE O OEHE RIEK -HE)

We investigate blow-up phenomena of strong solutions to the Navier-Stokes equations:

ot

(N-S) { -a—u-Au+u-Vu+Vp=0, divu=0 inze R", t>0,
U|g=[]=0.

Let a € H2 for s > n/2 — 1. For the strong solution of (N-8), we introduce the class
CL,4(0,T) defined by

u € C([0,7); Hy) N C*((0,T); Hy) N C((0,T); Hy*™).
Theorem 1 Let s > n/2—1 and let a € H:. Suppose that u is a strong solution of (N-S)
in the class CL,(0,T). If

T
(0.1) f lu(®)|3odt < 00 for some 0 <eo < T,
Eg

then u can be continued to the strong solution in the class CL,(0,T") for some T' > T.

Corollary 1 Let u be a strong solution of (N-S) in the class CLy(0,T) for s > n/2 —1.
Suppose that T is mazimal, i.e., u cannot be continued in the class CL4(0,T') for any
T' > T. Then

T
0.2) f lu(®)Zpodt = 00 for all0 < e < T.
£

In particular, we have
(0.3) ﬁmt’;:‘lqr} l(t)ll Bmo = oo.

We next consider a criterion on uniqueness and regularity of weak solutions to (N-S). By
the weak solution we mean u in L%(0,T; L2) N L?(0,T; H}) which satisfies (N-S) in the
sense of distributions on R" x (0, 7).

Theorem 2 (1) (uniqueness) Let a € L2 and let u,v be two weak solutions of (N-S) on
(0,T). Suppose that
(0.4) u € L*(0,T; BMO)

and that v satisfies the energy inequality

t
(0.5) ()13 + 2/; IVol3dr < llall3, 0<t<T.



Then we have u = v on [0,T].

(2) (regularity) Let a € L2 and let u be a weak solution with the additional property
(0.4). Then for every 0 < € < T, u is actually a strong solution of (N-S) in the class
CLy(e,T) for s >n/2—1.

Remark. Theorem 2 may be regarded as an extension of Serrin’s criterion on uniqueness
and regularity of weak solutions u in the class u € L®(0,T; L") for 2/k + n/r = 1 with
n<r<oo.

We shall next investigate continuation of the strong solution in terms of the vorticity
w=rotu= (6,-1;"‘ —0kw)1<j k<n and the deformation tensor Def u = (Bju"+3ku1)lsj'g5,,.

Theorem 3 Let 3 > n/2 — 1. Suppose that u is a strong solution of (N-S) in the class
CL4(0,T). If either

T T
(0.6) / lw(t)||eaodt < o0 or f || Def u(t)|| pmodt < oo
£€p Eo

holds for some 0 < g9 < T, then u can be continued to the strong solution in the class
CL4(0,T") for some T' > T.

Corollary 2 Suppose that u is a strong solution of (N-S) in the class CL4(0,T) for s >
n/2 —1. Assume that T is mazimal in the same sense as in Corollary 1. Then both

T T
07) | le(®)lzaodt = oo and [ Def u(®)larodt = o0
& (-4
hold for all0 < e < T. In particular, we have
(0.8) limsup ||w(t)|lsmMo =00 and  limsup [|Def u(t)|| smo = .
“T tr

Remark. Beale-Kato-Majda and Ponce considered the Euler equations in R® and the
same type of continuation principle as in Theorem 2 under the stronger assumption that

i T
fo lw(®)llcodt < oo and fo IDef u(t)||oodt < oo, respectively.

Finally we are concerned with the regularity criterion on weak solutions by mean of
rot u and Def u.

Theorem 4 Let a € L2. Suppose that u is a weak solution of (N-S) on (0,T). If either
(0.9) w € L}0,T; BMO) or Defu e L'(0,T; BMO)

holds, then for every 0 < € < T, u is actually a strong solution of (N-S) in the class
CLy(e,T) for s >n/2—1.



Perturbation of an eigen-value from a
dense point spectrum

P. Duclos, P. Stoviéek and M. Vittot
November 20, 1998

Abstract. We consider a perturbed Floquet Hamiltonian —:8,+ H + BV (wt)
in the Hilbert space L*([0,T],H,dt). Here H is a self-adjoint operator in H
with a discrete spectrum obeying a growing gap condition, V/(t) is a sym-
metric bounded operator in H depending on # 27-periodically, w = 27 /T is
a frequency and /3 is a coupling constant. The spectrum Spec(—id; + H) of
the unperturbed part is pure point and dense in R for almost every w. This
fact excludes application of the regular perturbation theory. Nevertheless we
show, for almost all w and provided V(t) is sufficiently smooth, that the per-
turbation theory still makes sense, however, with two modifications. First,
the coupling constant is restricted to a set I which need not be an interval
but 0 is still a point of density of I. Second, the Rayleigh-Schrodinger series
are asymptotic to the perturbed eigen-value and the perturbed eigen-vector.
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ON SOME QUADRATIC ALGEBRAS

ANATOL N. KIRILLOV
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Sapporo 060-0810, Japan
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Fontanka 27, St.Petersburg, 191011, Russia

ABSTRACT

A quadratic algerba is an associative algebra with generators g1,...,gn subject to a
collection of quadratic relations {Ro = 0}aer, where for all « € I

Ro:=Ra(g1,---,0n) = ) cfgigj, where cfj € C.

1<i,j<n
The class of quadratic algebras includes, for example,

e algebra of functions on quantum group;

e algebra of functions on noncommutative affine space.

These algebras play fundamental role in Mathematical Physics, Representation Theory
of Quantum Groups and Combinatorics.

In my talk I am going to introduce and study some quadratic algebras which are
naturally appeared in the Low Dimensional Topology and Schubert Calculus. The Jucys-
Murphy elements in the braid algebra and in the pure braid group, as well as the Dunkl
elements in the extended affine braid group will be constructed. Relationships between the
Dunkl elements, Dunkl operators and Jucus-Murphy elements will be described. A new
combinatorial construction for the cohomology ring and the quantum cohomology ring of
the flag manifold will be given.



On Uncertainty Principle for Some Lie Groups

Keisaku KUMAHARA

The uncertainty principle in harmonic analysis means that a function and its
Fourier transform cannot be concentrated simultaneously unless it is identially
zero. One of such theorem is the famous Heisenberg-Pauli-Weyl inequality.
Another one is the following Hardy theorem(Hardy[1933]). We define the Fourir
transform

L 1 00 <k
10 = oy | f(@)ena
of a function f on R™.

Hardy Theorem For positive numbers a, b, we put E(a,b) the vector space
of functions which satisfies inequalities

|f(2)| £ Cexp{-az®},  |f(6)| £ Cexp{-b€"}
for some C > 0. Then we have
1. ab < ; = dim E(a,b) = o0
2. ab =} = E(a,b) = Cexp{—az?}
3. ab> L = E(a,b) = {0}.

A. Sitaram, M. Sundari and S. Thangavelu generalized this theorem to the
case of R™, Heisenberg group and the motion group of the plane. A. Sitaram snd
M. Sundari showed the Hardy theorem for noncompact semisimple Lie groups
with only one conjugacy class of Cartan subgroups, SL(2,R) and Riemannian
symmetric space of noncompact type. And also M.Sundari proved the Hardy
theorem for the Euclidean motion group of R”. M. Eguchi, S. Koizumi and
K. Kumahara proved a Hardy theorem for the Cartan motion group.

On the other hand, M. Cowling and J. F. Price proved the following LP ver-
sion of the Hardy theorem.

Theorem Suppose that 1 < p,q £ oo and one of them is finite. If a
measurable function f on R satisfies

e fll,<oo  and || fll,< 00

for some positive number a and b such that ab 2 %, then f = 0 almost every-
where.



The main object of this talk is to state the Cowling-Price theorem for the
motion group proved in a joint work with Masaaki Eguchi and Shin Koizumi.
As a corollary of our theorem, we can get the theorem for R™.

Let G = K x V be the motion group. We normalize measures suitably. Let
¢ be the unitary representation of G induced from a unitary character { of V.
We define the Fourier transform f of measurable function f on G by

j© = [ 1@meo)ds.
e}
f is a B(L?(K))-valued function on the dual space of V, where B(L*(K)) is

the Banach space of all bounded linear operators on L?(K).
Theorem 1. Let 1 < p,q £ co. Let f be a measurable function on G such that

e @ fg) I,SC, |1’ f(E) [l S C

for some C > 0,a >0 and b > 0. If ab > 1/4, then f = 0 (a.e.). Moreover, if
q < 0o and ab 2 1/4, then f =0 (a.e.).

If we put p = q = oo, then we have following Hardy theorem.

Corollary 1. Let f be a measurable function on G such that

1f(@)] £ Ce™’ (ae), || F(€) lloS Ce?F (ae))
for some C,a >0 and b> 0. Ifab> 1/4, then f = 0(a.e.).

Let p,q,a,b and f be as in Theorem 1. In case p < co,g = o0 and ab =
1/4 Theorem 5 does not yield f = 0 (a.e.). But we can prove the following
proposition.

Proposition 1. Let 1 < p < 0o and f be a measurable function on G such that

27’ £(g) sy Gy |l F oS Ce™¥EF,

for some C > 0,a > 0 and b > 0. If f is of trace class and ab = 1/4, then
f=0(a.6).

If K is the unit group, then G is the n dimensional Buclidean space R".
Thus we have the following generalization of the Cowling-Price theorem.

Corollary 2. Suppose that 1 £ p,q £ 0o and one of them is finite. Let f be a
measurable on R™ such that

e £(z) lo@n S C, 11 €7 f(8) llzemn)S €
for some C > 0,a >0 and b > 0. If ab 2 1/4, then f = 0(a.e.).

And I will mention some results on semisimple Lie groups.




Bound states of the Pauli operator
with an anomalous magnetic moment

Pavel Exner
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This talk is a review of a recent work performed in collaboration with F. Ben-
tosela, R.M. Cavalcanti, and V.A. Zagrebnov — see a forthcoming paper in
J. Phys. A: Math. Gen. 32 (1999) and references therein.

We consider an electron with an anomalous magnetic moment ¢ > 2
confined to a plane and interacting with a nonzero magnetic field B. We show
that if B is of compact support and the ma.gnetlc flux in the natural units is
F > 0, the corresponding Pauli operator, HS P (A) with spin “down” and A
being a vector potential corresponding to B, has at least 1+[F] bound states,
without making any assumptions about the field profile. Furthermore, in the
zero-flux case there is a pair of bound states with opposite spin orientations.

For a rotationally symmetric field with a tail, B(r) = O(r~%~%) as r — o0,
we discuss hrmts of strong and weak coupling. We show that each partial-
wave operator H, (A) has a bound state if the field is strong enough. On the
other hand, in the weak—oouplmg case with zero flux we prove the existence
of bound states for HO‘E)(A) using the Birman-Schwinger technique. Finally,
we show that under mild regularity assumptions the last named existence
result can be proved for non-symmetric fields with tails as well.






