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1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular

initial data:

(1) wy = Aw + wP in RY x (0,00),

(2)x w(z,0) = Aa(a/|z]) |« ~>*"D i RV\ {0},

where N > 2, p>1,a: 5V - R, and A > 0 is a parameter. We assume that
a€ L>®(SN"1) and a > 0, a Z0. A typical case is a = 1.

The equation (1) is invariant under the similarity transformation
w(x,t) — wy(z,t) = p? PV (pa, pt)  for all p > 0.

In particular, a solution w is said to be self-similar, when w = w, for all p > 0,
that is,

(3) w(z,t) = p? PV (pa, p2t)  for all p > 0.

Such self-similar solutions are global in time and often used to describe the
large time behavior of global solutions to (1), see, e.g., [14, 15, 5, 21].

If w(z,t) is a self-similar solution of (1.1) and has an initial value A(z), then
we easily see that A has the form A(z) = A(x/|x|)|z|~2/®=Y. Then the problem
of existence of self-similar solutions is essentially depend on the solvablity of the
Cauchy problem (1)-(2),. In this talk we consider the existence of self-similar
solutions of the problem (1)-(2),. The idea of constructing self-similar solutions
by solving the initial value problem for homogeneous initial data goes back to
the study by Giga and Miyakawa [12] for the Navier-Stokes equation in vorticity
form.

It is well known by Fujita [9] that if 1 < p < (N +2)/N then (1) has no time
global solution w such that w > 0 and w # 0. (See also [25, 14].) Then the
condition p > (N + 2)/N is necessary for the existence of positive self-similar

solutions of (1).
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We briefly review some results concerning the Cauchy problem for (1) with
initial date in LY(R”). Weissler [23, 24] showed that the IVP (1) with w(z,0) =
A € LYRN) admits a unique time-local solution if ¢ > N(p — 1)/2. He also
showed in [25] that the solution exists time-globally if ¢ = N(p — 1)/2 and if
| All La(rvy is sufficiently small. Giga [11] has constructed a unique local regular
solution in L*(0,T : L), where o and /3 are chosen so that the norm of L*(0,T :
LP) is invariant under scaling. On the other hand, for 1 < ¢ < N(p — 1)/2,
Haraux and Weissler [13] constructed a solution wy € C([0,00); LY(RY)) of
(1) satisfying wo(x,t) > 0 for ¢t > 0 and |lwo(-,)||Lary) — 0 as ¢ — 0 when
(N+2)/N < p < (N+2)/(N —2) by seeking solutions of self-similar form.
Therefore, the Cauchy problem

(4) wy = Aw +wP  in RN x (0,00) and w(z,0)=0 in RY

admits a non-unique solution in C([0,00); L4(RY)) for 1 < ¢ < N(p — 1)/2
when (N +2)/N <p < (N +2)/(N —2).

Kozono and Yamazaki [16] constructed Besov-type function spaces based
on the Morrey spaces, and then obtained global existence results for the equa-
tion (1) and the Navier-Stokes system with small initial data in these spaces.
Cazenave and Weissler [5] proved the existence of global solutions, including
self-similar solutions, to the nonlinear Schrédinger equations and the equation
(1) with small initial data by using the weighted norms. By [16, 5] the problem
(1)-(2)x admits a time-global solution for sufficiently small A > 0.

We note here that the equation (1) with p > N/(N — 2) has a positive

singular stationary solution W (z) = L|z|~2/®*=1 where

1/(p—1)
e[ ()
p—1 p—1

Galaktionov and Vazquez [10] investigated the uniqueness of solutions to the
problem (1)-(2), in the case where a = 1 and A = L, and showed that the
problem has a classical self-similar solution for ¢ > 0 with certain values of p.
In [10, p. 41] they also conjectured that the problem (1)-(2), has exactly two
solutions (the minimal and maximal) when N/(N —2) <p < (N +2)/(N —2).

Letting = t~/2 in (3), we see that the self-similar solution w of (1) has

the form
(5) w(z,t) =t~V P Dy(z/V1),
where u satisfies the elliptic equation

u+ul =0 in RY.

1
(6) Au+§x~Vu+p_1
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In addition, if w satisfies (2) in the sense of LL (RY), then u satisfies

() lim 7% P~Dy(rw) = Aa(w) for a.e. we SNTL

r—00

Conversely, if u € C?(RY) is a solution of (6) satisfying (7)y, then the function
w defined by (5) satisfies (1)-(2), in the sense of LL (R”). (See Lemma B.1 in
17].)

In this talk we investigate the problem (6)-(7), by making use of the meth-
ods for semilinear elliptic equations to derive the results for the Cauchy problem
(1)-(2)a. First, we show the existence of the minimal solution by employing the
comparison results based on the maximum principle. Next we apply the varia-
tional method due to [1, 6, 4] to show the existence of the second solution of the

problem (6)-(7)x, which implies the non-uniqueness of solutions to the problem

(1)-(2)a-
2. Existence of the minimal solution [17, Sec. 4]

For simplicity, we define Lu by

1
Eu:Au+§x-Vu+ U

p—1

for u € C?(RY). First we obtain the following results.
Lemma 1. Let p > (N +2)/N. Assume that —Lu >0 in RN, and that

lim inf |z|>/ P~ Yu(z) > 0.

|z]—o0

Then w >0 or w =0 in RY. In particular, if —Lu > 0 and v > 0 in RN then

uw>0o0ru=0in RN,

Lemma 2. Assume that p > (N +2)/N, and that o, 3 € L>®(SN~1) satisfy
0 < a(w) < B(w) for ae. w € SN=L. Suppose that there ewists a positive

function v satisfying

—Lo>v" inRY and  lim r¥PVo(rw) = B(w), ae we SNTL

r—00
Then there exists a positive solution u of the problem

—Lu=u" inRYN and Tlirgorw(pfl)u(rw) = a(w), ae wesSVL

By using of Lemmas 1 and 2 we obtain the following:



Theorem 1. Assume that p > (N + 2)/N. Then there exists a constant
A > 0 such that

(i) for 0 < XA < X, (6)-(7)x has a positive minimal solution u, € C2(RN);
the solution wy is increasing with respect to A and satisfies ||uy || @y — 0 as
A —0;

(ii) for A > X, there are no positive solutions u € C?(RN) of (6)-(7)x.

3. Weighted Sobolev space

Put p(x) = el#l*/4. Then the equation (6) can be written as

1
V'(qu)—i—p( 1u—|—up)—0.

Escobedo-Kavian [8] investigated the corresponding functional

1 1 1
Ip(u) = 2 /RN <|Vu|2 - ]Tlu2> pdx — o1 uPtpda

on the weighted functional spaces

L%(RN):{uGLq(RN):/Nqudx<oo} for 1 <¢g< oo
R

and
RNy _ 1RNY. 2 2
H,(R )—{UEH (R )/RN(\Vu| +u )pd$<oo}.

We recall here some results about the weighted Sobolev space H ; (RN).

Lemma 3 [8, 14]. (i) For every u € H;(RN),

N 2 2
E,/RNU pdx < /RN |Vul|*pdz.

(ii) The embedding H;(RN) C Lg+1(RN) is continuous for 1 < p < (N +
2)/(N —2), and is compact for 1 <p < (N +2)/(N —2).

It was shown by [8, 24] that there exists a solution ug of the problem

Au—klx-Vu—F
(8) 2 p—1

uEH;(RN) and u>0 inRY,

u4+u’ =0 inRY,

with (N 4+ 2)/N < p < (N +2)/(N — 2). Moreover, it was shown in [8] that
uy € C2(RYN) and ug(z) = O(e~1*1"/8) as |z| — oo. The uniqueness of the

solution to the problem (8) was obtained by combining the results [7, 27, 19].



Now put
(9) wo(x,t) =t/ P Dug(a/ V1),

where ug is the solution of the problem (8). We note that ug € L4(R") for all
qg>1and

lwo 8)ll oy =t~ @2 g | v
Then wy solves the the Cauchy problem (4) in C([0,00); LY(RY)) for 1 < ¢ <
N(p — 1)/2. By the uniqueness result [19], we find that wy defined by (9)

coincides with the non-unique solution of (4) constructed by [13].
4. Existence of the second solution: subcritical case [17, Sec. 5]

Let uy be the positive minimal solution of (6)-(7) obtained in Theorem
1. In order to find a second solution of (6)-(7))x we introduce the following

problem:

1
Au+ -z -Vu+ uw+ glu,uy) =0 in RY,
(10)5 5 — g9(u, uy)

uEH;(RN) and u>0 inRY,

where g(t,s) = (t + s)P — sP. We easily see that, if (10), possesses a solution
uy, then we can get another positive solution @y = uy + uy of (6)-(7)x.

In this section we will show the existence of solutions of (10)y in the sub-
critical case (N +2)/N < p < (N+2)/(N —2) by using the variational method.
To this end we define the corresponding functional of (10)y by

1 1
I(u) = 3 /RN <|Vu|2 - 1u2> pdx — /RN G(u,uy)pdx

with u € H;(RN)7 where

1 1
G(t,s) = ——(t+s)PTt — — Pt _ P,
(t,s) p+1( ) p+1

We see that the nontrivial critical point u € H ;(RN ) of the functional I is
a weak solution of the equation in (10),. Moreover, we have uy € C?(RY)
and uy, > 0 in RY by employing the bootstrap arguments and the maximum
principle.

We will verify the existence of nontrivial solution of (10)y by means of the
Mountain Pass lemma ([1, 20]).

Lemma 4. For A € (0,)\) there exist some constants § = 6(\) > 0 and
n=mn(A) > 0 such that I x(u) > n for all u € Hg(RN) with HVUHL% =9.
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Lemma 5. For any v € H;(RN) with v >0, v # 0, we have I(tv) — —oc0

ast — 0o.

Lemma 6. The functional I, satisfies the Palais-Smale condition, that is,

any sequence {u} C Hg(RN) such that
{I\(ug)} is bounded and I4(ug) — 0 as k — oo
contains a convergent subsequence.
In the proofs of Lemmas 4-6, the following results play a crucial role.

Lemma 7. Let uy be the minimal solution obtained in Theorem 1 for

A € (0,)). Then the linearized eigenvalue problem

1 1
—Aw — 3% Vw — Ew = uplw,JPw in RY,

we H, (RN),
has the first eigenvalue pu = () > 1. Moreover, u(\) is strictly decreasing in
A€ (0,)).

Lemma 7 follows from the fact that w, is the positive minimal solution.

As a consequence of Lemmas 4-6 we obtain the following:

Theorem 2. Assume that (N +2)/N <p < (N +2)/(N —2). Then, for
0 < X\ < )\, there exists a positive solution Wy of (6)-(7)x satisfying Wy > u,,

Wy —uy € HYRY), and ay(z) — uy(2) = O(e /) as |2] — .
Furthermore,
Uy — Uy — Uy in H;(RN) NL®RY) as A — 0,

where ug is the solution of the problem (8). In particular, Wy — ug in L°(RY)

as A — 0.

Now we consider the Cauchy problem (1)-(2). Recall that, if u is a solution
of (6)-(7)x, then the function w defined by (5) is a solution of (1)-(2), in the
sense of L (R"), and that wy defined by (9) coincides with the non-unique
solution of (4) constructed by [13]. As a consequence of Theorems 1 and 2, we

obtain the following results.



Corollary 1. Assume that p > (N +2)/N. Then there exists a constant X\ > 0
such that

(i) for 0 < X < X, (1)-(2)x has a positive self-similar solution wy; the
solution wy (-, t) satisfies, for each fized t > 0,

lwr(s )l Lo myy = 0 as A — 0;

(ii) for A > X, (1)-(2)x has no positive self-similar solutions.
Assume, furthermore, that p < (N +2)/(N —2). Then (1)-(2)x has a positive
self-similar solution Wy, satisfying Wy > wy, in RN x (0,00) for 0 < A < X. The

solution Wy satisfies, for each fixed t > 0,
H@)\(-,t) - wO(',t)”Loo(RN) —0 as\—0,

where wg s the non-unique solution of (4) in C([0,00); LY(RN)) for 1 < ¢ <
N(p —1)/2, which is constructed by [13].

5. Existence and nonexistence of second solutions: critical case [18]

In this section we consider the existence and nonexistence of second solutions
of the problem (6)-(7), in the critical case p = (N + 2)/(N — 2) by following
the argument due to Brezis-Nirenberg [4].

For the critical growth case, there are serious difficulties in obtaining solu-
tions by using variational methods because the Sobolev embedding H! ¢ LP*!
is not compact. It is well known that this lack of compactness exhibits many
interesting existence and nonexistence phenomena. See, e.g., [4, 2].

Let us denote by S the best Sobolev constant of the embedding H'(RY) c
LAN/(N+2) (RN which is given by

/ \Vul|*dx
inf RY 7
N=2)/N "
ue H1(RM)\{0} (/ ’u‘QN/(NQ)diL')(
RN

In the critical case, the functional I satisfies the following local Palais-Smale

condition.

Lemma 8. Let p= (N+2)/(N —2). Then Iy satisfies the (PS). condition
for ¢ € (0,SN/2/N), that is, any sequence {uy} C HY(RN) such that

1
IA(uk)Hce(O,NSN/Q) and Ii(ug) — 0 ask — oo

contains a convergent subsequence.



By Lemma 8 and the Mountain Pass lemma, we obtain the following exis-

tence result.

Lemma 9. Letp = (N+2)/(N—2). Assume that there exists vo € H(RY)
with vg > 0, vg Z 0 such that

1
(11) supb\(tvo) < —SN/Q.
>0 N

Then there exists a positive solution uy € Hy(RN) of (10).

Moreover, we have uy € C2(R") by employing the estimate due to Brezis-
Kato [3], based on the Moser’s iteration technique.

In order to find a positive function vy € H ;(RN ) satisfying (11), we set

ue ()

el o

e (z) = o(z) 1/2

= erppor? - ad (@)=

for ¢ > 0, where ¢ € CP(RY) is a cut off function. We remark that the

functional I can be written as

1 1
L(u) = —/ (Vu2—
s = g [ (v - —=

1
u2> pdr — —— uP pdx
1 p+1JRN

_/RN H(u,uy)pdz
= Io(u) — /RN H(u,uy)pdz,

where

1
H(t,s) = G(t,s) — ——tPTL,
(t,s) (t,s) P

Lemma 10. For sufficient small ¢ > 0, there exists t. > 0 such that

supyso Ix(tve) = In(t-ve). Moreover, as € — 0 we have
O(e), N>5
Io(to.) < %SN/Q +d O@|loge]), N=4
O(e'/?), N =
Ce3/4, N=5
/RN H(tove,uy)pdr > { Cel/?, N =4
Cel/4, N=3

with some constant C > 0.



As a consequence, we obtain the following:

Theorem 3. Let p = (N+2)/(N—2) and N = 3,4,5. Then, for0 < X\ < X,
the problem (6)-(7)x has a positive solution Uy € C*(RN) satisfying Wy > u
and Uy —uy € H;(RN).

On the other hand, for the case N > 6 we obtain the uniqueness result in

the radial class by employing the Pohozaev type identity.

Theorem 4. Let p= (N +2)/(N —2) and N > 6. Assume that a =1 in
(T)x. Then there exists a constant \g € (0, \) such that (6)-(7)x has no positive
radial solutions u € C*(RN) with u # uy for A € (0, \o), that is, (6)-(7)x has a

unique positive radial solution wy for 0 < A < Ag.
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