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We study the large time behavior of an isentropic and spherically symmetric motion
of compressible viscous gas in a field of external force over an unbounded exterior domain
in R

n (n ≥ 2). The typical example of this problem appears in analysis of the behavior of
atmosphere around the earth. First, we show that there exists a stationary solution satisfying
an adhesion boundary condition and a positive spatial asymptotic condition. Then, it is
shown that this stationary solution is a time asymptotic state to the initial boundary value
problem with the same boundary and spatial asymptotic conditions. Here, the initial data
can be chosen arbitrarily large if it belongs to the suitable Sobolev space. Moreover, if the
external force is attractive, it also can be arbitrarily large. This condition includes the most
typical external force, i.e., the gravitational force. In the proof of the stability theorem, it is
the essential step to obtain the uniform positive lower bound for the density. It is derived
through the energy method with the aid of a representation formula for the density.

The Navier-Stokes equation with external force for the isentropic motion of compressible
viscous gas in the Eulerian coordinate is the system of equations given by

ρt + ∇ · (ρu) = 0, (1a)

ρ{ut + (u · ∇)u} = µ1∆u + (µ1 + µ2)∇(∇ · u) −∇p(ρ) + ρf. (1b)

We study the asymptotic behavior of a solution (ρ, u) to (1) in an unbounded exterior domain
Ω := {ξ ∈ R

n ; |ξ| > 1}, where n is a space dimension larger than or equal to 2. Here ρ > 0
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is the mass density; u = (u1, . . . , un) is the velocity of gas; p(ρ) = Kργ (K > 0, γ ≥ 1) is
the pressure; f is the external force; µ1 and µ2 are constant viscosity-coefficients satisfying
µ1 > 0 and 2µ1 + nµ2 > 0.

It is assumed that the external force f is a spherically symmetric potential force and the
initial data is also spherically symmetric. Namely, for r := |ξ|

(A1) f := −∇U =
ξ

r
Ur(r), Ur ∈ C1[1,∞), ∃U+ = lim

r→∞
U(r) = lim

r→∞

∫ r

1

Ur(η)dη,

(A2) ρ0(x) = ρ̂0(r), u0(ξ) =
ξ

r
û0(r).

Under the assumptions (A1) and (A2), it is shown in [4] that the solution (ρ, u) is spherically
symmetric. Here, the spherically symmetric solution is a solution to (1) in the form of

ρ(ξ, t) = ρ̂(r, t), u(ξ, t) =
ξ

r
û(r, t). (2)

Substituting (2) in (1), we reduce the system (1) to the equations for (ρ̂, û)(r, t). Hereafter,
we omit the hat to express a spherically symmetric function without confusion. Then, the
spherically symmetric solution (ρ, u)(r, t) satisfies the system of equations

ρt +
(rn−1ρu)r

rn−1
= 0, (3a)

ρ(ut + uur) = µ

{
(rn−1u)r

rn−1

}
r

− p(ρ)r − ρUr, (3b)

where µ := 2µ1 + µ2 is supposed to be positive. The initial data to (3) is prescribed to be
asymptotically constant in space:

ρ(r, 0) = ρ0(r) > 0, u(r, 0) = u0(r), lim
r→∞

(ρ(r, t), u(r, t)) = (ρ+, u+), ρ+ > 0. (4)

As we interested in the behavior of gas around a solid sphere, an adhesion boundary condition
is adopted:

u(1, t) = 0. (5)

In addition, it is assumed that the initial data (4) is compatible with the boundary data
(5). Since the characteristic speed of (3a) is zero on the boundary due to (5), one boundary
condition is necessary and sufficient for the wellposedness of the initial boundary value
problem (3), (4) and (5).

This problem is formulated to study the behavior of compressible viscous gas around
the solid sphere in a field of external force. We show that the time asymptotic state of the
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solution to the initial boundary value problem (3), (4), (5) is the stationary solution, which
is a solution to (3) independent of time t, satisfying the same conditions (4) and (5). Hence,
the stationary solution (ρ̃(r), ũ(r)) satisfies the system of equations

1

rn−1
(rn−1ρ̃ũ)r = 0, (6a)

ρ̃ũũr = µ

{
(rn−1ũ)r

rn−1

}
r

− p(ρ̃)r − ρ̃Ur (6b)

and the boundary and the spatial asymptotic conditions

ũ(1) = 0, lim
r→∞

(ρ̃(r), ũ(r)) = (ρ+, u+). (7)

Solving (6), we obtain an explicit formula of the stationary solution (ρ̃(r), ũ(r)):

ũ(r) ≡ 0, (8a)

ρ̃(r) =




{
ργ−1

+ +
γ − 1

Kγ
(U+ − U(r))

} 1
γ−1

for γ > 1,

ρ+ exp

{
1

K
(U+ − U(r))

}
for γ = 1.

(8b)

Due to (8a), the spatial asymptotic data in (7) must satisfy u+ = 0 for the existence of the
stationary solution.The stability theorem on the stationary solution in (8) is summarized in
the next theorem, which is the main result in the present research.

Theorem 1. Suppose the initial data satisfies that for a certain σ ∈ (0, 1)

ρ0 ∈ B1+σ
loc [1,∞), u0 ∈ B2+σ

loc [1,∞), (9a)

r
n−1

2 (ρ0 − ρ̃), r
n−1

2 u0, r
n−1

2 (ρ0 − ρ̃)r, r
n−1

2 u0r ∈ L2(1,∞) (9b)

and the compatibility condition holds. In addition, if there exists a positive constant δ, de-
pending only on the initial data, such that −δ ≤ Ur(r), then the initial boundary value prob-
lem (3), (4) and (5) has a unique solution (ρ, u) globally in time and the solution converges
to the corresponding stationary solution. Precisely, it holds that

lim
t→∞

sup
r∈[1,∞)

|(ρ(r, t) − ρ̃(r), u(r, t))| = 0. (10)

Notice that any smallness assumptions on the initial data is not necessary for the above
stability theorem. Moreover, if Ur ≥ 0, then Ur can be arbitrarily large. This is the case that
the external force is attractive like the gravitational force. The Hölder continuity of the initial
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data (9a) is necessary to ensure the validity of the transformation between the Eulerian and
the Lagrangian coordinates. (See (11) below.) Actually, we show the asymptotic stability of
the stationary solution in the Lagrangian without the Hölder continuity. In translating this
result to that in the Eulerian coordinate, we need the differentiability of solutions. This is
the reason we assume (9a), which gives the Hölder continuity of the solution with the aid of
the Schauder theory for parabolic equations. The remainder of the present paper is devoted
to a brief outline of the proof of Theorem 1. The readers are referred to the paper [11] for
the detailed discussions.

In the proof of Theorem 1, we show the uniform a priori estimate by employing the
energy method. For this purpose, it is convenient to adopt the Lagrangian coordinate rather
than the Eulerian coordinate. The transformation from the Eulerian coordinate (r, t) to the
Lagrangian coordinate (x, t) is executed by the relation:

x =

∫ r

1

ηn−1ρ(η, t) dη, rt = u, rx =
v

rn−1
, (11)

where v = 1/ρ is the specific volume. Using (11), we deduce the system (3) to

vt = (rn−1u)x, (12a)

ut = µrn−1

(
(rn−1u)x

v

)
x

− rn−1px − Ur. (12b)

The initial and the boundary conditions for (v, u) are derived from (4) and (5) as

v(x, 0) = v0(x) := 1/ρ0(x), u(x, 0) = u0(x), lim
x→∞

v0(x) = v+ := 1/ρ+, (13)

u(0, t) = 0. (14)

The spatial variable r in the Eulerian coordinate is regarded as a function of (x, t) in the
Lagrangian coordinate. Thus, the density ρ̃ in the stationary solution also depends on (x, t),
that is, ρ̃(x, t) := ρ̃(r(x, t)). Also, let ρ̃0(x) := ρ̃(r(x, 0)).

Define the energy form E by

E :=
1

2
u2 + Ψ(v, ṽ),

Ψ(v, ṽ) := p(ṽ)(v − ṽ) − ϕ, ϕ :=

∫ v

ṽ

p(η) dη, p(v) := Kv−γ, ṽ := 1/ρ̃.

If c ≤ v(x, t) ≤ C for positive constants c and C, then Ψ(v, ṽ) is equivalent to |v − ṽ|2.
Namely, c|v − ṽ|2 ≤ Ψ(v, ṽ) ≤ C|v − ṽ|2 for positive constants c and C. Then the energy
form E is equivalent to |u|2 + |v − ṽ|2.

We state several a priori estimates for the solution (v, u) without detailed proofs.
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Proposition 2. (Basic estimate) Suppose that v0 − ṽ0, u0 ∈ L2(0,∞). Then the solution
satisfies ∫ ∞

0

E(x, t) dx + µ

∫ t

0

∫ ∞

0

(n − 1)
v

r2
u2 +

r2n−2

v
u2

x dxdτ ≤
∫ ∞

0

E(x, 0) dx. (15)

Applying the Sobolev inequality on (15), we have

Corollary 3. ∫ t

0

‖(rn−2u2)(τ)‖∞ dτ ≤ C, (16)

where C is a positive constant depending only on the initial data.

In order to obtain the pointwise bound for the specific volume v(x, t) uniformly in time,
we employ a “cut-off-function” defined by

η(x) =

{
1, x ≤ k,
k + 1 − x, k ≤ x ≤ k + 1, for k = 1, 2, . . .
0, k + 1 ≤ x.

By using (12) with the cut-off-function η(x), we have a representation formula of the density.

Lemma 4. v(x, t) is represented by

v(x, t)γ =
v0(x)γ + Kγ

µ

∫ t

0
A(x, τ)B(x, τ)dτ

A(x, t)B(x, t)
,

for x ∈ [k − 1, k) and t ≥ 0, where

A(x, t) := exp

(
Kγ

µ

∫ t

0

∫ k+1

k

v−γdxdτ +
γ

µ

∫ t

0

∫ ∞

x

Ur

rn−1
η dxdτ

)
,

B(x, t) := exp

(
γ

µ

∫ ∞

x

(
u

rn−1
− u0

rn−1
0

)
η dx +

γ

µ

∫ t

0

∫ ∞

x

(n − 1)
u2

rn
η dxdτ − γ

∫ k+1

k

log
v

v0
dx

)
.

Proposition 2 and Lemma 4 yield the upper and the lower bounds of v(x, t).

Proposition 5. There exist positive constants c and C, depending only on the initial data,
such that

c ≤ v(x, t) ≤ C (17)

for x ≥ 0 and t ≥ 0.
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The estimate (17) immediately gives the pointwise bounds for the density, 0 < c ≤ ρ ≤ C.
To obtain the a priori estimate for the derivatives of the solution, it is convenient to use the
function

ϕ(x, t) :=

∫ v

ṽ

p(η) dη.

Proposition 6. Suppose that v0− ṽ0, u0, rn−2
0 (v0− ṽ0)x, rn−2

0 u0x ∈ L2(0,∞). Then we have∫ ∞

0

(
r2n−4ϕ2

x

)
(x, t) dx + c

∫ t

0

∫ ∞

0

(
r2n−4ϕ2

x

)
(x, τ) dxdτ ≤ C, (18)∫ ∞

0

(
r2n−4u2

x

)
(x, t) dx + c

∫ t

0

∫ ∞

0

(
r4n−6u2

xx

)
(x, τ) dxdτ ≤ C, (19)

where c and C are positive constants depending only on the initial data.

The estimate for (v − ṽ)x follows from (18);∫ ∞

0

(
r2n−4(v − ṽ)2

x

)
(x, t) dx ≤ C. (20)

Using the estimates (15), (18), (19) and (20), we show the global existence of the solution
(v, u) in the Lagrangian coordinate. Moreover, these estimates give the asymptotic stabil-
ity of the solution in (10). In these discussions, the Hölder continuity of the solution is
not necessary. It is used to ensure the validity of the translation of these results to those
in Eulerian coordinate. Actually, we show that, by applying the Schauder theory for the
parabolic equations (see [2]), the solution (ρ, u) is also belonging to the Hölder space if the
initial data satisfies (9a). It immediately gives the corresponding stability theorem in the
Eulerian coordinate.

Related results. The Navier–Stokes equation has been attracting interests of a lot of
researchers in the fields of not only physics but also mathematics for these decays. Thus, we
have so many preceding researches and have to restrict ourselves to a certain problem. Here
we mainly state several results on the spherically symmetric motion of compressible viscous
fluid in an exterior domain.

The first of all, we need to mention the book [1] written by S. N. Antontsev, A. V.
Kazhikhov, and V. N. Monakhov, which gives comprehensive introduction to the mathemat-
ical theory of the compressible and viscous fluid. The first notable research in the equations
on the exterior domain is given by A. Matsumura and T. Nishida in [9], where the stability
of the stationary solution is first proved under the smallness assumptions. Note that this
research covers more general solutions on more general domain than the present research,
studying the spherically symmetric solution on the exterior domain.
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Another pioneering work is given by N. Itaya [4], which establishes the existence of
the spherically symmetric solution globally in time on a bounded annulus domain without
smallness assumptions on the initial data. This paper has drawn attention of the researchers
to the spherically symmetric solution. Then, A. Matsumura in [8] shows that the spherically
symmetric solution to the isothermal model with external force on the annulus domain exists
globally in time and it converges to the corresponding stationary solution as time tends to
infinity. Moreover, it shows that the convergence is exponentially fast. The research by
K. Higuchi in [3] extends this result to the isentropic model. In addition, it considers the
equations of heat-conductive ideal gas on the annulus domain. The present research aims to
extend the results in [8] and [3] to those on an unbounded exterior domain.

The study of the spherically symmetric solution over an unbounded exterior domain is
started by S. Jiang in [5], where the global existence of the solution is established for the
model of heat-conductive ideal gas. Moreover, the partial result on the asymptotic state is
obtained. Precisely, it shows that, for the space dimension n = 3, ‖u(t)‖2j → 0 as t → ∞,
where j (≥ 2) is an arbitrarily fixed integer.

In the case of one dimensional space n = 1, the problem on the unbounded exterior
domain is coincide with the half-space problem. A. Matsumura and K. Nishihara in [10]
start to investigate this problem for the compressible Navier–Stokes equation. In [10], several
kinds of boundary conditions are proposed. Namely, inflow, outflow and no flow boundary
conditions. Then, it classifies the asymptotic behaviors of the solution into the several
cases subject to the relation between the boundary data and the spatial asymptotic data.
Moreover, it proves the stability theorem for some cases by using the Lagrangian coordinate.
The research [6] by S. Kawashima, S. Nishibata and P. Zhu also studies the same one
dimensional half space problem. It obtains the a priori estimates directly in the Eulerian
coordinate and proves the stability of the stationary solution. The Hölder continuity of the
solution is also discussed in [6].

Notation. For a region Ω, an integer l and 0 < σ < 1, Bl+σ(Ω) denotes the space of Hölder
continuous functions over Ω which have the l-th order derivatives of Hölder continuity with
exponent σ. Bl+σ

loc (Ω) is the space of functions belonging to Bl+σ(ω) for an arbitrarily compact
set ω ⊂ Ω. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the standard Lebesgue space over Ω equipped
with the norm ‖ · ‖p. c and C denote several generic positive constants.

Acknowledgment. The present result is obtained through the joint research with Dr.
Tohru Nakamura at Tokyo institute of Technology and Prof. Shigenori Yanagi at Ehime
University. The details are published in the paper [11].
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