where a discrete and faithful PSL,(R)-representation of I'; means a group
homomorphism from Ty to PSLz(R) which is injective and the image of
T, is a discrete subgroup of PSLy(R). Because any Fuchsian group which
is isomorphic to Ty can be lifted to SL2(R) ([Pa},[S-S]), we can start from
Hom(T,,SL2(R)) the set of SLy(R)-representations of I'y. And T, can
be considered as the set of characters of discrete and faithful SLa(R)-
representations of T'y.

From this view point , we can get a real algebraic structure on T, as
follows. By using the presentation of I'y, Hom(Ty, SL2(R)) can be embeded
into the product space SLy(R)% as the real algebraic subset R(I') which is
called the space of representations ([C-S),[Go],[M-S]) . The adjoint action of
PGLy(R) on R(T) induces the action on R[R(T)] the affine coordinate ring
of R(T') and put R[R(F)]PGL?(R) the ring of invariants under this action.
Let X(T') be a real algebraic set whose affine coordinate ring is isomorphic
to R[R(I')]FCL2(R) | Then T, can be realized as a semialgebraic subset
of X(T'). Hence T, is defined by finitely many polynomial equalities and
inequalities on X (I'). This construction is essentially due to Helling [He],
and later Culler-Shalen [C-S] and Morgan-Shalen [M-S] made this process
more clear and by using this procedure, Brumfiel described the real spectrum
compactification of T, [Br].

Our theme of this paper is to study the semialgebraic structure of T, and
we mainly consider the following two things. First we describe the defining
equations of T, on X(I') by using 6g-6 polynomial inequalities explicitly
(Theorem 3.2, 4.2 ). This problem is related to the construction of the
global coordinates of T, by use of small number of traces of elements of
Fuchsian groups which is studied deeply by Keen ([K]) and recently by Okai
and Okumura ([0k],[01],[02]) by using hyperbolic geometry on H and the
argument of the fundamental polygons of Fuchsian groups. Our treatment
in this paper is rather algebraic. The second is that from a real algebraic
viewpoint, we also show the well known fact that 7, is a 6g-6 dimensional
cell (Theorem 3.1, 4.1.) which was proved by Teichmiiller himself by use of
his theory of quadratic differentials and quasi-conformal mappings.

The remainder of this paper is organized as follows. Section 2 deals
with the construction of Teichmiiller space T, following Culler-Shalen [C-S]
and Morgan-Shalen [M-S). The description of defining inequalities and cell
structure of T, are shown in Section 3 and 4. In section 3 we treat the case
of genus g = 2 and in section 4, g > 3 cases are discussed.
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2 Construction of Teichmiiller space as a semial-
gebraic set

In this section we review the construction of Teichmiiller space following

[C-S],[M-S],[Sa).

2.1 The space of SL;(R)-representations of the surface group
r

Let g > 2 be fixed. We define the (closed) surface grbup of genus ¢ by the
following presentation

g
I'= rg = < alaﬂl," 'aawag I H[ahﬂi] = 1d. )
i=1
where [a;, 3] = ;- i - o7t - 571

By using this presentation, we can embed Hom(T,SLy(R)) the set of
S Ly(R)-representations of T into the product space SLy(R)* and let R(T)
denote the image of Hom(T', SLy(R))

Hom(T',SLy(R)) — R(T) C SLy(R)%.

p = (plar),p(Br), -, p(ag), p(Bg))

We identify R(T') and Hom(T, SLy(R)). In the following we also identify

a representation p and the image (A1, By, -+, Ag, By) € SLa(R)% of the sys-

tem of generators {ai, 01, --,04,0,} of T under p. R(T') is a real algebraic

set and we call this the space of SLy(R)-representations of I'. PGL2(R)
acts on R(T') from right

R(T)x PGL2(R) — R(I)
(p,P) — P7'pP .

We remark that although we use the system of generators {a;, f1, -+, a4, 84}

of I' to define R(T'") , the real algebraic structure of R(I') does not depend on

this system of generators. In fact if we choose another system of generators

of I' consisting of N elements and embed Hom(T, SLy(R)) into the product

space SLa(R)N , we get an another real algebraic set but it is canonically
isomorphic to R(T).

Next we consider the following subset of R(I")

R'(T):= {p € R(T) | p is non abelian and irreducible}
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where a representation p is non abelian if p(T') is a non abelian subgroup .of
SLa(R) and p is irreducible if p(T') acts on R? without non trivial invariant
subspace. Hence if p is not irreducible (i.e., reducible) then there exists
P € PGL2(R) such that P=!p(T')P consists of upper triangular matrices,
hence in particular p(T') is solvable. We remark that the action of PGIL,(R)
on R(T') preserves R'(T'). Next lemma is useful for the study of R'(T).

Lemma 2.1 For p € R'(T'), there ezist g,h € T such that p(g) is a hyper-
bolic matriz i.e., |tr(p(g))| > 2 and p(h) has no common fized points of p(g).
In other words there exists P € PGLy(R) such that

A0
(32) aesn

a b
(c d) (b-c#0). O

We have another characterization of R'(T").

~p(g)P

“1p(h)P

Proposition 2.1

I

{p € R(T) | tr(p([a,b])) # 2 for somea,b € I'}
= R(D)- [ {p€ R(T) | tr(p([a,b))) = 2}.

a,bel

R(T)

(Proof.)
(=) Take g,h € I which satisfy the conditions of Lemma 2.1. Then
tr([p(g), p(R)]) # 2.

(<) If p(T) is abelian, [p(a), p(b)] = ( (1) (1) for any a,b € T'. If p(T') has a

non trivial invariant subspace, there exists P € PGL2(R) such that any el-
ement of P~1p(T)P is an upper triangular matrix, hence tr([p(a), p(b)]) = 2
for any a,b € I'. O

Corollary 2.1 R/(T) is open in R(I'). O
We can say more about R'(T').

Proposition 2.2 R/(T) has the structure of a 6g-3 dimensional real analytic
manifold. O

Because the action of PGLy(R) on R'(I') is proper and without fixed
points ( see [Gu] Section 9 ) , we have the following result.
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Proposition 2.3 The quotient space R'(I')/PGL2(R) has the structure of
a 6g-6 dimensional real analytic manifold such that the natural projection

R/(T) — R(T)/PGL,(R)
is a real analytic principal PG Ly(R)-bundle. O
Next we define the subset Ry(T') of R(T) by
Ro(T) := {p€ R(T)| pisdiscrete and faith ful} (1)

where a representation p is discrete if p(T') is a discrete subgroup of SLy(R.)
and p is faithful if p is injective. We remark that the action of PGL,(R) on
R(T') preserves Ro(I'). Then another characterization of Ry(T) is

Proposition 2.4

Ro(T)

{p € R(T') | p is cocompact, discrete and faithful} (2)
{p € R(T) | p is totally hyperbolic} (3)

where a representation p is cocompact if the quotient space p(I') \ SLy(R)
is compact with respect to the quotient topology , and p is called totally
hyperbolic if p(h) is hyperbolic for any h(# identity) € T.

(Proof.)

(1) = (2) The fundamental group of a surface p(T') \ H is isomorphic to the
surface group I', hence p(T') \ H is compact.

(2) = (3) Because p(T') is discrete, any elliptic element of p(T') is finite order.
But I' is torsion free, p(I') has no elliptic elements. Moreover if p(I') has a
parabolic element, then p(I') \ H has a cusp. But p(T')\ H is compact, p(T')
has no parabolic elements.

(3) = (1) Faithfulness is immediate. Discreteness follows from Nielsen’s
theorem (see [Si] P.33 Theorem 3). O

Proposition 2.5 Ry(T') is open and closed in R(T).
(Proof.) We give a sketch of the proof. We recall the Jgrgensen’s inequalities
(Jo:

For any p € R(T") p is contained in Ro(T') if and only if

[tr([p(g), p(R)]) ~ 2| + [tr(p(h))* — 4] > 1
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for any pair g,h € T with gh # hg.

These inequalities are closed conditions of Ro(T') in R(T).

The openness of Ro(I') C R(T) follows from the next theorem due to
Weil [W]:

If G is a connected Lie group and T' is a discrete group, then the set of
cocompact, discrete and faithful representations from I' to G is open in the
set of all representations from I’ to G. O

Next we recall the notions of a semialgebraic set. Let V be a real al-
gebraic set with its affine coordinate ring R[V] i.e., the ring of polynomial
functions on V. A subset S of V is called a semialgebraic subset of V if
there exist finitely many polynomial functions on V- fi; ¢iy, - 6,y €
R[V](i=1, ---,1) such that S can be written as

l
S = U {zeV] fi(x) =0, gi(z) >0, ---g;,,(z) >0}

=1

From the above definition, any real algebraic set is a semialgebraic set.
Moreover it is known that any connected component of a semialgebraic set
(with respect to Euclidean topology) is also a semialgebraic set and the
number of connected components of a semialgebraic set is finite ( see [B-C-
R] Theorem 2.4.5 ).

Corollary 2.2 Ry(T') consists of finitely many connected components of
R(T) , hence Ro(T) is a semialgebraic subset of R(T'). O

The relation between R'(I') and Ro(T') is
Proposition 2.6 Ro(T') C R'(T).

(Proof.) For p € Ro(I') because the surface group I is non abelian and p is
injective, p is non abelian. Also because I is not solvable, p is irreducible.
0

Corollary 2.3 Ro(T') has the structure of a 6g-3 dimensional real analytic
manifold. O

2.2 The space of characters of I’

As we have seen in subsection 2.1 that R(I') has the structure of a real
algebraic set. Let R[R(T')] be its affine coordinate ring i.e., the ring of
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polynomial functions on R(T'). Then the action of PG L,(R) on R(T) induces
the action of PGLy(R) on R[R(I)]

PGLy(R) x R{R(T)] — R[R(T)]
(P,f(p)) — f(P~'pP)

and let R[R(T)]PGL2(R) be the ring of invariants of this action. For example
the function 7, € R[R(T')] (h € T') on R(T) defined by

mh(p) = tr(p(h))

for p € R(T) is an element of R[R(I))PGL2(R) In fact R[R(T))PGL2(R) jg
generated by 7, (h € I') and is a finitely generated R-subalgebra of R[R(T)]
( see [He],[Ho],[Pr] ).

Let X(I') be a real algebraic set whose affine coordinate ring R[X(T)]
is isomorphic to R[R(T)]PCL2(R)  And let I, € R[X(T)] correspond to
m, € R[R(D)}PGL2(R) Then R[X(T)] is generated by I, (h € T) as R-
algebra. The injection

R[X(I)] = RR(D)]"9®) — R{R(T)]
induces the polynomial mapping
t: R(T') — X(I).

Because R[R(T)]PGL2(R) js generated by 7, (h € T), for a representation
p € R(T') , t(p) can be considered as the character x, of p

xo:I' = R
h — tr(p(h)) = T(p)

Therefore the image t(R(I')) C X(I') of R(T') under the mapping ¢t can be
considered as the set of characters of SL;(R)-representations of I'. We call
X(T) the space of characters of T'.

Moreover any element of X (I')~¢(R(T")) can be considered as a character
of SU(2)-representation of I' and to explain this we need to review briefly the
theory of SL(C)-representations of T following [C-S] and [M-S]. Let Rc(T)
be the set of SLy(C)-representations of I', then Rc(T') has the structure
of a complex algebraic set and let C[Rc(T')] be its affine coordinate ring.
PGLy(C) acts on Re(T') and also on C[Rc(T')]. Put C[Rc(T)}FCL2(C) the
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ring of invariants of this action and let X¢(T') be a complex algebraic set

whose affine coordinate ring C[X¢(T)] is isomorphic to C[Rc(I')]PEL2(C).

Then the injection v
ClXc(I)] = ClRc(T)"(D — ClR(T)]
induces the polynomial map
tc : Re(l) = Xc(T)

which is surjective. Since Rc(T'),tc and X (') are all defined over Q, we
can consider Xg(I') the set of real valued points of X¢(I'). Then we can con-
sider XR(T) as the set of real valued characters of SL,(C)-representations
of I and it is known that any element of Xg(T') is either a character of
SLy(R) or SU(2)-representation of I' ([M-S] Proposition 3.1.1 ).

If we consider the polynomial function tr, € C[Rc(I')] (h € T) on
Rc(T) defined by

tra(p) = tr(p(h)

for p € Rc(T) , then try is an element of C[Rc(T)]FPEL2(C) and write the
corresponding element of C[X¢(T')] also by tr, for the sake of simplicity.
Then after regarding R(T') as the set of real valued points of Rg(T') , there
is a natural surjective homomorphism from R[Xg(I')] the affine coordinate
ring of Xp(T') to R[X(I')]
R{Xg(T)] — R{X(T)]
trp, — I .
Therefore there is a canonical injection from X(I') to Xr(I'). Hence any

element of X(T') is either cotained in {(R(I')) or can be considered as a
character of SU(2)-representation of IT'.

We define the following subsets of X(T')
X'(T) = 4R(I))
U(T) {x € X(T) | Ija3(x) # 2 for some a,b € T'}

= XD - [ xe XD | Iylx) =2}
a,bel

Then U(T) is open in X(T'). By Proposition 2.1 t~}(X'(T)) = R(T') and
X(I')cu(r).
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Proposition 2.7 X'(T') is open in U(T'). Hence X'(T) is open in X(T).

(Proof.) Let V(I') be the set of characters of SU(2)-representations of T'.
As SU(2) is compact V(T') is compact in Xg(T). Hence U(I') = X'(T')u
(U(T)nV(T)) and (U(T)NV(T)) is compact in U(T'). Therefore it is enough
to show that X/(I')N(U(T)NV(T)) = ¢. For p € R'(T'), by lemma 2.1 there
exists ¢ € T’ with [tr(p(g9))] = |x,(g)] > 2. On the other hand for any
SU(2)-representation n of T ‘

ltr(n(h))| = [xy(h)| < 2 forany h eT.

Therefore X'(I') N (U(T)NV(T)) = ¢. O

Next we will show that the restriction of the mapping ¢ to R'(T)
t: R(T) — X'(T)

is a principal PG Lz(R)-bundle. By Proposition 2.3 it is enough to show
that X'(T) is the PGL,(R) adjoint quotient of R/(T'). For this purpose we
need to prepare two lemmas which are S Ly(R) version of the results in [C-S]

and [M-S].

Lemma 2.2 ( see [C-S] Proposition1.5.2 ) For py,p; € R'(T'), we assume
that t(p1) = t(p2) , in other words they have the same character x,, = X,
Then there is P € PGL2(R) such that p, = P~ 1p,P. O

Lemma 2.3 ( see [M-S] Lemma 3.1.7 ) For a subset U of X'(T'), we assume
that t='(U) is open in R'(T) hence open in R(T). Then U is open in X'(T)
hence in X(I'). O

By the previous lemmas we conclude that

Proposition 2.8 t: R'(I') — X'(T) can be considered as the quotient map
of R'(T') under the action of PGL,(R) i.e.,

X'(T) = R'(T)/PGLy(R).

Therefore by Proposition 2.3 t : R'(T) — X'(T) is a principal PGL,(R)-
bundle. O
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Define the closed subset Xo(I') of X(T') by

Xo(D) == {x € X(T) | Hpm(x) -2+ Ha(x)* ~ 41 21
for g,h € T with gh # hg}.

Then the proof of Proposition 2.5 implies t(Ro(I')) C Xo(T)-
Proposition 2.9 1. Xo(T) = t(Re(T)).

2. Xo(T) is open in X'(T') hence open in X(T').

3. t71(Xo(T)) = Ro(T).

(Proof) 1. Any representation of I' to SLy(C) is discrete and faithful if
and only if it satisfies Jgrgensen’s inequalities which we have seen in the
proof of Proposition 2.5. But there are no discrete and faithful SU(2)-
representations of ' because SU(2) is compact and I' is an infinite group.
Hence Xo(T') C t(R(T)) and it follows that Xo(T') = t(Ro(T)).

2. Ro(T) C R/(T) implies Xo(T') C X'(T'). Because Ro(T) is open in
R(T)and t : R(T) — X'(T) is an open map by Proposition 2.3, Xo(T') is
open in X'(T).

3. It is immediate from lemma 2.2. O

Corollary 2.4 Xo(T) is open and closed in X (T'). Therefore Xo(T') consists
of finitely many connected components of X(T') hence it is a semialgebraic
subset of X(T'). O

Corollary 2.5 t : Ro(T) — Xo(T) is also a principal PGLy(R)-bundle.
Hence Xo(T') can be considered as the PGL2(R) adjoint quotient of Ro(T')
i.e., Xo(I') = Ro(T')/PGLy(R). O

We summarize the results of this subsection as the following diagram.

RT) > R(T) 5> RT)
t] ) | PGLy(R) bundle
X(T) > X'(I) D> Xo(I') = Ro(I')/PGL2(R)

2.3 Therelation between SL,(R)- and PSL,(R)-representations
of T

Next we consider the relation between S L2(R)- and PSLy(R)-representations
of the surface group I
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The group Hom(T,Z/2Z) ( = (Z/2Z)%) acts on R(T) as follows.
For any p € Hom(I',Z/2Z) and p € R(T'), we define the representation
p-p € R(T) by

p-p(h):=p(h)-p(h) ( forall heTl).

Proposition 2.10 ([Pa],[S-S]) Let € : T — PSLy(R) be a discrete and
faithful PSLy(R) representation. Suppose A;,B; € SLy(R) (: =1, ---,g)
denote any representatives of £(c;),€(8;) € PSLy(R). Then

E[Ai,Bi]= ( (1) (1))

In other words, § can always be lifted to a representation p € Ro(T) and the
set of all liftings of § is equal to the Hom(T',Z/2Z) orbit of p in Ro(T).

SL(R)
14
7/ lproj.
I & PSLyR)
(Proof.) We briefly review what Seppild and Sorvali showed in their paper
[S-S].
Let £ be a discrete and faithful PSL,(R) representation. Suppose A;, B; €

SLy(R)(i =1, ---,g)denote any representatives of £(«;),&(8;) € PSLy(R ).
Then they showed that

tr([4;,Bi]) < -2 (i=1,---,9)
tr([Al»Bll"'[Aj’Bj]) < -2 (] =2,--,9— 1)'
In particular
tr([Ag, Bg]) < -2
tT([Al,Bl]"'[Ag_l,Bg_l]) < =2,

We may suppose that [A;, By]---[Ag_1,By-1] is a diagonal matrix. Then
[Ag, By] must be also diagonal, hence the above inequalities implies the
conclusion. O

Corollary 2.6 1. Hom(I',Z/2Z) acts on Ro(T') and the quotient space
Hom(T',Z/2Z) \ Ro(I') can be considered as the set of discrete and
faithful PSLa(R)-representations of T.
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T

2. Through the mapping t ,Hom(T,Z/2Z) acts also on Xo(T') and the
quotient space Hom(T',Z/22)\ Xo(T') can be considered as the PG L2(R)-
adjoint quotient of the set of discrete and faithful PS Lo(R)-representations
of .

We call this set Teichmiiller space Ty
T, = Hom(T,Z/2Z)\ Xo(T)
= Hom(T,Z/2Z)\ Ro(T)/PGL,(R). O

Proposition 2.4 implies |I| > 2 (for all h(# identity) € T') on Xo(T)
hence the sign of I, is constant on each connected component of Xo(T') .
This means that Hom(T',Z/2Z) permutes the set of connected components
of Xo(T') freely. Thus

Corollary 2.7 The quotient map Xo(T') — Ty is an unramified (Z/2Z)% -
covering. Hence by taking (any) lifting of this mapping , we can consider
T, as a finite union of connected components of Xo(T'). Therefore Ty can
be considered as a semialgebraic subset of Xo(T') . O

Corollary 2.8 If mo(Xo(T')) denotes the number of connected components
of Xo(T') , the order of Hom(T',Z/2Z) divides mo(Xo(T)) . In particular

2% < Wo(Xo(F)) O

We summarize the result of this subsection as the following diagram.

Hom(T,SLa(R)) = R(T) D Ro(D)

t ! .
X(T) > Xo(I) = Ro(T)/PGLy(R)
!
T, = Hom(T,Z/2Z)\ Xo(T)

3 Semialgebraic description of Teichmiiller space
T, (g=2 case)

In this section by constructing the global coordinates of Xo(I') , we will show
the connectivity, contractibility and semialgebraic description of Teichmiiller
space T,. For this purpose we need to find some semialgebraic subset of X(I)
containing Xo(T') whose presentation as a semialgebraic set and topological
structure are both simple. This is S(T') stated in the following subsection.
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3.1 Definition of the semialgebraic subset S(I') of X(I')
We define the open semialgebraic subset S(T') of X(T) by

S(T):={x € X(I') | 1, (x) < -2}
where ¢; := [a1, 81] = [@2,82]"! € T.

Proposition 3.1 S(T') C X'(T). Hence by Proposition 2.3 t=1(S(T')) %
S(T) is @ PGLz(R)-bundle and we can consider S(I') as the PGL,(R)-
adjoint quotient of t~1(S(T)) i.e.,

S(T) =t71(S("))/ PG Ly(R).
(Proof.) First we show
S(I) N (X(T) = ((R(T))) = ¢.

As we have seen in subsection 2.2 any element of X(I') — t(R(T)) can be
considered as a character of SU(2)-representation of I'. Thus for x € X(T')—
t(R(T))

Hh(x)| <2 forhel.

This shows that S(I') C ¢t(R(T)). On the other hand Proposition 2.1 shows
that S(I') C X(T). O

Next result is due to Seppild and Sorvali ([S-S]).
Proposition 3.2 Xy(I') C S(I'). O

(Proof.) Any element p = (Ay, By, Ay, By) of Ro(T) induces a discrete and
faithful PSLy(R)-representation of I'. Hence we have seen in the proof of
Proposition 2.10 that

tT‘([Al, B]]) < 2.

This implies the conclusion. O
Corollary 3.1 Above arguments show the following diagram. O
R(I') > R(T) D t7}(S(T)) D Ro(T)

) ! ! !
XT) > X(I) > ST) 5 XoI)
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3.2 Topological structure of S(I')

In this subsection, by constructing the global coordinates of S(I'), we will
show that S(T') consists of 2* x 2 connected components each one of which
is a 6 dimensional cell. For this purpose we need some preliminaries.

We define the polynomial mapping f from X(I') to RS . For any
x € X(T)

f(x) = (Ial(X)vlﬁl(X)7[01ﬁ1(X)alaz(X)’Iﬁz(X)’Iazﬁz(X))-

By the definition of I (h € T) , for any 0 € R(T)

fot(p) = (tr(p(n)), tr(p(Br)), > tr(p(azbr))).

x@) L Re

We write the coordinates (z1,%2,23,¥1,%2,¥3) of R® by (Z,7) for the
sake of simplicity. Next we define the polynomial function k(z,y,z) on
R? by

k(z,y,z) = e+ y? + 2% —zyz — 2.

Easy calculation shows the following lemma ([F],[G]).
Lemma 3.1 1. For any A,B € SLa(R)
k(tr(A),tr(B),tr(AB)) = tr([A, B]).
2. If (z,y,2) € R3 satisfies k(z,y,2) < ~2 , then
|z| > 2, |y| >2, |2| >2andz-y-2>0. O
In particular if we put
V_ ={(Z,9) € R° | k(Z) = w(§) < -2}

then from the definition of S(T), f(S(T)) C V_. In fact we will see in
Proposition 3.3 that f(S(I')) = V.
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Lemma 3.2 V_ C R® consists of 2% connected components each one of
which is a 5 dimensional cell. More precisely, put U := V_ n {(Z,7) €
RS |2 >0, 4 >0(i=1,2)} and define the action of (Z/2Z)* on RS

by the change of signs of the coordinates z; and y; (i=1,2 ). Then U is
a 5 dimensional cell and V_ can be written as

V_ = ]_I ¥(U) ( disjoint union ).
v€(Z/22)

(Proof.) For r < —2 put
W, :={(z,y,2) € R® | k(z,y,2) =71, >0, y > 0, z > 0}

and u:=z -y, v:i=2+y for (x,y,2) € W,. Then by Lemma 3.1.2

2 4
v:\/jtztﬂ—z_z(?—i-r—z?) > 0.

Hence the next mapping is homeomorphic and consequently W, is a 2
dimensional cell.

W, ~ R x {zeR|z>2}
(2,9,2) = (u,2)

As UxW, xW,x{reR|r< -2}, Uisab dimensional cell and by
Lemma 3.1.2
V_ = I_I ’y(U). O
~e€(Z/2Z)*
Next lemma can be shown directly by calculation but it is a key lemma
for the whole story of this section.

Lemma 3.3 Let (A,B) € SLy(R)? be a pair of hyperbolic matrices (i.e.
[tr(A)] > 2 and |tr(B)| > 2 ) which satisfies the following condition

A

[4,B] = ( A ) (A< =1). ---1)

>= O
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If we put (z,y,2) := (tr(A),tr(B),tr(AB)), then k(z,y,2) < =2 and
there exists a constant k € R* := R — {0} such that A,B can be written as

A 1 A 2
A4 = (Tﬁx Hose? ‘1})
= 3 1
k ml‘
..2)
1 101 A .
x+1Y Abes ch (/\+1$7my}
B = (,\:1)21’2"1 A
k penid

TG Y

Conversely for any k € R* and (2,y,2) € R3 with k(z,y,z) < -2, define
A< =1 by )‘+'1X = k(z,y,2). Then the pair of matrices (A,B) € SLy(R)?
defined by the condition 2) satisfies 1) and (z,y,2) = (tr(A),tr(B),tr(AB)).

Because the pair (A,B) € SLy(R)? defined by the above condition 2) is
uniquely determined by k € R* and (z,y,2) € R with k(z,y,2) < -2, we
write it as

(A,B) = (A(z,y,z,k),B(z,y,2,k)). O
Now we can show the main result of this subsection.

Proposition 3.3 S(T') consists of 24 x 2 connected components each one
of which is a 6 dimensional cell.

(Proof.) First, we define the mapping ¥
¥ : t7Y(S(I)) — R*xV_x PGL(R).

For any p = (A1, B1, Az, B2) € t71(S(T)), we first diagonalize [A1, Bi].
More presisely, by using Lemma 3.3, we can choose P € PGLy(R) uniquely
such that by use of the notations in Lemma 3.3, (PA;P~',PB;P71) (i =
1,2) can be written as

PAP~Y = A(tr(A;),tr(B1),tr(A1B1),1)

PB1P_1 = B(tT(Al),tT‘(Bl),tT(AlBl),1)

PA2P_1 = ( _01 (1) ) A(tT(Az),tT(Bz),tT‘(AzBQ),k‘) ( (1) _;)1 )
PBP! = (_01 (1))B(tr(Ag),tr(B2),tr(A2B2),k)((1) “01

—-116—




where k € R* is some constant. We define the mapping ¥ by

U:tm(S() — R*xV_x PGL,(R)
p — (k, fot(p), P) .
Lemma 3.3 tells that ¥ 1is bijective and also homeomorphic. From the

definition, ¥ is PG Ly(R)-equivariant, hence it induces the homeomorphism
® from S(I') to R* x V_ as follows.

|0

t=1(S(T)) R* x V_ x PGLy(R)
¢t | proj.
ST) £ R*xV_

Moreover by Lemma 3.2, R*x V_ consists of 2 x 2 connected components
each one of which is a 6 dimensional cell. O

3.3 Cell structure of Teichmiiller space T,

Next we consider the conditions which characterize the connected compo-
nents of Xo(I') in S(I'). By the definition of @ in the proof of Proposition
3.3, the first component k of ® can be considered as a function on S(T') .

Proposition 3.4 Suppose U C S(I') be a connected component on which
the function I, -I,, -k is negative. Then there exists x € U such that x is
not contained in Xo(I'). Because Xo(T') consists of finitely many connected
components of X(I') by Corollary 2.4 this means that Xo(T)NU = ¢ .

(Proof.) First we remark that on a connected component U of S(T'), the
signs of the functions I, I,,, and k are constant. We consider (Z,7) € V_

satisfying |z;| = |y;| = 4 (¢ = 1,2,3). Then there are 2* points of V_

satisfing this condition. By use of the surjectivity of fly : U — V_, take
p = (A1, B1,A2,B;) € t71(S(T)) with t(p) € U and fot(p) = (Z,7).

If I, (t(p)) - Ia,(tp)) = tr(Ay)-tr(A2) = 16 > 0, then by using the
presentation of p = (A;, B1,A2,B;) in the proof of Proposition 3.3,
tr(A1Az) = -2 — k — £ where we write k(p) by k for the sake of sim-
plicity. Hence if k(p) = k = -2 (ie,ls, *Ia, -k < 0 on U), then
tr(A1A2) = 2 and this means that A4;A4; € SL2(R) is a parabolic matrix,
thus ¢(p) is not contained in Xo(I'). Similar argument holds for the case
I, (p) Lo, (p) = tr(Ay) -tr(A2) = -16 < 0. O
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From the above proof, There are 16 connected components of S(T') on
which the function I, - Ia, -k is negative. Hence the number of connected
components of Xo(T'), mo(Xo(T')) is less than or equal to 16. On the other
hand, as the argument in subsection 2.4 implies mo(Xo(T)) > 16, we get
the following result.

Theorem 3.1 7o(Xo(T')) = 16. Thus Teichmiiller space T2
T, = Hom(T',2/2Z) \ Xo(T)
is connected and by Proposition 3.3, it is a 6 dimensional cell in particular
contractible. O
3.4 Semialgebraic structure of Teichmiiller space T,

Previous argument shows the following presentation of Xo(T) as a subset
of X(T')

Xo(T)

{x € S(T)| Iy (x)  Jaa(x) - k(x) > 0 }
{x € X(T)| L; < =2 and Io,(x) - Tay(x) - k(x) > 0 }

where ¢; = [m,81] € T . This presentation induces the following semialge-
braic description of Xo(T') in X(T) .

Theorem 3.2 Xo(I') can be written as a semialgebraic subset of X(T)
as follows

(ICI (X) + 2) ) IO11012(X)
00 I 2

This means that for any representation p = (A1, By, Ag,B;) € R(T'), p 1s
a discrete and faithful SLa(R) -representation of T' if and only if

(tT([Al, Bi])+2)- tr(A142)
tr(A;) - tr(Az)

Xo(T) = {x € X(I) | L,(x) < -2,

t?‘([Al,Bl]) < =2 and > 2.

(Proof.) For any p = (A1,B1,42,B2) € t~1(S(T)), by calculating
tT(A]AQ)

k(p)? + (tr(A1A42) - 2tr(A1) - tr(A,)

k(o) +

tr([A1, B1]) + 2
tr(As) tr(4:)? _
o epre Vet Bprz VT

—118—




Considering this as the quadratic equation on k(p) , the constant term is pos-
itive, hence the sign of k(p) and the sign of the coefficient of the linear term
of this equation are opposite each other. Hence for p = (4, By, A2, By) €
t=1($(T))

tr(Ay) - tr(Ag) - K(p) > 0 ¢ LLUALBD +2) 1r(414y)

tr(Ap) - tr(A2)

Remark Because each connected component of Xo(I') is separated by
the action of Hom([',Z/2Z) i.e., the sign conditions of the functions
Io,,Ip,, 1o, and Ig,, therefore adding these 4 conditions, we can get the
semialgebraic description of T, by use of 6 polynomial inequalities ( see
Corollary 2.7 ). O

>2.0

4 Semialgebraic description of Teichmiiller space
T, (g>3 case)

In this section, we assume g > 3 . We show the connectivity, contractibility
and semialgebraic description of Teichmiiller space T, following the similar
lines in section 3.

4.1 Definition of the semialgebraic subset S(I') of X(I')
We define the open semialgebraic subset S(I') of X(T') by
STy:={xeXT) | I,(x)<-2(E=1-",9)
Idj(X) < -2 (] =2,-,9— 2)}

where ¢; := [a;, 3;] € T and d; := 12+ - ¢;.
Similar arguments of Proposition 3.1 and 3.2 show

Proposition 4.1 $(I') C X'(T). Hence by Proposition 2.3 , t=1(S(T')) 4
S(T) is a PGLy(R)-bundle and we can consider S(T') as the PGLy(R)-
adjoint quotient of t~1(S(T)) i.e.,

S(T') = t71(S(I'))/PGLy(R). O
Proposition 4.2 Xo(T') C S(T'). O

Moreover if a representation p = (A1, By,---,Aq, Bg) is contained in
Ro(T), the representation p; := (4;,B;j, Aj41, Bjt1, - Aj-1,Bj-1) (U =
2,+--,9) is well defined and also an element of Ro(I'), hence we have
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Corollary 4.1 For x € Xo(T), Iy, (x) < =2 (i = 2,---,9) where we
assume that cg4y =c¢1. O

Corollary 4.2 Above arguments show the following diagram. O

R(T) > R() D t7'(s() > Ro(T)
t] | | |
xX@ry > X(I') > S(T) O Xo(T)
4.2 Topological structure of S(I')

In this subsection, by constructing the global coordinates of 5(T), we will
show that S(T') consists of 229 x 2%~3 connected components each one of
which is a 6g-6 dimensional cell. For this purpose we need some preliminar-
ies.

First we define the polynomial mapping f from X(T') to R by

f(x) = (Ial(X)vIﬁ1(X)7Iaxﬁ1 (x)s- 7Iag(X),Iﬁg(X)’Iagﬁg(X))

for x € X(T').
R(T)
fot

tl N\
xr) L R¥

Let (#},---,%,) denote the coordinates (211, %12,213,°* "5 g1, Tg2,Tg3)
of R3Y . We define the semialgebraic subset V_ by

Vo = {(g1,- %) eRY | k()< -2 (i= 1,---,9)}

where k(z,y,2) is the polynomial function on R? defined in subsection
3.9. Then from the definition of S(I'), f(S(T')) C V_. In fact we will see in
the proof of Proposition 4.3 that f(S(T')) = V_.

We can prove the next lemma by the same argument in Lemma 3.2.

Lemma 4.1 V_ C R consists of 2%9 connected components each one
of which is a 3¢ dimensional cell. More precisely, put

U:=V_n{(g, ,5) eR¥|z; >0 (i=1,--+,9j=12)}
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and define the action of (Z/2Z)*% on R3 by the change of signs of
zij (t=1,---,97=1,2). Then Uis a 3g dimensional cell and V_ can be
writlen as
V_ = U 1(U) (disjoint union). O
~E(Z]2Z)29
Next lemma which is shown by elementary calculation is a key lemma in
this section.

Lemma 4.2 1. For a pair of hyperbolic matrices (C1,C2) € SLy(R)?,
assume that Cy 1is diagonal

clz(g 2) (7< —1).

n

If the traces of C1,Cy and C1Cy satisfy
z:=1r(C1) < =2, y:=tr(C3) < =2 and z := tr(C1Cy) < =2 - 1)

then there exists m € R* such that C, can be written as follows.

ney m
Cy = ( 1 gn(n —22(_172—1/2 (ny—2) ) -e-2)
it ZZn ) 1} nn ="

Conversely , for any constant m € R* and (z,y,z) € R3 with

T < -2,y< —-2and z < -2, ifwe put n < —1 with 77+% =z

n 0

o L
n

(z,y,2) = (tr(C1),tr(Cy),tr(C1C2)) as the condition 1). We write

C, defined by the condition 2) by C(z,y,z,m).

and define C; = and C, by the condition 2), then

2. Moreover for such a pair (Cy,C3) € SLy(R)?, we can diagonalize
C1C; and Cz by using the following matrices P,Q € SLy(R).

1 _ mT
P .= -1,
= 2P - -nnz—y) ru(nz—y)=(n>=1)

mn(n®-1) (n=1)(r2-1)

where T < —1 with +1 = 2 = t7(C1C2) and C;Cy = P (S

1 -g;i_%
Q:= EP—1)—(nz~y) &nz—y)—(n*-1)

m(n?-~1)- (n?-1)(€2-1)

V= O

)
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where§<—1with§+l:y=t1‘Cg and Cy = Q 6(1] Q.
€ 0 =

3
In the following we write these P and Q by P(z,y,z,m) and Q(z,y,z,m). O

Proposition 4.3 S(I') consists of 229 % 2293  connected components
each one of which is a 6g-6 dimensional cell.

(Proof.) We construct the mapping v
¥ tY(S(r) —» Vox{weR|w< —2}93 % (R*)9 3 x (R*)! x PGL,(R)

as follows.
For p=(A;,B1, --,Ag,By) € t=1(S(T)), put

(£1,--+,%) = fot(p) € V. ( where z; := (.Z‘n,l‘n,wia))
C; = [Ai,Bi] (1= 1,---,9)
u; = tr(C)=k(F) (i=1,---,9)
Di = CpoCk (k=1,-,9-1)
wy = tr(Dg) (k=1,---,9-1).

We remark that

D, =
L1 u1
wg_l = Ug

Because of the definition of S(I')
wy < =2, ug < =2, and wy < ~2.

Lemma 4.2.1 shows that there exists R € PGLy(R) uniquely such that

0 . 1
RCiR! = (73 L) (771<—1wzthn1+;’:=w1)

m

RC,R™' = C(wy,ugz,w,1).

Then by Lemma 4.2.2 there exists Py = P(wy,ug,wy,1) such that

0 1
RD2R—1 =Ph ( 162 1 ) Pl_l (772 < —lwithm+ —= ’U)2).
m2 m
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Similarly because
wy < —2, uz < =2, and w3z < =2
Lemma 4.2.1 shows that there exists a constant my; € R* such that
RC3R™! = PiC(w2,us, w3, m1) P!

and by Lemma 4.2.2 there exists P, = P(w;, uz, w3, my) such that

0 . 1
RD3R"1 = P1P2 ( %3 1 ) P2—1P1—1 (773 < —1with n3 + % = wg).
13

Inductively, for 7 =2,---,9 — 1, because
w1 < =2, u; < =2, and w; < =2

Lemma 4.2 shows

RCJ‘R_l = P "-P]'_2C(wj_1,u]',’w]',mj,g)Pj—_IQ--'Pl—l
p-1 _ , n; 0 -1 -1
RD;R = P ---Pj_4 0o L Pj_l"'Pl
3

where m;_, € R* with mg =1, P;_y = P(w;_1,uj,w;, mj_3) with

0
Moreover RC_,,R‘1 can be written as

_ 0 1 Ng-1 0 0 -1 _ -
RCgR 1:P1-.~Pg_2<—1 0)( 90 nll )(1 0 ) g._12"'P1 1.
g—

On the other hand by Lemma 3.3

10 .
PO:( 1)amd n; < —1 with nj—}-%:wj.

RAIR™Y = A(di, k)
RBiR™' = B(ay,k)

for some k; € R* where we write A(z11,212,213,k1) by A(21,k) . By
Lemma 4.2.2 there exist Q2 = Q(wy, up,w,, 1) and k2 € R* such that

RAR™Y = QrA(5%,k2)Q5"
RB,R™' = Q2B(33,k2)Q5".
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We put

S'(T) = {x € S(I) | mj(x) >0(i =1,---,9 = 3)}-

Proposition 4.9 For p = (A1, B1,+++, 44, Bg) € t~1(8'(T)) we write
zi(p) - ki(p) (i=1,---,9) by zir - ki for the sake of simplicity. Then

zip-ki>0 (i=1,---,9)
if and only if

tr([A;, Bi][Ait1, Big1)) + tr[Ais1, Biyi] < tr(Ai[Ais1, Biy1]) -
tr{Ai, Bi] + 2 trA; '

We omit the proof of the above propositions.
Above consideration shows the semialgebraic presentation of Xo(T').

Theorem 4.2 For a;,3; € T, put ¢; := [a;, ;) (i=1,--+,9), and

di==c1---¢c; (3=1,--,9- 1). Then x € X(T') is contained in Xo(T) if
and only if x satisfies the following 4g-6 inequalities on I, ( € T) .

L(x)<-2 (i=1,---,9),
I;(x) <=2 (7=2,---,9-2),
Loy () + Ieiy s 00 Jagersa () (k=1,--,9)
I (x) +2 o (X) o
Ty OO, () a0, (X)) + Loy (X ey (X))
> 2(Lg, (0 erss 00 + Tergs 00214, 00) + Ty, ()7 = Daern(X)
([: 1,"',9—3)
where we assume that cg41 = €1.
By adding 2g inequalities which consist of the sign conditions of I, I, (1 =

1,-++,g) (see Corollary 2.7) , we can also describe T, by 6g-6 polynomial
inequalities in X(T') . O
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Semialgebraic description of Teichmiiller space
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Abstract

We give a concrete semialgebraic description of Teichmiiller space
Ty of the closed surface group T'y of genus g(> 2). We also show the
connectivity and contractibility of T, from a view point of SLy(R)-
representations of I'y.

1 Introduction

Teichmiiller space T, of compact Riemann surfaces of genus g(> 2) is the
moduli space of marked Riemann surfaces of genus g. Thanks to the uni-
formization theorem due to Klein, Koebe and Poincaré, any compact Rie-
mann surface of genus g(> 2) can be obtained as the quotient space G \ H
where H is the upper half plane and G is a cocompact Fuchsian group i.e.,
a cocompact discrete subgroup of PSL2(R). And as an abstract group , G
is isomorphic to the surface group I'y which has the following presentation

g )
1-‘g = (alaﬂla"' 7ag,ﬂg| H(ai ':Bi ) ai_l 'ﬂi_l) = id) .

i=1

From this view point, T, can be considered as the deformation space of a
Fuchsian group which is isomorphic to Iy and this is called Fricke moduli
studied by Fricke himself and more precisely by Keen ([F],[K]).

In this article, we consider this Fricke moduli from a view point of
S Ly(R)-representations of the surface group I'y. We treat T, as the PG Ly(R)-

adjoint quotient of the set of discrete and faithful PSLy(R)-representations
of I'y

T, = {T'y = PSLy(R) : discreteand faithful}/PGLo(R)
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