A variational approach to self-similar solutions for semilinear heat equations

Yūki Naito
Department of Applied Mathematics, Faculty of Engineering, Kobe University
Nada, Kobe 657-8501, Japan (e-mail: naito@cs.kobe-u.ac.jp)

1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular initial data:

$$
\begin{gather*}
w_{t}=\Delta w+w^{p} \quad \text { in } \mathbf{R}^{N} \times(0, \infty) \tag{1}\\
w(x, 0)=\lambda a(x /|x|)|x|^{-2 /(p-1)} \quad \text { in } \mathbf{R}^{N} \backslash\{0\}, \tag{2}
\end{gather*}
$$

where $N>2, p>1, a: S^{N-1} \rightarrow \mathbf{R}$, and $\lambda>0$ is a parameter. We assume that $a \in L^{\infty}\left(S^{N-1}\right)$ and $a \geq 0, a \not \equiv 0$. A typical case is $a \equiv 1$.

The equation (1) is invariant under the similarity transformation

$$
w(x, t) \mapsto w_{\mu}(x, t)=\mu^{2 /(p-1)} w\left(\mu x, \mu^{2} t\right) \quad \text { for all } \mu>0
$$

In particular, a solution w is said to be self-similar, when $w=w_{\mu}$ for all $\mu>0$, that is,

$$
\begin{equation*}
w(x, t)=\mu^{2 /(p-1)} w\left(\mu x, \mu^{2} t\right) \quad \text { for all } \mu>0 \tag{3}
\end{equation*}
$$

Such self-similar solutions are global in time and often used to describe the large time behavior of global solutions to (1), see, e.g., $[14,15,5,21]$.

If $w(x, t)$ is a self-similar solution of (1.1) and has an initial value $A(x)$, then we easily see that A has the form $A(x)=A(x /|x|)|x|^{-2 /(p-1)}$. Then the problem of existence of self-similar solutions is essentially depend on the solvablity of the Cauchy problem (1)-(2) ${ }_{\lambda}$. In this talk we consider the existence of self-similar solutions of the problem (1)-(2) λ_{λ}. The idea of constructing self-similar solutions by solving the initial value problem for homogeneous initial data goes back to the study by Giga and Miyakawa [12] for the Navier-Stokes equation in vorticity form.

It is well known by Fujita [9] that if $1<p \leq(N+2) / N$ then (1) has no time global solution w such that $w \geq 0$ and $w \not \equiv 0$. (See also [25, 14].) Then the condition $p>(N+2) / N$ is necessary for the existence of positive self-similar solutions of (1).

We briefly review some results concerning the Cauchy problem for (1) with initial date in $L^{q}\left(\mathbf{R}^{N}\right)$. Weissler $[23,24]$ showed that the IVP (1) with $w(x, 0)=$ $A \in L^{q}\left(\mathbf{R}^{N}\right)$ admits a unique time-local solution if $q \geq N(p-1) / 2$. He also showed in [25] that the solution exists time-globally if $q=N(p-1) / 2$ and if $\|A\|_{L^{q}\left(\mathbf{R}^{N}\right)}$ is sufficiently small. Giga [11] has constructed a unique local regular solution in $L^{\alpha}\left(0, T: L^{\beta}\right)$, where α and β are chosen so that the norm of $L^{\alpha}(0, T$: $\left.L^{\beta}\right)$ is invariant under scaling. On the other hand, for $1 \leq q<N(p-1) / 2$, Haraux and Weissler [13] constructed a solution $w_{0} \in C\left([0, \infty) ; L^{q}\left(\mathbf{R}^{N}\right)\right)$ of (1) satisfying $w_{0}(x, t)>0$ for $t>0$ and $\left\|w_{0}(\cdot, t)\right\|_{L^{q}\left(\mathbf{R}^{N}\right)} \rightarrow 0$ as $t \rightarrow 0$ when $(N+2) / N<p<(N+2) /(N-2)$ by seeking solutions of self-similar form. Therefore, the Cauchy problem

$$
\begin{equation*}
w_{t}=\Delta w+w^{p} \quad \text { in } \mathbf{R}^{N} \times(0, \infty) \quad \text { and } \quad w(x, 0)=0 \quad \text { in } \mathbf{R}^{N} \tag{4}
\end{equation*}
$$

admits a non-unique solution in $C\left([0, \infty) ; L^{q}\left(\mathbf{R}^{N}\right)\right)$ for $1 \leq q<N(p-1) / 2$ when $(N+2) / N<p<(N+2) /(N-2)$.

Kozono and Yamazaki [16] constructed Besov-type function spaces based on the Morrey spaces, and then obtained global existence results for the equation (1) and the Navier-Stokes system with small initial data in these spaces. Cazenave and Weissler [5] proved the existence of global solutions, including self-similar solutions, to the nonlinear Schrödinger equations and the equation (1) with small initial data by using the weighted norms. By $[16,5]$ the problem (1)-(2) λ_{λ} admits a time-global solution for sufficiently small $\lambda>0$.

We note here that the equation (1) with $p>N /(N-2)$ has a positive singular stationary solution $W(x)=L|x|^{-2 /(p-1)}$, where

$$
L=\left[\frac{2}{p-1}\left(N-2-\frac{2}{p-1}\right)\right]^{1 /(p-1)} .
$$

Galaktionov and Vazquez [10] investigated the uniqueness of solutions to the problem (1)-(2) $)_{\lambda}$ in the case where $a \equiv 1$ and $\lambda=L$, and showed that the problem has a classical self-similar solution for $t>0$ with certain values of p. In [10, p. 41] they also conjectured that the problem (1)-(2) ${ }_{\lambda}$ has exactly two solutions (the minimal and maximal) when $N /(N-2)<p \leq(N+2) /(N-2)$.

Letting $\mu=t^{-1 / 2}$ in (3), we see that the self-similar solution w of (1) has the form

$$
\begin{equation*}
w(x, t)=t^{-1 /(p-1)} u(x / \sqrt{t}), \tag{5}
\end{equation*}
$$

where u satisfies the elliptic equation

$$
\begin{equation*}
\Delta u+\frac{1}{2} x \cdot \nabla u+\frac{1}{p-1} u+u^{p}=0 \quad \text { in } \mathbf{R}^{N} . \tag{6}
\end{equation*}
$$

In addition, if w satisfies $(2)_{\lambda}$ in the sense of $L_{\text {loc }}^{1}\left(\mathbf{R}^{N}\right)$, then u satisfies

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{2 /(p-1)} u(r \omega)=\lambda a(\omega) \quad \text { for a.e. } \omega \in S^{N-1} . \tag{7}
\end{equation*}
$$

Conversely, if $u \in C^{2}\left(\mathbf{R}^{N}\right)$ is a solution of (6) satisfying (7) ${ }_{\lambda}$, then the function w defined by (5) satisfies (1)-(2) $)_{\lambda}$ in the sense of $L_{\text {loc }}^{1}\left(\mathbf{R}^{N}\right)$. (See Lemma B. 1 in [17].)

In this talk we investigate the problem (6)-(7) ${ }_{\lambda}$ by making use of the methods for semilinear elliptic equations to derive the results for the Cauchy problem (1)-(2) λ_{λ}. First, we show the existence of the minimal solution by employing the comparison results based on the maximum principle. Next we apply the variational method due to $[1,6,4]$ to show the existence of the second solution of the problem (6)-(7) ${ }_{\lambda}$, which implies the non-uniqueness of solutions to the problem (1)-(2) λ_{λ}.

2. Existence of the minimal solution [17, Sec. 4]

For simplicity, we define $\mathcal{L} u$ by

$$
\mathcal{L} u=\Delta u+\frac{1}{2} x \cdot \nabla u+\frac{1}{p-1} u
$$

for $u \in C^{2}\left(\mathbf{R}^{N}\right)$. First we obtain the following results.
Lemma 1. Let $p>(N+2) / N$. Assume that $-\mathcal{L} u \geq 0$ in \mathbf{R}^{N}, and that

$$
\liminf _{|x| \rightarrow \infty}|x|^{2 /(p-1)} u(x) \geq 0 .
$$

Then $u>0$ or $u \equiv 0$ in \mathbf{R}^{N}. In particular, if $-\mathcal{L} u \geq 0$ and $u \geq 0$ in \mathbf{R}^{N} then $u>0$ or $u \equiv 0$ in \mathbf{R}^{N}.

Lemma 2. Assume that $p>(N+2) / N$, and that $\alpha, \beta \in L^{\infty}\left(S^{N-1}\right)$ satisfy $0 \leq \alpha(\omega) \leq \beta(\omega)$ for a.e. $\omega \in S^{N-1}$. Suppose that there exists a positive function v satisfying

$$
-\mathcal{L} v \geq v^{p} \quad \text { in } \mathbf{R}^{N} \quad \text { and } \quad \lim _{r \rightarrow \infty} r^{2 /(p-1)} v(r \omega)=\beta(\omega), \quad \text { a.e. } \omega \in S^{N-1} .
$$

Then there exists a positive solution u of the problem

$$
-\mathcal{L} u=u^{p} \quad \text { in } \mathbf{R}^{N} \quad \text { and } \quad \lim _{r \rightarrow \infty} r^{2 /(p-1)} u(r \omega)=\alpha(\omega), \quad \text { a.e. } \omega \in S^{N-1} .
$$

By using of Lemmas 1 and 2 we obtain the following:

Theorem 1. Assume that $p>(N+2) / N$. Then there exists a constant $\bar{\lambda}>0$ such that
(i) for $0<\lambda<\bar{\lambda}$, (6)-(7) $)_{\lambda}$ has a positive minimal solution $\underline{u}_{\lambda} \in C^{2}\left(\mathbf{R}^{N}\right)$; the solution \underline{u}_{λ} is increasing with respect to λ and satisfies $\left\|\underline{u}_{\lambda}\right\|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \rightarrow 0$ as $\lambda \rightarrow 0$;
(ii) for $\lambda>\bar{\lambda}$, there are no positive solutions $u \in C^{2}\left(\mathbf{R}^{N}\right)$ of (6)-(7) λ_{λ}.

3. Weighted Sobolev space

Put $\rho(x)=e^{|x|^{2} / 4}$. Then the equation (6) can be written as

$$
\nabla \cdot(\rho \nabla u)+\rho\left(\frac{1}{p-1} u+u^{p}\right)=0 .
$$

Escobedo-Kavian [8] investigated the corresponding functional

$$
I_{0}(u)=\frac{1}{2} \int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}-\frac{1}{p-1} u^{2}\right) \rho d x-\frac{1}{p+1} \int_{\mathbf{R}^{N}} u^{p+1} \rho d x
$$

on the weighted functional spaces

$$
L_{\rho}^{q}\left(\mathbf{R}^{N}\right)=\left\{u \in L^{q}\left(\mathbf{R}^{N}\right): \int_{\mathbf{R}^{N}} u^{q} \rho d x<\infty\right\} \quad \text { for } 1 \leq q<\infty
$$

and

$$
H_{\rho}^{1}\left(\mathbf{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbf{R}^{N}\right): \int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) \rho d x<\infty\right\} .
$$

We recall here some results about the weighted Sobolev space $H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$.
Lemma $3[8,14]$. (i) For every $u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$,

$$
\frac{N}{2} \int_{\mathbf{R}^{N}} u^{2} \rho d x \leq \int_{\mathbf{R}^{N}}|\nabla u|^{2} \rho d x .
$$

(ii) The embedding $H_{\rho}^{1}\left(\mathbf{R}^{N}\right) \subset L_{\rho}^{p+1}\left(\mathbf{R}^{N}\right)$ is continuous for $1 \leq p \leq(N+$ $2) /(N-2)$, and is compact for $1 \leq p<(N+2) /(N-2)$.

It was shown by $[8,24]$ that there exists a solution u_{0} of the problem

$$
\left\{\begin{array}{c}
\Delta u+\frac{1}{2} x \cdot \nabla u+\frac{1}{p-1} u+u^{p}=0 \quad \text { in } \mathbf{R}^{N} \tag{8}\\
u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right) \quad \text { and } \quad u>0 \quad \text { in } \mathbf{R}^{N}
\end{array}\right.
$$

with $(N+2) / N<p<(N+2) /(N-2)$. Moreover, it was shown in [8] that $u_{0} \in C^{2}\left(\mathbf{R}^{N}\right)$ and $u_{0}(x)=O\left(e^{-|x|^{2} / 8}\right)$ as $|x| \rightarrow \infty$. The uniqueness of the solution to the problem (8) was obtained by combining the results [7, 27, 19].

Now put

$$
\begin{equation*}
w_{0}(x, t)=t^{-1 /(p-1)} u_{0}(x / \sqrt{t}) \tag{9}
\end{equation*}
$$

where u_{0} is the solution of the problem (8). We note that $u_{0} \in L^{q}\left(\mathbf{R}^{N}\right)$ for all $q \geq 1$ and

$$
\left\|w_{0}(\cdot, t)\right\|_{L^{q}\left(\mathbf{R}^{N}\right)}=t^{-1 /(p-1)+N / 2 q}\left\|u_{0}\right\|_{L^{q}\left(\mathbf{R}^{N}\right)}
$$

Then w_{0} solves the the Cauchy problem (4) in $C\left([0, \infty) ; L^{q}\left(\mathbf{R}^{N}\right)\right)$ for $1 \leq q<$ $N(p-1) / 2$. By the uniqueness result [19], we find that w_{0} defined by (9) coincides with the non-unique solution of (4) constructed by [13].

4. Existence of the second solution: subcritical case [17, Sec. 5]

Let \underline{u}_{λ} be the positive minimal solution of $(6)-(7)_{\lambda}$ obtained in Theorem 1. In order to find a second solution of $(6)-(7)_{\lambda}$ we introduce the following problem:
$(10)_{\lambda} \quad\left\{\begin{array}{c}\Delta u+\frac{1}{2} x \cdot \nabla u+\frac{1}{p-1} u+g\left(u, \underline{u}_{\lambda}\right)=0 \quad \text { in } \mathbf{R}^{N}, \\ u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right) \text { and } \quad u>0 \quad \text { in } \mathbf{R}^{N},\end{array}\right.$
where $g(t, s)=(t+s)^{p}-s^{p}$. We easily see that, if (10) λ_{λ} possesses a solution u_{λ}, then we can get another positive solution $\bar{u}_{\lambda}=\underline{u}_{\lambda}+u_{\lambda}$ of $(6)-(7)_{\lambda}$.

In this section we will show the existence of solutions of $(10)_{\lambda}$ in the subcritical case $(N+2) / N<p<(N+2) /(N-2)$ by using the variational method. To this end we define the corresponding functional of $(10)_{\lambda}$ by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}-\frac{1}{p-1} u^{2}\right) \rho d x-\int_{\mathbf{R}^{N}} G\left(u, \underline{u}_{\lambda}\right) \rho d x
$$

with $u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$, where

$$
G(t, s)=\frac{1}{p+1}(t+s)^{p+1}-\frac{1}{p+1} s^{p+1}-s^{p} t .
$$

We see that the nontrivial critical point $u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ of the functional I_{λ} is a weak solution of the equation in (10) ${ }_{\lambda}$. Moreover, we have $u_{\lambda} \in C^{2}\left(\mathbf{R}^{N}\right)$ and $u_{\lambda}>0$ in \mathbf{R}^{N} by employing the bootstrap arguments and the maximum principle.

We will verify the existence of nontrivial solution of $(10)_{\lambda}$ by means of the Mountain Pass lemma ([1, 20]).

Lemma 4. For $\lambda \in(0, \bar{\lambda})$ there exist some constants $\delta=\delta(\lambda)>0$ and $\eta=\eta(\lambda)>0$ such that $I_{\lambda}(u) \geq \eta$ for all $u \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ with $\|\nabla u\|_{L_{\rho}^{2}}=\delta$.

Lemma 5. For any $v \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ with $v \geq 0$, $v \not \equiv 0$, we have $I_{\lambda}(t v) \rightarrow-\infty$ as $t \rightarrow \infty$.

Lemma 6. The functional I_{λ} satisfies the Palais-Smale condition, that is, any sequence $\left\{u_{k}\right\} \subset H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ such that

$$
\left\{I_{\lambda}\left(u_{k}\right)\right\} \text { is bounded and } \quad I_{\lambda}^{\prime}\left(u_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

contains a convergent subsequence.

In the proofs of Lemmas 4-6, the following results play a crucial role.

Lemma 7. Let \underline{u}_{λ} be the minimal solution obtained in Theorem 1 for $\lambda \in(0, \bar{\lambda})$. Then the linearized eigenvalue problem

$$
\left\{\begin{array}{c}
-\Delta w-\frac{1}{2} x \cdot \nabla w-\frac{1}{p-1} w=\mu p\left[\underline{u}_{\lambda}\right]^{p-1} w \quad \text { in } \mathbf{R}^{N} \\
w \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

has the first eigenvalue $\mu=\mu(\lambda)>1$. Moreover, $\mu(\lambda)$ is strictly decreasing in $\lambda \in(0, \bar{\lambda})$.

Lemma 7 follows from the fact that \underline{u}_{λ} is the positive minimal solution.
As a consequence of Lemmas 4-6 we obtain the following:

Theorem 2. Assume that $(N+2) / N<p<(N+2) /(N-2)$. Then, for $0<\lambda<\bar{\lambda}$, there exists a positive solution \bar{u}_{λ} of $(6)-(7)_{\lambda}$ satisfying $\bar{u}_{\lambda}>\underline{u}_{\lambda}$,

$$
\bar{u}_{\lambda}-\underline{u}_{\lambda} \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right), \quad \text { and } \quad \bar{u}_{\lambda}(x)-\underline{u}_{\lambda}(x)=O\left(e^{-|x|^{2} / 4}\right) \quad \text { as }|x| \rightarrow \infty .
$$

Furthermore,

$$
\bar{u}_{\lambda}-\underline{u}_{\lambda} \rightarrow u_{0} \quad \text { in } H_{\rho}^{1}\left(\mathbf{R}^{N}\right) \cap L^{\infty}\left(\mathbf{R}^{N}\right) \quad \text { as } \lambda \rightarrow 0
$$

where u_{0} is the solution of the problem (8). In particular, $\bar{u}_{\lambda} \rightarrow u_{0}$ in $L^{\infty}\left(\mathbf{R}^{N}\right)$ as $\lambda \rightarrow 0$.

Now we consider the Cauchy problem (1)-(2) ${ }_{\lambda}$. Recall that, if u is a solution of $(6)-(7)_{\lambda}$, then the function w defined by (5) is a solution of $(1)-(2)_{\lambda}$ in the sense of $L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{N}\right)$, and that w_{0} defined by (9) coincides with the non-unique solution of (4) constructed by [13]. As a consequence of Theorems 1 and 2, we obtain the following results.

Corollary 1. Assume that $p>(N+2) / N$. Then there exists a constant $\bar{\lambda}>0$ such that
(i) for $0<\lambda<\bar{\lambda}$, (1)-(2) ${ }_{\lambda}$ has a positive self-similar solution \underline{w}_{λ}; the solution $\underline{w}_{\lambda}(\cdot, t)$ satisfies, for each fixed $t>0$,

$$
\left\|\underline{w}_{\lambda}(\cdot, t)\right\|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \rightarrow 0 \quad \text { as } \lambda \rightarrow 0
$$

(ii) for $\lambda>\bar{\lambda}$, (1)-(2) $)_{\lambda}$ has no positive self-similar solutions.

Assume, furthermore, that $p<(N+2) /(N-2)$. Then (1)-(2) ${ }_{\lambda}$ has a positive self-similar solution \bar{w}_{λ} satisfying $\bar{w}_{\lambda}>\underline{w}_{\lambda}$ in $\mathbf{R}^{N} \times(0, \infty)$ for $0<\lambda<\bar{\lambda}$. The solution \bar{w}_{λ} satisfies, for each fixed $t>0$,

$$
\left\|\bar{w}_{\lambda}(\cdot, t)-w_{0}(\cdot, t)\right\|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \rightarrow 0 \quad \text { as } \lambda \rightarrow 0
$$

where w_{0} is the non-unique solution of (4) in $C\left([0, \infty) ; L^{q}\left(\mathbf{R}^{N}\right)\right.$) for $1 \leq q<$ $N(p-1) / 2$, which is constructed by [13].

5. Existence and nonexistence of second solutions: critical case [18]

In this section we consider the existence and nonexistence of second solutions of the problem (6)-(7) $)_{\lambda}$ in the critical case $p=(N+2) /(N-2)$ by following the argument due to Brezis-Nirenberg [4].

For the critical growth case, there are serious difficulties in obtaining solutions by using variational methods because the Sobolev embedding $H^{1} \subset L^{p+1}$ is not compact. It is well known that this lack of compactness exhibits many interesting existence and nonexistence phenomena. See, e.g., [4, 2].

Let us denote by S the best Sobolev constant of the embedding $H^{1}\left(\mathbf{R}^{N}\right) \subset$ $L^{2 N /(N+2)}\left(\mathbf{R}^{N}\right)$, which is given by

$$
S=\inf _{u \in H^{1}\left(\mathbf{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbf{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbf{R}^{N}}|u|^{2 N /(N-2)} d x\right)^{(N-2) / N}}
$$

In the critical case, the functional I_{λ} satisfies the following local Palais-Smale condition.

Lemma 8. Let $p=(N+2) /(N-2)$. Then I_{λ} satisfies the $(P S)_{c}$ condition for $c \in\left(0, S^{N / 2} / N\right)$, that is, any sequence $\left\{u_{k}\right\} \subset H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ such that

$$
I_{\lambda}\left(u_{k}\right) \rightarrow c \in\left(0, \frac{1}{N} S^{N / 2}\right) \quad \text { and } \quad I_{\lambda}^{\prime}\left(u_{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

contains a convergent subsequence.

By Lemma 8 and the Mountain Pass lemma, we obtain the following existence result.

Lemma 9. Let $p=(N+2) /(N-2)$. Assume that there exists $v_{0} \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ with $v_{0} \geq 0, v_{0} \not \equiv 0$ such that

$$
\begin{equation*}
\sup _{t>0} I_{\lambda}\left(t v_{0}\right)<\frac{1}{N} S^{N / 2} . \tag{11}
\end{equation*}
$$

Then there exists a positive solution $u_{\lambda} \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ of $(10)_{\lambda}$.
Moreover, we have $u_{\lambda} \in C^{2}\left(\mathbf{R}^{N}\right)$ by employing the estimate due to BrezisKato [3], based on the Moser's iteration technique.

In order to find a positive function $v_{0} \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$ satisfying (11), we set

$$
u_{\varepsilon}(x)=\frac{\phi(x)}{\left(\varepsilon+|x|^{2}\right)^{(N-2) / 2}} \rho^{-1 / 2} \quad \text { and } \quad v_{\varepsilon}(x)=\frac{u_{\varepsilon}(x)}{\left\|u_{\varepsilon}\right\|_{L_{\rho}^{p+1}}}
$$

for $\varepsilon>0$, where $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$ is a cut off function. We remark that the functional I_{λ} can be written as

$$
\begin{aligned}
I_{\lambda}(u) & =\frac{1}{2} \int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}-\frac{1}{p-1} u^{2}\right) \rho d x-\frac{1}{p+1} \int_{\mathbf{R}^{N}} u^{p+1} \rho d x \\
& \equiv I_{0}(u)-\int_{\mathbf{R}^{N}} H\left(u, \underline{u}_{\lambda}\right) \rho d x,
\end{aligned}
$$

where

$$
H(t, s)=G(t, s)-\frac{1}{p+1} t^{p+1}
$$

Lemma 10. For sufficient small $\varepsilon>0$, there exists $t_{\varepsilon}>0$ such that $\sup _{t>0} I_{\lambda}\left(t v_{\varepsilon}\right)=I_{\lambda}\left(t_{\varepsilon} v_{\varepsilon}\right)$. Moreover, as $\varepsilon \rightarrow 0$ we have

$$
\begin{aligned}
& I_{0}\left(t_{\varepsilon} v_{\varepsilon}\right) \leq \frac{1}{N} S^{N / 2}+ \begin{cases}O(\varepsilon), & N \geq 5 \\
O(\varepsilon|\log \varepsilon|), & N=4 \\
O\left(\varepsilon^{1 / 2}\right), & N=3\end{cases} \\
& \int_{\mathbf{R}^{N}} H\left(t_{\varepsilon} v_{\varepsilon}, \underline{u}_{\lambda}\right) \rho d x \geq \begin{cases}C \varepsilon^{3 / 4}, & N=5 \\
C \varepsilon^{1 / 2}, & N=4 \\
C \varepsilon^{1 / 4}, & N=3\end{cases}
\end{aligned}
$$

with some constant $C>0$.

As a consequence, we obtain the following:
Theorem 3. Let $p=(N+2) /(N-2)$ and $N=3,4,5$. Then, for $0<\lambda<\bar{\lambda}$, the problem (6)-(7) $)_{\lambda}$ has a positive solution $\bar{u}_{\lambda} \in C^{2}\left(\mathbf{R}^{N}\right)$ satisfying $\bar{u}_{\lambda}>\underline{u}_{\lambda}$ and $\bar{u}_{\lambda}-\underline{u}_{\lambda} \in H_{\rho}^{1}\left(\mathbf{R}^{N}\right)$.

On the other hand, for the case $N \geq 6$ we obtain the uniqueness result in the radial class by employing the Pohozaev type identity.

Theorem 4. Let $p=(N+2) /(N-2)$ and $N \geq 6$. Assume that $a \equiv 1$ in $(7)_{\lambda}$. Then there exists a constant $\lambda_{0} \in(0, \bar{\lambda})$ such that $(6)-(7)_{\lambda}$ has no positive radial solutions $u \in C^{2}\left(\mathbf{R}^{N}\right)$ with $u \not \equiv \underline{u}_{\lambda}$ for $\lambda \in\left(0, \lambda_{0}\right)$, that is, (6)-(7) $)_{\lambda}$ has a unique positive radial solution \underline{u}_{λ} for $0<\lambda<\lambda_{0}$.

REFERENCES

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
[2] H. Brezis, Elliptic equations with limiting Sobolev exponents - the impact of topology, Comm. Pure Appl. Math. 39 (1986), 17-39.
[3] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151.
[4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[5] T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 (1998), 83-120.
[6] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207-218.
[7] C. Dohmen and M. Hirose, Structure of positive radial solutions to the HarauxWeissler equation, Nonlinear Anal. TMA 33 (1998), 51-69.
[8] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions for the heat equation, Nonlinear Anal. TMA 11 (1987), 1103-1133.
[9] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=$ $\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect.I 13 (1966), 109-124.
[10] V. A. Galaktionov and J. L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997) 1-67.
[11] Y. Giga, Solutions for semilinear parabolic equations in L^{p} and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), 186-212.
[12] Y. Giga and T. Miyakawa, Navier-Stokes flow in \mathbf{R}^{3} with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618.
[13] A. Haraux and F. B. Weissler, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189.
[14] O. Kavian, Remarks on the large time behavior of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 423-452.
[15] T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 1-15.
[16] H. Kozono and M. Yamazaki Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959-1014.
[17] Y. Naito, Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data, Math. Ann. 329 (2004), 161-196.
[18] Y. Naito, Self-similar solutions for a semilinear heat equation with critical Sobolev exponent, preprint.
[19] Y. Naito and T. Suzuki, Radial symmetry of self-similar solutions for semilinear heat equations, J. Differential Equations 163 (2000), 407-428.
[20] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer.Math. Soc., Providence, 1986.
[21] S. Snoussi and S. Tayachi, and F. B. Weissler, Asymptotically self-similar global solutions of a general semilinear heat equation, Math. Ann. 321 (2001), 131-155.
[22] P. Souplet and F. B. Weissler, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), 213-235.
[23] F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), 277-296.
[24] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in L^{p}, Indiana Univ. Math. J. 29 (1980), 79-102.
[25] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40.
[26] F. B. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rational Mech. Anal. 91 (1985), 247-266.
[27] E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler equation, J. Differential Equations 127 (1996), 561-570.

