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Abstract

We consider the Cauchy problem for the two-dimensional
vorticity equation. We show that the solution w behaves like a
constant multiple of the Gauss kernel having the same total
vorticity as time tends to infinity. No particular structure of
initial data w, = w(x,0) 1is assumed except the restriction that
the Reynolds number R = Ilwoldx/v is small, where Vv is the
kinematic viscosity. Applying a time-dependent scale
transformation, we show a stability of Burgers' vortex, which

physically implies formation of a concentrated vortex.

1. Introduction

This paper studies the large time asymptotic behavior of the

vorticity distribution of two-dimensional viscous incompressible

flow. We consider the two-dimensional vorticity equation
dw
(1) 3t vaiw + (v-V)w = 0 , v = Kiw

which is known to be equivalent to the Navier-Stokes equations.

Here w = w(x,t) and v = (vl(x,t),v2(x,t)) represent the scalar

vorticity distribution and the velocity field, respectively ; v >
2 .

0 is the kinematic viscosity and v-V = §} vja/axj . The second
i=1

equation involving the convolution * is called the Biot-Savart

law. Its explicit form is



vix,t) = [ 2K(x—y)w(y.’c)dy s
R
where K 1is the vector function
K(x,,X,) = (-X,,X )/2n|x|2 X = (X,,X.)
1772 2°°1 ' - 172

There is a special solution to (1) called Oseen's vortex [17]

2
_ X _oAxl” .
(2) w*K(x,t) = ot exp ( Aot ) (K : real number) ,
where kK is the strength of the vortex. Since Wk is a Gauss
kernel, w*K is regarded as a solution of (1) with the initiatl
data w*K(x,O) = K&6(X) where 6(x) is Dirac's delta function.

The main goal of this paper is to show that even if we start
with a general initial vorticity distribution wo the solution w

0f (1) behaves like the above special solution We, Aas t > o

with the total vorticity « = Iwodx provided that the Reynolds

number R = leoldx/v is sufficiently small. In fact, we prove

-1+1/p-6

(3) lw-w Ilp(t) < C(vt) t >0, 1

A
e}
IA

8

%K

for 0 < 86 < 1/2 provided that R is sufficiently small and that
leo|(|x|2+1)dx is finite where C is a constant independent of
t and Vv ; H-Hp denotes the LP-norm in space variables. Since

” -1+1/p

estimate (3) gives an asymptotic expression of w as t =2 « ., No

= t
It C K (Vt)

Wk p , (Cp:constant dependig only on p), our

particular structure of initial vorticity wo is assumed.
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As an application of (3) we show a stability of Burgers'
vortex [51, which physically implies formation of a concentrated
vortex. We consider a three-dimensional viscous incompressible
flow expressed as a superposition of two flows - an axisymmetric
irrotational flow and a two-dimensional flow the vorticity of
which directs to the symmetry axis. The axisymmetric flow is
assumed to have an inward convection and axially stretching flow
which is an incompressible flow with constant rate of strain. We
show that the vorticity field tends to its equilibrium state
called Burgers' vortex as the time tends to infinity, provided
that Reynolds number R of the rotational part is sufficiently
small. In fact the three-dimensional vorticity equations can be
transformed to (1) by a time-dependent scale transformation due to
Kambe [11,13] and Lundgren [16]. Such an asymptotic behavior is
shown by Kambe [12] assuming that initial vorticity is axially
symmetric but for arbitrary R since the governing equation (1)
is reduced to the heat equation. Our resulis extend this because
no particular structure of initial vorticity is assumed. Although
we are forced to assume that R is small, we do not restrict the
speed of the axisymmetric irrotational flow.

To prove (3) we study the integral form of (1)

t
(4) w(t) = e“tAwo + B(w,w) , B(w,w) = - f eV S8 9w (s)yds
0
where U = evtAwo solves the heat equation atU - VAU = 0 with

U(x,0) = wo and w(t) = w(-,t) , Unfortunately, the term B(w,w)

can not be regarded as a minor term as t 2 o , unless we use the
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special structure of B . Since Wk defined in (2) is radially

symmetric, as is easily seen Wk solves (1) with (v.-V)w = 0

This implies B(w*K,w*K) = 0 . Applying this property to (4) we

rewrite the equation for the difference w = w - m*K to obtain

(6) w =W + B(w,w) + B(w,w_) + Blu_,w) , W= V8

We estimate the right hand side of (5). Based on the decay
estimate

(6) lwll ety < crt~1*1/p

obtained by Giga, Miyakawa and Osada [8], one can regard B's in
(5) as perturbation terms provided that R is sufficiently small.
Thus the estimate for w in (5) is reduced to the estimate for ¥
which is easy to derive. As is seen above, our result (3) heavily
depends on the particular structure of the nonlinear term in (1)
and the estimate (6).

It turns out that the estimate (3) is still valid even if we
allow to choose a finite Radon measure as initial vorticity rather
than integrable functions. Since w(x,t) is regularized
instanteneously, this is not a substantial improvement of the
results. However, all estimates are parallel and there appears no
extra difficulty. So we rather start with a finite Radon measure
because the initial value of w is k&6(x) , which is a typical

%K

example of a finite Radon measure but not an integrable function.



We note that vortex sheets of finite length is another example of
finite Radon measures.

There are many works on the large time behavior of solutions
of the Navier-Stokes equations on R"(cf.[2,10,14,18,20,21,221)
However, when n = 2 it is usually assumed that initial velocity
vy = K*wo is in L2(R2) , in other words the initial total energy
is finite. Our assumption does not imply v0 € L2(R2) even if we
assume W € Ll(Rg) . So our situation is not included in those
treated in the literature. 1In our setting even the existence of
solution of (1) is recently proved in [8] with a decay estimate
(6). The decay results in the literature is mostly not for the
vorticity but the velocity especially its Lz—norm. For more
detailed comparison with the literature, see Remark 4.4.

We study in Section 2 the asymptotic behavior of the
solutions of the heat equation so that we estimate the decay of W
in (58). In Section 3 we recall the estimate (6) and prepare
estimates for B . In Section 4 we state our main results
including (3), which are proved in Section 5. The final section
is devoted to an application of our results in Section 3, which is

mentioned in the third paragraph of Introduction.

2. The heat equation

The goal of this section is to prepare various estimates for
the solution of the heat equation as time t tends to infinity.
We are especially concerned with estimates for the second term in
the asymptotic expansion of the solution as t =

n

Let G be the Gauss kernel on R defined by



2
G(x,t) = -—1—375 exp (- l%%—) s, X € Rn , t >0
(4nt)

As is well known the function

Ux,t) = J nG(x-—y,t)a(y)dy (= G*xa)
R

solves the heat equation

atu - AU = 0 for t > O
with
U(x,0) = lim U(x,t) = a(x)
t=2+0

The meaning of the convergence of U(x,t) as t = +0 depends on

a class of functions a we consider. We shall write U by

etAa The semigroup etA is used only for the convenience of

notation ; we shall not use the abstract theory of semigroups in

this paper.

We collect various estimates for G(= etAé) and etAa . A

direct calculation shows

_ r 1/r _ -0(r) _n . 1
(2.1a) HGIIr = (I anl dx) = C.t ,» O(r) = (1=

R

,t—O(r)—1/2

(2.1b) Hajcur = C! , 9, = a/axj



where Cr and C} are constants depending only on n and r .

When r = o , (2.la) and (2.1b) still hold if we regard |[flj, as

the superimum of |f| on R"™ and od(e) = n/2. Applying the

Young inequality.

(2.2) Hf*ng < llfllr Hqu

for 1/p = 1/r + 1/q -1 , 1 < p, q, r < ©» with f =G, g = a8 ,

we see (2.1la,b) yields

(2.38) hetBall ¢ ct™ ATV ) ks 0 1<aq¢p¢m
2.3)  llaetPall) ¢ ctTM/ITVRIZT 215y 0y s 0

1 <gpg®
where C = max(supr Cr,supr C;) depends only on n . This gives

a decay estimate for etAa as t 2 ©» provided a 1is in Lq(Rn)

In particular, (2.3a) yields
(2.4) le®all ) ¢ ct™®®al; t>0,1¢p <o

This estimate extends to a finite Radon measure a on R"

A finite Radon measure u is a Schwartz distribution which is a
bounded linear functional on the Banach space BC(R™) of bounded
continuous functions on R"™ . In other words u is an element of

M(R™) , the dual space of BC(R™ . The norm of u in M®ER" is



called the total variation of u denoted by Huﬂl . Its explicit

definition is

Hqu =  sup II d(xdudxy| ,
[Rn

$EBC(R™)
loll <1

where [¢(X)u(dx) denotes the canonical duality pairing.
The estimate (2.4) holds for a € M(R") if we regard HaH1 as
the total variation of a . In fact, (2.2) is valid for a Radon
measure g by setting q =1 and p =r

We next approximate etAa by oG with o = Ja(x)dx for
large t . Formally,

e tPay (x)

[ nG(x—y,t)a(y)dy
R

2
G(x)f exp(gz;X:le~)a(y)dy
R" 4t

H

u
R
Q
+
(=)
~~
-+
N

as t » ®» (pointwise) ,

2 2
since expgzi%—x~ =1 + gﬁj%*z— + We give a rigorous
meaning for this approximation. Since we are interested in

t—1/2

uniform estimates in x , we lose in estimating the error

term.

Lemma 2.1. Assume that 1 < p ¢ » and that a 4is a finite Radon

measure on R



(2.5) lletBa - oGl < Ct‘U‘p’<t“1/2n1x|an1 T xiFalp Lt >0,

where ad(p) n(l-1/p)/2 and C depene

s only on n

In particular,

(2.6) ||etA

a—aGHp < Ct'O(p)'l/ZII(IXI2

+Dall; for t >0
Proof. The idea of the proof is standard. Estimates similar to
those used in the proof often appear in constructing the
fundamental solutions of parabolic equations (see eg. [6,151).
However, since the proof is short we give if here for
completeness. We write the proof pretending that the measure has
the density, i.e., a € Ll(Rn) only to use a standard calculus
notation. The proof is the same for general a € M(R™) if we
modify notation by replacing a(y)dy , la(y)ldy by addy) ,
lal(dy) , respectively, since all functions appearing below are
continuous in each variables for t > O

Since [de = 1 we see

etla - oG = Ih(x,y,t)a(y)dy
with

h(x,y,t) = G(x-y,t) - G(x,t)

where the integration is over Rn By the mean value theorem we
have

n/2 2x-x—lx|2 le2
(2.7) (4nt) h{x,y,t) = (exp( 4T )-1)exp(- 4t )
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4t 4%
where ¢ is a number between zero and 2x-y - ly|2
2
1f 2x-y - |yl® 20, then z < 2x-y - lyl2 which yields

2
1x12 - ¢ > |x-yl?

Applying this to (2.7) gives

; 2
1can)™ 2 n ¢ T ey ey Prexp - 122X

Zz exp(- 822/4) < o for R > 0,

Since AB = supz

>0

we see

2
x-yl/e! 2rexp- BlEorloy oy

We take B such that 0 < B < 1 and fix 8B to obtain

(2.8) Ilh(x,y,t)] < k(y,t)G(x-y,¥t) ,

1/2+'Yl2 /2

k(y,t) = (Aglyl/2t /atH)y™ e, vy = 1/01-8) ,

provided 2x-y - Iyl2 >0 . If 2x.y - lyl2 <o,

we see g < 0 . This time (2.7) yields

2
1canH) ™2 n) < dyl?/eezlxl iyl /oexp - 125

..11._



As is before we obtain

(2.9) Ih(x,y,t)] ¢ k(y,t)G(x,yt)

9
provided 2x-y - [|y]|© < 0
The estimates (2.8) and (2.9) yield

ytA

F(x) = [fhadYI < max(e (klaly , G(x,yt)-fklaldy) .

Applying (2.4) and (2.1a) gives
IFcol, s ct™ 0 xlall,

with C depending only on n . This is the same ag (2.5),

1/2+|y|2/t) . The estimate (2.6) for t > 1

since k < C(ly|/t
follows from (2.5). Since J|al ¢ HaHl , the estimate (2.6) for
t <1 follows from (2.1a) and (2.3a) with t (1. We thus obtain

(2.6) . O
3. The two-dimensional vorticity equation

The first part of this section reviews the existence of
solutions to the two-dimensional vorticity equation with measures

as initial vorticity. We also recall decay estimates for the

vorticity as time tends to infinity.
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The second part is devoted to the study of properties of the
nonlinear term in the vorticity equation which is useful in the

sequel.

Existence results mentioned above are not classical because
the initial velocity may not be locally square summable even if
initial vorticity is in LI(RZ) . The first attack is done by
Benfatto, Esposito and Pulvirenti [3], where they prove the global
existence for small initial vorticity consisting of a linear
combination of &6-functions supported at a point of the plane.
Recently, Miyakawa, Osada and the first author [8] improve their
results. Without the smallness assumption they [8] constructed a
global solution even if initial vorticity is a finite Radon
measure, and also give decay estimates for the vorticity as time
tends to infinity.

We consider the two-dimensional vorticity equation

(3.1) wy - Hw + (v-V)w = 0

(3.2) v = Kxw ,
where K is the vector function
K(x.,%.) = (-x.,%x,0/2n|x|? X = (X.,%.) ;
1772 2°71 ’ 1’727

we shall always assume the space dimension n = 2

Here the vorticity w = w(x,t) 1is scalar since n = 2 . The
convolution operator Kx improves differentiability of order one.
Another expression of this regularizing property of Kx is

-18-



(3.3) HK*pr < canq 1/q = 1/p + 1/2 , 1 < q < 2
obtained by the Hardy-Littlewood-Sobolev inequality (see eg.[19,
p.281), where Hqu denotes the norm of f in L%(R%®) and C
depends only on g . We consider (3.1) and (3.2) with initial

condition

(3.4) w(x,0) = lim w(x,t) = vw_(x)
t—2+o0 0
If w, is a finite Radon measure on R2 , i.e., 0 € M(Rz) , the

convergence should be understood under the weak topology of

measures, that is,

lim [ 2d>(x)w(x,t)dx = I 2¢(x)w (dx)
t2+0 R R 0

for every bounded continuous functions ¢ on Rz . We write

w(x,t)dx rather than w(dx,t) because the solution w we handle

is smooth for t > 0

Proposition 3.1. Suppose that w, € M(Rz) , i.e, w is a Radon

=
I
I

on R® such that the total variation J|lw ||

measure is
o1

finite. There is a global solution of (3.1),(3.2) and (3.4) such
that

(3.5) loll (t) < ct™ 1179y £ >0, 1<qgw

q o1
- 9
(3.6) lvil jct) ¢ et 1/~*1/inon1 t >0, 2<pgw

_14_.



k. h _
(3.7) sup, L pllV Al () < kK,h = 0,1,2,--+ t >0
(3.8) [ w(x,t)dx = I w (dx) , t >0
RZ RZ 0
with C=Cm, C' = C'(m,p) for Hwonl <m. The estimate

(3.7) in particular implies that w is smooth for t > 0

Proof. This is essentially a combination of Theorems 4.2 and 4.3
in [8]1 with initial velocity u, = K*wo . In fact, Theorem 4.2 in
[8]1 asserts that there is a smooth solution u(x,t) for t > 0

to the Navier-Stokes system

u, - Au + (u-Vu + Vp =0, Veu = 0

t

with initial velocity U, and initial vorticity woo- Taking VX
of the first equation shows that w = V xu with v = u solves
(3.1) for t > 0 . Since Theorem 4.2 (4.1) in [8] implies HuHr(t)
o for t >0, r > 2 , applying Lemma 2.2(ii) in [8] , we see

Vxu solves (3.2) with v = u . We thus conclude that w = VUxu ,

W

v = u solves (3.1)-(3.2) for t > 0 , where u 1is in Theorem 4.2 [8]

The initial condition (3.4) is contained in Theorem 4.2(ii)
of [8]1. The estimate (3.5) is the same as (4.7) of Theorem 4.3 in
[81. This together with (3.3) yields (3.6). The estimate (3.7)
immediately follows from Theorem 4.2(iv) in [81. Theorem 4.3 in

[8] also gives a representation for w

_15_



w(x,t) = Ir(x,t;y,O)wo(dy)

with TI'(x,t,vy,s) > 0 and ff(x,t,y,s)dx = 1 , where the
integration is over R2 . This yields the conservation of the
vorticity (3.8). (We note that the representation for w

together with estimates for ' yields (3.5)).

Remark 3.2. If point vortex part of initial measure w, is small
we have the uniqueness of solution in a certain class of functions
{81. In particular, if Hwonl is small or w_  contains no point
vortices, one can claim the uniqueness with additional conditions.
(¢f. Theorem 4.5. in [81). For general initial data in M(Rz) we
do not know what conditions guarantee the uniqueness of solutions.

However, since our w in Proposition 3.1 has as physically

reasonble properties like (3.8), by a solution of the vorticity

equation, we shall always mean w(x,t) in Proposition 3.1.
It is convenient to write the equations (3.1),(3.2) and (3.4)
in its integral form. Formally the system (3.1),(3.2),(3.4) is

equivalent to

(3.9) w(t) = etAwo + B(w,w)
t
(3.10) B(w,w) = I bt(w,w)(s)ds
8]
= - g.a(t-s)4 _
bt(wl’wz)(S) = V.e (vlwz)(s) » vy S K*wl
2 .
= - L2, 8% ) w0
j=1 4 -

_16_



since V:v = 0 implies V:(vw) = (v:V)w and since V commutes

with etA . Here etA is the solution operator of the heat

equation defined in section 2, i.e., etAf = Gxf , and w(t) =

w(-, t)

Proposition 3.3. Suppose that w(x,t) is a soglution of the

vorticity equation where w(x,0) = W € M(R"™) . Then
Hbt(w.w)Hl(s) is integrable on (0,t) where b, 1is defined in
(3.10). Moreover w(t) = w(-,t) solves the integral equation

(3.9).

Proof. Applying (2.1b) yields

”bt(w,w)(s)ul < C(t-s)—l/zﬂku1

The estimates (3.5) and (3.6) now show that Hbt(w,w)(s)ﬂl is
integrable on (0,t)

It remains to prove that w solves (3.9). By (3.7) a
classical uniqueness theorem of solutions of the heat equation

[6]1] shows that

t
(3.11) wet) = e PTED ey I b, (w,w) (s)ds
E

for € > 0 . We shall show that for t > O

(80 ey o etAwo weakly in M(RZ) as &~ 0 i.e.

-17-



(t-g)A tA

(3.12) lim ($,e w(e)) = (¢,e "0 )
€720
for every bounded continuous function ¢ , where (¢,d) = I¢¢dx
We have
(e (17818 gy - etAwo . )
= ({8 ey, o) + (etliuiey - W), )
= eE D ey (1-ePy4) + (wle) - wo,etA¢) =1, + 1,

Using (2.4) and (3.5), the first term is estimated as

EA
1,1 < cllw I, Icr-eDall, .
Since e€A¢ 2 ¢ uniformly as € - 0 , I1 > 0 as € =2 0 .
Since w(g) - wo weakly in M(Rz) as € 2 0 we see 12 > 0 as

€ 2 0 . We thus obtain (3.12) . Since Hbt(w,w)(s)nl is
integrable on (0,t) , (3.12) now yields (3.9) by letting &£ =2 0

in (3.11). O

The remaining part of this section is devoted to the study of

B defined in (3.10).

Lemma 3.4. Let bt and

(3.10). Then (Kxf-VU)g

t
g
i
g
i)
I
li—l
1 b
-
=
I
0]
=
'—h

ms defined in

i
<
12}
o]
o
~
]

0]
A

1l
[
[

and B(f,g) =

1
provided that f and g are radially symmetric, where K

2
(—xz,xl)/2n|x|

_18-



Proof. This is elementary and well known. If f 1is radial, the
derivative (K%xf-V) contains only the angular derivative. If g

is also radial, this implies (K*f:-V)g = 0 . We thus conclude

b,(f,g) = 0 so B(f,g) = 0 . o

The second property of B we need is the estimate for B
As we see later, it is convenient to divide the integral in B
into two parts - the region where s is close to t and s is

close to zero. We write

t/2
Bl(wl,wz)(t) J bt(wl’WZ)(T)dT .

(3.13)

0
t
Bz(wl,wz)(t) [t/zbt(wl’WQ)(T)dT

with

- _ g.at-T)A _
bt(wl,wz)(r) = V-e (vlwg)(r) » Vy = K*w1

so that

B(wl,wz) = Bl(wl,wz) + Bz(wl,wz)

To simplify notation, for a function f on Rz X (0,T) we encode

the decay in 1 in norms

(3.14) [£] sup tl‘lfpnfnp

pT ~ 0<t<T

sup t

1-1/p+s
[£] 0<t<T Hpr .

p8T

For example [f1] <1 for all T is equivalent to Hpr(t) <

pT
1-1/p

1/t for all t >0 . We estimate the decay rate of B by

using the decay rate of each variables in B

_19_



Lemma 3.5. Suppose that

£s < pgL>,

1 <{r o with 1/s = 1/q + 1/r - 1/2 There is a positive
constant C depending only on p,q,r and & such that
(3.15) [Bl(wl’WZ)]péT < C mxn([wllqéT[wzlrT , [wquT[w2]r6T
with 6 < 1/s - 1/2 and that

(3.16) [Bz(wl’wz)]péT < C mln([wllqéT[wzlrT ' [wlqu[wzlréT
with 1/s < 1/2 + 1/p Here w, and w, are functions on R
«0,T) ; B1 and B2 are defined by (3.13).

Proof. Since v1 = K*w1 , we have by (3.3)

Ilvlll6 < clllwlllq

Using H8lder's inegquality,

v woll, < vl Tyl

Applying (2.3b) now yields

(3.17) Hbt(wl,wz)ﬂp(r)

1/6 =

1/g - 1/2 , 1 < q < 2

we have

I~

N

Ve

Cyllvylly vyl v 175 =

c,(t-

) T)-1/2—1/s+1/p”v1w (1)

2”s

C M(t-r) 1/271/8%1/p mo(@)=0(r) =8

_20_
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)

)

2

1/86 + 1/r < 1

3

X



with M = [wllqéT[WZ]rT w2 rST

constant depending only on p,q and r and o(g) =1 - 1/q

or [wlqu[ ] where Cj is a

The restrictions on exponents p,q,r so far we use are

(3.18) 1 < s ¢ p < > 1 <q < 2, 1 <r < » with

1/s = 1/q + 1/r - 1/2

Since we see

£/2
f (=1 "% Bar = c(a, )t B for B <1

0

(c(x,B) : constant independent of t)

by setting T = tt , the estimate (3.17) now yields

t
-0(p
(3.19) HBl(wl,wz)Hp(t) < J Hbt(wl,wz)ﬂp(r)dr < C Mt

0

provided that
g(q) + o(r) + &6 < 1 ,
which is equivalent to

(3.20) 8§ < 1/s - 1/2

_21_
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The estimate (3.19) yields (3.15) under the restrictions (3.18)
and (3.20).

It remains to prove (3.16). Since, as is before,

(t-1) %1t “dt = ¢'(a,8)t for a < 1

It o ~f -x~R+1
t/2

the estimate (3.17) now yields

-g(p)-6

(3.21) IIBz(wl,wz)Hp(t) < C_Mt , t >0

)

provided that

1/2 + 1/s - 1/p < 1 ,
which is equivalent to
(3.22) 1/s < 1/2 + 1/p

The estimate (3.21) vyields (3.16) under (3.18) and (3.22) which

completes the proof.
4, Large time asymptotics of the vorticity

This section states our main results on the large time

behavior of solutions of the vorticity equation.

Let wo be a finite Radon measure on Rz , i.e. wo € M(Rz)

We denote the_total vorticity (at time zero) by

_22_



(4.1) K = [ w (dx)
PZ o

We define +the Reynolds number (at time zero) by

-1
(4.2) = J =
R v |R2Iwol(dx) HwOHI/v

where v > 0 1is the kinematic viscosity which is assumed one in

(3.1). The function

(4.3) W, (X, 1) = exp(- |x12/4vt) = kG(x,vt) , x € RZ

K
4nvi

is a solution of the heat equation

wt - VAw = 0
with w(x,0) = k&6(x) . Since Wk is radially symmetric, Lemma
3.4 implies that (V*K‘V)w*K = 0 where Ve = K*w*K
¥e thus see w*K solves the vorticity equation with v > 0
(4.4) wt - VAw + (v-V)w = 0
(4.5) v = Kkw
with initial data kK&6(xX) € M(Rz) . To avoid later confusion by a

solution of the vorticity equation with Vv we shall always mean a

solution of (4.4)-(4.5) with (3.4) which satisfies (3.5)-(3.8)

with w(x,0) = w_ € M(R%) . Since one can reduce (4.4)-(4.5) to

_23_



(3.1)-(3.2) by a normalization, Proposition 3.1 guarantees the
existence of such a solution for w(x,0) = wo € M(Rz) . For a
solution w , (3.8) implies that the total vorticity is conserved

for all time, namely

K = [ 2w(x,t)dx , t 20
R

where «k is defined in (4.1). This says that the total vorticity
is defined independent of time.

We claim that a solution w of the vorticity equation with
vV  behaves like Wk with the same total vorticity K provided
the Reynolds number R is small no matter what initial vorticity
w, € M(Rz) is.

Theorem 4.1. Suppose that the kinematic viscosity Vv equals 1

and that w(x,t) 1is a solution of the vorti

- 2

w(x,0) = W, € M(Rz) . For every 6 , 0 < &6 < 1/2 , there is € >
0 depending only on & such that if the Reynolds number R in
(4.2) is smaller than & , then

_ -1+1/p-6
(4.6a) [} w w*KHp(t) < CNt
(4.6b) Hw-etAwOHp(t) CentTIFH/PTS s 1 (p<w
with a universal constant C and N = II(IXI2+1)wOH1 , where «
is the total vorticity of w and w is defined in (4.3)
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We postpone to prove this theorem in the next section.
Admitting Theorem 4.1, we derive various results. First, we
observe that Theorem 4.1 gives the large time behavior of a
solution w(x,t) of the vorticity equation with v > 0 just by a
normalization. In fact w(x,t) = v—lw(x,t/v) is a solution of

the vorticity equation with v = 1 where w(x,0) v_lw(x,O)

Using this relation one can rewrite Theorem 4.1 for general v > 0

Theorem 4.2. Suppose that w(x,t) 1is a sclution of the

vorticity equation with v > 0 for w(x,0) = w, € M(Rz)

For every &6 , 0 < 6 < 1/2 , there is € > 0 depending only on &

such that R < & implies
_ -1+1/p-8
(4.7a) Il w w*KHp(t) < CN(tw)
(4.7b) Hw—thAmOHp(t) CeNCtwy IF/PTS s 1< p ¢ w
with a universal constant C and N = H(Ix|2+1)wol|1 , where «
is the total vorticity of w and Wk is defined in (4.3)
Since | Il oty = CpK(t\)).lﬂ/p by (2.1a) , Theorems 4.1

Yk p
and 4.2 give an asymptotic expression of a solution as t = ®

We at least observe that W is the main term in the asymptotics
as t = o and that the solution of the linear equation mainly
describes the behavior as t = ® ., We now discuss an asymptotic

expansion of the velocity v = K#w corresponding to

(4.7a),(4.7b).
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Theorem 4.3. Suppose that w(x,t) is a solution of the vorticity
equation with v > 0 for w(x,0) = w € M(Rz) . For every 6 ,
0 < § < 1/2 there is € > 0 depending only on & such that R

Fo implies

- ' -1+1/q-6 _ 2
(4.8a) I9v=9v M, (t) < C'NCEw) , N = lddxlfene
(4.8b) “VV-VthAVOHQ(t) ¢ C'N(ty) 1*1/a-8
- " _1/2+1/r*6
(4.9a) v v*KHr(t) < CUN(tV)
(4.9b) ”V-e“tAvoﬂr(t) ¢ CUNCtvyTL/2HL/TEE

with C' depending only on q , 1 < q < ® and C" depending

0 = *w = *Ww
only on r , 2 < r < , where Ve K i and v0 K o

Proof. Since VK 1is the Calderon-Zygmund kernel, we have
V(K*xf < C |If , 1 < <
|V (K >Hq ¢ c |l lIq q

by applying the Calderon-Zygmund inequality [9, Chap. 91].
The estimate (4.7a,b) now yields (4.8a,b). Estimate (4.9a,b) for
2 <r <o follows directly from (4.7a,b) and (3.3).

It remains to prove (4.9a,b) for r = o , Applying the

Gagliardo-Nirenberg inequality (see eg. [7, p.241) gl <

1-2/p

CHng

2/p _ - __vtA
HVng for p > 2 to g =v Ve OF V e Vg o
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we see (4.8a,b) and (4.9a,b) for 2 < r ¢( o yield (4.9a,b) for r

= 0 a

Remark 4.4. There are several results [2,10,14,18,20,21,22] on
the decay of the velocity v for the n~dimensional Navier-Stokes
equations assuming that the initial velocity Vo is in some Lp

When n = 2 , their main results read

lim vll,(t) = 0 if v, e L2Rr?) , 110,14,181
t20 g
and
(4.10) vl cty ¢ ct™H/a/2 0 eetly o ct < ct~1/a+1/2-5

v, € 2R N LYR?) , 6 = 1/a9-1/2 , 1 < q < 2

(10,20,21,221 ,

where the viscosity Vv is assumed one. The estimates (4.10)
gives an asymptotic expansion. Since our assumptions do not in
general imply v, € L*@®%) N LY®R? , (4.9b) is not included in
(4.10). Also, (4.10) is not included in (4.9b) since r = 2 is
excluded in (4.9b). Among them Kato [14] studied the decay of
HvHr(t) , T > 2 other than energy. His results yield

Ivll ) < ct™H2T g p ¢ e

-1+1/9q

HvVHq(t) < Ct 2 < q <o

provided v0 € L2(R2) . Our results (4.8a) (4.9a) claims the

faster decay if «k = on(dx) = 0
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5. Proof of Theorem 4.1

We study the integral equation (3.9)

tA

w(t) = e w, + B(w,w)
A naive idea to prove (4.6b) would be to estimate B(w,w) . If we
were successful to prove HB(w,w)Hp(t) < ct~1*1/p-8 , we would

obtain (4.6b) and using the estimate for linear part (2.6), (4.6b)

would yield (4.6a). Unfortunately this idea appears not to work.

In fact the optimal decay rate estimate for Hpr(t) P

even if wo decays rapidly at infinity unless the total vorticity

K = 0 ; the simplest example is Wk where w*K(x,O) = K&(X)

Using Lemma 3.5, all we can derive from the estimate of Hpr is

-l+l/p g general, which is too weak to derive

HB(w,w)Hp(t) < Cct
(4.6b). To overcome this difficulty we rather study the

difference w = w - w where w, = we in (4.3).

Proposition 5.1. Suppose that w(x,t) 1is a solution of the

vorticity equation for w(x,0) = W € M(Rz) . Then the difference
w=uw - W* solves
(6.1) w = W + Blw,w) + B(w,w*) + B(w*,w)
with W = etAw w
0 *
2
oK _Ix[
We T ZTmt CXPC ) o

where K = [szo(dx)
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Proof. By Proposition 3.3 we may assume w solves (3.9). Since

B 1is bilinear, plugging w = w + W yields

w =W + B(w,w) + B(w,w*) + B(w*,w) + B(w*,w*)

Since wo is radial, Lemma 3.4 implies that the last term

vanishes identically. We thus obtain (5.1). o

We shall prove (4.6a) by estimating W and B in (b.1).
Roughly speaking, we appeal to a perturbation method. We estimate

[WJpéT by using the right hand side of (5.1). Here [w]péT is

defined by (3.14) and is finite since T < o and (3.5) holds ;
this is why we take T < ® rather than T = ®

We eventually have

[wl < [W]

p&T + CR[w]p6

(C : constant)

péT T

where R is the Reynolds number. If R 1is small enough, one get

EW]péT < C'[W]péT > c' > 1

Since [WJpéT

the desired estimate. Unfortunately, since there are

is bounded independent of T by (2.6), we conclude

restrictions of exponents in Lemma 3.5 such idea only works for

r, 1 < p < 2 . After we prove (4.6a) for 1 < p < 2 , we shall

prove it for p = ® and p = 1 and interpolate these results.
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Even if we are interested only in the case p = ® or p =1, we

should check the result for 1 < p < 2

Proposition 5.2. Suppose that w(x,t) i
vorticity equation for w(x,0) = w € M(R") and that 1 < p < 2
Then for & , 0 < & < 1/2 there is a constant € = €(p,8) > 0

such that R < £ implies

(5.2) [w] < eN , N=lldxl? + D

vorticity ; K

]
Sy
€
o
~~
[}
»
N

Proof. We may assume N < ® otherwise the result is trivial.
Since 1 < p < 2 , one can handle B1 and 82 simul taneously
and estimates look like symmetric for both variables in B . 1In
fact, we take s =1 in (3.15) so that & < 1/2 . Since 1 < p <
2 implies 1/s =1 < 1/2 + 1/p , we can also apply (3.16).

Taking q = p or r = p 1in (3.15) and (3.16) yields
[B(wl’wz)]péT < 2C min ([wllpéT[wzl6T s [wlleT[wzlpéT)

with 3/2 = 1/90 + 1/p . Applying this to (5.1) to get

(5.3) [w]p(ST < [W]péT + 2C[w]p6T[w]eT + 4C[w]p5T[w*]9T
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Since T < © , we note [w]

pST is finite. By (2.1a) we have

(5.4) [w*]rT = CrK < clR 1 {r {(mw

where cj (j = 1,2++) is a universal constant. Since = w -
for fixed m > 0 the estimates (3.5) and (5.4) yield

(6.5) [w]rT < [w]rT + [w*]rT < (c1 + 02)R for <m ,
where 02 may depend on m . Applying (5.4) and (5.5) to (5.3)
now yields

(5.6) EWJpéT < EWJpéT + C R[w]p6T

with C' = 2C(3c, + c¢,) depending only on p and & We take

1 2

€ sufficiently small, say,

(6.7) 0 < g€ = &g€(p,6) = min (1/2C',1)

If R < &€ , then (5.6) gives

[wl < 2[W]

péT pdT

The estimate (5.2) now follows from (2.6).
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If p is large, one cannot take s =1 in (3.16) so we
should split the integral in B into two parts, B1 and B2

We next prove (5.2) for p = @

Proposition 5.3. Suppose the same situation as in Propositi

e
Lad
o
e

5.2. For &8, 0< 6 < 1/2 , there i

N

a constant €, > O

15}
=
0

that R < e implies

(5.8) [w] < €N

where ¢ is a universal constant.

Proof. We take s =1 and r = q = 4/3 in (3.15), which giv

5.9) [BI(W’W)]péT < C[w]qéT[w]qT q = 4/3
[Bl(w’w*)]péT’ [Bl(w*’W)]péT < CEWJqéT[w*]qT
where & < 1/2 . To estimate B, , we take s =4 in (3.16)
that 1/s < 1/2 < 1/2 + 1/p . Applying (3.16) with q = 4/3
r = o yields
[B, (W, W) ] op & C[w]qéTtw]ooT
(56.10) [Bz(w,m*)]m(sT < C[w]qéT[w*]ooT
[Bz(w*’W)]wéT < C[w*]qT[w]°°6T s, g9 = 4/3

We apply (5.9) and (5.10) to (5.1) and use (5.4) and (5.5).

Similarly to (5.6), we obtain
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(5.11) [w]006T < [W]°°6T + ClR[w]q(ST + C2R[w]m
where q = 4/3 , C1 = 20(301 + cz) s C2 = CIC
€, = min(e(4/3,6) , 1/2C2 . 1/2C1)

8

We take

If R < €, the estimate (5.11) together with (5.2) now yields

[w] ¢ 2[Wlgen + CN

08T

Applying (2.6), we now obtain

which is the same as (5.8) by replacing 2c¢ by

Unfortunately we are forced to treat the case

separately because one cannot take s = 4 in (3.16)

requires p > s = 4

Proposition 5.4. Suppose the same situation as
5.2. For &6, 0< &< 1/2 , there is a constant
that R (< 61 implies

(5.12) [w]l(ST < ¢N

where ¢ is a universal constant

p

1

which

in Proposition

t

€

1

>

0

such



Praoof. We observe that (5.9) holds even for p =1 . However, we
need modification to (5.10). We take s =1 and r = q = 4/3 in

(3.16) which yields the estimate (5.9) where B is replaced by

1

B2 . Similarly to deriving (5.6), one get

[w]16T < EW]léT + 2CiR[W]q6T , Q@ = 4/3
with C1 = 2C(3c1 + 02) . We take

€, = min (€(4/3,8), 1/2Ci)
Applying (5.2) with (2.6), we observe

[WJ16T < [WJIGT + ¢cN ¢ 2¢N
provided R < 81 . This is the same as (5.12) by replacing 2c¢
by ¢ . ]

We now obtain similar estimates like (5.2) for all 1 {( p  ®
just by an interpolation.
Proposition 5.5. Suppose the gsame situation as in Proposition
5.2. For &, 0< & < 1/2 , there is & depending only on &
such that R < £ implies
(56.13) [wl < ¢eN , 1 < r ¢ o |
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ere ¢ is a universal constant.

Proof. The Riesz-Thorin interpolation (see eg. [4]) yvields

l/r[wjl—l/r L 1 (r o

[w] < [w]16T 05T

réT

Interpolating (5.8) and (5.12) now shows that [w]réT < ¢N

provided R < g = min(el,ew) . ui

Proof of Theorem 4.1. Since ¢ 1is independent of T , (5.13)
yields (4.6a) by the definition of the norm (3.14).

It remains to prove (4.6b). Since

(4.6b) follows immediately from (4.6a) and (2.6).

6. Stability of Burgers' vortex - Formation of a concentrated

vortex

This section is devoted to an application of our large time
asymptotic expression for the vorticity (Theorem 4.2). VWe
consider a three-dimensional viscous incompressible flow written
as a superposition of an axisymmetric irrotational flow and a two-
dimensional flow whose vorticity vector directs to the symmetry
axis. We study the large time behavior of such a flow when the

axisymmetric flow is a inward convection-axially constant
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stretching flow. We shall show the vorticity tends to Burgers'
vortex [1,5] as the time tends to infinity provided the Reynolds
number of two-dimensional flow is small. No particular structure

of initial vorticity is assumed. There are no assumptions on the

speed of the axisymmetric flow. Our asymptotic results physically

imply formation of a concentrated vortex.

We consider the Navier—-Stokes equations in the three

dimensional space Rs

(6.1) Q% - vAu + (u-V)u + Vp = 0, V.u = 0,

where u = u(y,T) , p = p(y,T) , ¥ = (yl,yz,yS) . Suppose that

our velocity field u is expressed as

(6.2) u=uUn=+1YV
U : an axisymmetric irrotational divergence~free
velocity field
V : a two~-dimensionai rotational velocity field

where the vorticity of u(or V) directs to the symmetry axis. To
fix the idea, we take y3 - aXis as the symmetry axis. The

vector field U is assumed to have the form

(6.3) U(yl,yz,y3.r) = (-ayl.—ayz,ZayB) o = (1)
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which evidently satisfies V:U =0 and V x U = 0 . If o« 1is
positive constant, U is a steady inward convection-axially

stretching flow. The vector field V has the form

(6.4) V(Y 0 Y0 s ¥asT) = (NY(Yy L yo 1), V(Y. ,v..1), O)
1) 29 3’ 1’ 29 » 1) 2’ b

so that the vorticity is

(6.5) (0,0,Q(yl,yz,r)) ,

where § = ¥ x V = (a/ayl)v2 - (a/ayZ)v1 . We first derive the

vorticity equation for &

Proposition 6.1. The eguations (6.1) with (6.2) - (6.5) are

formally equivalent to

6.6) %% - VAR - a(y-TIQ - 2a8 + (V-VIQ = 0
6.7) V=K, K = (-y,,yp/2nlyl?

provided that o 1is a constant and that V decays at space

infinity.

Proof. This is very similar to the proof of the equivalence of
the vorticity equation and the Navier-Stokes equation. Plugging
u=1U=+V 1in (6.1) and noting

WU = TP, P =l ey eyhie
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(V-WYU = - a«V , (U-VV = - a(y-VHV ,

we obtain

6.8) %% VAV - «(y-VIV - oV + (V-V)V + U(P+p) = 0 , V-V

"
(@]

Taking Vx of (6.8) yields (6.6) since
UX((y-VIV) = (y-V)Q + Q

Since V-V = 0 and V decays at |yl = » , we have (6.7). This
shows that (6.1) with (6.2) - (6.5) yields (6.6) and (6.7). Since
the above calculation shows that (6.6) implies that 3u/3t - vAu +

(u-V)u 1is irrotational, (6.1) now follows from (6.7). u}

Our main goal is to study the large time asymptotic behavior
of the vorticity Q of (6.6)-(6.7) with arbitrary initial data
Q(y,0) = QO € M(RZ) . If o =0, Theorem 4.2 already gives an
answer, since (6.6)-(6.7) is nothing but (4.4)-(4.5). The
vorticity Q(y,t) 1is asymptotically equivalent to Wk in (4.3)
called the diffused vortex filament of Oseen [17] with the total
vorticity « provided that the Reynolds number R is
sufficiently small. We shall always assume that o 1is a positive

constant unless otherwise claimed. As is before, we define the

Reynolds number R and the total vorticity « by
(6.9) R = v“lflﬂ aay)y = v e | K = JQ (dy)
) o} o"1 ° 0
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We observe that (6.6)-(6.7) has a special steady (circular

symmetric) solution called Burgers' vortex [1,5]1 :

_ 112,02
(6.10) Q, = —55 e yi/e , 9 = 2w/ /2

nQ

We shall claim below that Q in (6.6)-(6.7) converges to QK as

T 2> © provided the Reynolds number R is small.

Theorem 6.2. For a general initial vorticity 90 € M(Rz) , there

is a solution 8R(y,t) o0f (6.6)-(6.7) having following properties.

For every 6 , 0 < &6 < 1/2 , there is €s > 0 J(independent of

c,p and T) such that

(6.11) IRy, ) - §K(y)Hp = 0(e 2%y 4g 1o w

where 1 < p < © , provided R < &, . Here & is Burgers'

S K
vortex defined in (6.10) and & is the total vorticity defined in
(6.9). Moreover, the total vorticity is conserved, i.e.,
(6.12) K = JQ(y,r)dy for all T 2 O

Proof. We first observe that (6.6)-(6.7) can be reduced to (4.4)-
(4.5) by a time-dependent scaling transformation which is
introduced by Lundgren [16] and by Kambe [11,13]1 for axially

symmetric case. We introduce x, t, w(x,t) such that
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.
(6.13) X = ACD)y , t = I AZ(@rydo , wx,t) = A2 (DY, D)
0
, . _d _ _
A = =3Act) = oA, ACO) = 1
dTt
Since dt = Az(r)dr , dx = A(r)dy , we have

- -9
atw(x.t) = A 28T(9(X/A(T),T)-A )
= A'4(8T9 - aa ly,me - 2887ty
Aw(x,t) = A"4Ay9
(v-Vw = A‘4<v-vy)9 with v = V/ACT)
Observing A' = xA , we see w solves (4.4). By a dilation of

the variable of the integration, we obtain (4.5) by putting v =
V/A(T) . (The transformation (6.13) reduces (6.6)-(6.7) to (4.4)-
(4.5) even if « 1is time dependent.)

Suppose that w(x,t) 1is a solution of the vorticity
equation with v whose existence is proved in Proposition 3.1
with an appropriate scaling. Since A(0) =1 implies w =

]

mo(x,O) = QO(X,O) = Qo(y,O) , our asymptotic result (4.7a) yields

-1+1/p-6

lw - m*KHp(t) < CN(tv) , 0< 8<1/2, 1 < p(
provided that R = vl Hwoﬂl = vl ”90“1 is sufficiently small,
say, R < 86 where € = 86 is the same as in Theorem 4.2.

Using original variables vy,1,% 1in (6.13), this estimate yields

— _ _ P 1/p
IR Q*KHP(T)( = (fﬁzlﬂ(y,r) Q*K(y,T)I dy) )
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¢ CNCACT) 2/vt) 171/ P40
where
2
(6.14) R (y,1) = K — exp(- lyl )
K 792 (1-e~2%T) 92 (1-¢729T)
Q = (2\)/0:)1/2 ,
since t = (ezmT - 1)/20 , A = e*T . Since

lim ACTY2/vt = 4/9°

T
we have

-2.1-1/p+s

20810 _ @ I, <ven v = TS

lim sup e K

T0

In particular ,

- ~2adT
(6.15) e Q*KHP(T) = 0(e ) , 0 ¢ 8 < 1/2

as T 2 ® ., As is pointed out by Kambe [12],

lim Q. (y,t) = § (¥
o® %K K

where §K is Burgers' vortex in (6.10). More precisely, a direct
calculation to (6.14) shows that
-20T

-2 Il = oce ) as T o ®

(6.16) HQ*K U

The estimates (6.15) and (6.16) now yield (6.11).

It remains to prove (6.12). Since
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fw(x,t)dx = [Q(y,r)dy
(3.8) now yields (6.12). a

Remark 6.3. For radial initial data 90 the estimate (6.11) is
pointed out by Kambe [12]1 at least for p = ® without the
assumption on the Reynolds number. In this case by Lemma 3.4,
(V-¥Y)Q in (6.6) vanishes so the problem is reduced to the heat
equation. For the heat equation (2.6) shows that (4.7a) holds

even for large R . Parallelly to the above proof, we see (6.11)

holds without the assumption on R which extends results in [12].
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