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In this talk we consider the Allen-Cahn equation:

ut = �u + f(u) (x, y, t) ∈ R2 × R+ (1)

where f is of “bistable type”. The typical example of the nonlinear term f is

f(u) = u(1 − u)(u − a), 0 < a <
1

2
. (2)

The constant states 0 and 1 are stable under the diffusion-free system. By the as-
sumption of a, the region of the state 1 is getting larger and larger and finally it
covers the whole space. When the state 1 propagates, we can observe the char-
acteristic profiles. In the one-dimensional space, one of the typical solutions is a
traveling wave solution which never changes its shape without translation. Substi-
tuting u(x, t) = Φ(x − ct), we have

Φξξ − cΦξ + f(Φ) = 0.

Actually for the nonlinearity (2), we have

Φ(ξ) =
1

2

(
1 − tanh

ξ

2
√

2

)
, c =

√
2
(

1

2
− a

)
.

As the appropriate singular limit, the interface between two states 1 and 0 becomes
sharp and we can get the interface equation (see e.g. [4]):

V = H + k (3)

where V is a normal velocity, H is the curvature, and k is a given constant. This
equation is also observed in the filamentary vortex of the Ginzburg–Landau equation
confined in a plane [3] and the BZ reaction [6].
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The typical solutions of (3) are the circles and lines. In the case k �= 0, unfortu-
nately, some interfaces may possess some self–intersection points eventually, even if
the initial interface has none. If the interface is represented by the graph y = v(x, t),
the equation (3) is reduced to

vt =
vxx

1 + v2
x

+ k
√

1 + v2
x x ∈ R, t > 0, (4)

Deckelnick et al in [3] proved the existence of the traveling curved front and studied
the stability of the front under some restricted assumptions for u0. The authors
relaxed the assumption for the initial data and classified all the traveling fronts in
[7, 8]. They proved the following (see [7, Proposition 1.1, Theorem 1.2]).

Theorem 1 Any traveling front of (3) with velocity t(0, c) is one of the three, after
appropriate translations,

(i) lines y = m∗x, and y = −m∗x

(ii) a traveling curved front Γc(t) which possesses two asymptotes y = ±m∗x,

(iii) stationary circles with radius 1/|k| only in the case c = 0,

where m∗ :=
√

c2 − k2/k. Moreover the explicit form of the traveling curved front
Γc(t) = {y = ϕ(x) + ct} with speed c(≥ k) is given in

x(θ; c) :=
θ

c
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k
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y(θ; c) := −1

c
log

(
c cos θ − k

c − k

)
,

for θ ∈ (− arctanm∗, arctanm∗).

The traveling curved front Γc(t) is “V-shaped”, which connects two asymptotes.
The existence of this traveling front is also reported in [2, 3] and in a liquid BZ
reaction [6].

The asymptotic stability of the curved traveling front in (4) is discussed in [3, 8].
It is proved that the traveling curved front is asymptotically stable, if the initial
perturbation is restricted to

BC1
0 := {v ∈ C1(R) | sup

−∞<x<∞
(|v(x)| + |vx(x)|) < ∞, lim

|x|→∞
v(x) = 0}.



and that if you take the perturbation space

BC1 := {v ∈ C1(R) | sup
−∞<x<∞

(|v(x)| + |vx(x)|) < ∞},

instead of BC1
0 , the traveling curved front is not asymptotically stable (see [8, The-

orem 1.1 and Theorem 4.1]).
By the above observation, we can expect that a “V-shaped” traveling wave so-

lution of (1) exists. Actually we have the following theorem.

Theorem 2 There exists a traveling wave solution u(x, y, t) = U(x, y − ct) of (1)
such that

lim
R→∞

sup
(x,y)∈DR

∣∣∣∣∣U(x, y) − Φ

(
k

c
(y − m∗|x|)

)∣∣∣∣∣ = 0

where
DR := {(x, y) | x2 + y2 ≥ R2}.

Bonnet and Hamel [1] showed the existence of the “V-shaped” traveling wave
solutions, if f is of the “ignition temperature” type (mono-stable type) instead of
(2). Hamel and Monneau [5] shows the uniqueness of the traveling front of the
corresponding singular limit problem.
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