A variational approach to self-similar solutions for semilinear heat equations

Yūki Naito

Department of Applied Mathematics, Faculty of Engineering, Kobe University Nada, Kobe 657-8501, Japan (e-mail: naito@cs.kobe-u.ac.jp)

1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular initial data:

(1)
$$w_t = \Delta w + w^p \quad \text{in } \mathbf{R}^N \times (0, \infty),$$

(2)_{$$\lambda$$} $w(x,0) = \lambda a \left(x/|x| \right) |x|^{-2/(p-1)}$ in $\mathbf{R}^N \setminus \{0\},$

where N > 2, p > 1, $a : S^{N-1} \to \mathbf{R}$, and $\lambda > 0$ is a parameter. We assume that $a \in L^{\infty}(S^{N-1})$ and $a \ge 0$, $a \ne 0$. A typical case is $a \equiv 1$.

The equation (1) is invariant under the similarity transformation

$$w(x,t) \mapsto w_{\mu}(x,t) = \mu^{2/(p-1)} w(\mu x, \mu^2 t)$$
 for all $\mu > 0$

In particular, a solution w is said to be *self-similar*, when $w = w_{\mu}$ for all $\mu > 0$, that is,

(3)
$$w(x,t) = \mu^{2/(p-1)} w(\mu x, \mu^2 t)$$
 for all $\mu > 0$.

Such self-similar solutions are global in time and often used to describe the large time behavior of global solutions to (1), see, e.g., [14, 15, 5, 21].

If w(x,t) is a self-similar solution of (1.1) and has an initial value A(x), then we easily see that A has the form $A(x) = A(x/|x|)|x|^{-2/(p-1)}$. Then the problem of existence of self-similar solutions is essentially depend on the solvability of the Cauchy problem (1)-(2)_{λ}. In this talk we consider the existence of self-similar solutions of the problem (1)-(2)_{λ}. The idea of constructing self-similar solutions by solving the initial value problem for homogeneous initial data goes back to the study by Giga and Miyakawa [12] for the Navier-Stokes equation in vorticity form.

It is well known by Fujita [9] that if 1 then (1) has no timeglobal solution <math>w such that $w \ge 0$ and $w \ne 0$. (See also [25, 14].) Then the condition p > (N+2)/N is necessary for the existence of positive self-similar solutions of (1). We briefly review some results concerning the Cauchy problem for (1) with initial date in $L^q(\mathbf{R}^N)$. Weissler [23, 24] showed that the IVP (1) with $w(x, 0) = A \in L^q(\mathbf{R}^N)$ admits a unique time-local solution if $q \ge N(p-1)/2$. He also showed in [25] that the solution exists time-globally if q = N(p-1)/2 and if $||A||_{L^q(\mathbf{R}^N)}$ is sufficiently small. Giga [11] has constructed a unique local regular solution in $L^{\alpha}(0,T:L^{\beta})$, where α and β are chosen so that the norm of $L^{\alpha}(0,T:L^{\beta})$ is invariant under scaling. On the other hand, for $1 \le q < N(p-1)/2$, Haraux and Weissler [13] constructed a solution $w_0 \in C([0,\infty); L^q(\mathbf{R}^N))$ of (1) satisfying $w_0(x,t) > 0$ for t > 0 and $||w_0(\cdot,t)||_{L^q(\mathbf{R}^N)} \to 0$ as $t \to 0$ when (N+2)/N by seeking solutions of self-similar form.Therefore, the Cauchy problem

(4)
$$w_t = \Delta w + w^p$$
 in $\mathbf{R}^N \times (0, \infty)$ and $w(x, 0) = 0$ in \mathbf{R}^N

admits a non-unique solution in $C([0,\infty); L^q(\mathbf{R}^N))$ for $1 \le q < N(p-1)/2$ when (N+2)/N .

Kozono and Yamazaki [16] constructed Besov-type function spaces based on the Morrey spaces, and then obtained global existence results for the equation (1) and the Navier-Stokes system with small initial data in these spaces. Cazenave and Weissler [5] proved the existence of global solutions, including self-similar solutions, to the nonlinear Schrödinger equations and the equation (1) with small initial data by using the weighted norms. By [16, 5] the problem (1)- $(2)_{\lambda}$ admits a time-global solution for sufficiently small $\lambda > 0$.

We note here that the equation (1) with p > N/(N-2) has a positive singular stationary solution $W(x) = L|x|^{-2/(p-1)}$, where

$$L = \left[\frac{2}{p-1}\left(N - 2 - \frac{2}{p-1}\right)\right]^{1/(p-1)}$$

Galaktionov and Vazquez [10] investigated the uniqueness of solutions to the problem (1)- $(2)_{\lambda}$ in the case where $a \equiv 1$ and $\lambda = L$, and showed that the problem has a classical self-similar solution for t > 0 with certain values of p. In [10, p. 41] they also conjectured that the problem (1)- $(2)_{\lambda}$ has exactly two solutions (the minimal and maximal) when N/(N-2) .

Letting $\mu = t^{-1/2}$ in (3), we see that the self-similar solution w of (1) has the form

(5)
$$w(x,t) = t^{-1/(p-1)}u(x/\sqrt{t}),$$

where u satisfies the elliptic equation

(6)
$$\Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + u^p = 0 \quad \text{in } \mathbf{R}^N.$$

In addition, if w satisfies $(2)_{\lambda}$ in the sense of $L^1_{loc}(\mathbf{R}^N)$, then u satisfies

(7)_{$$\lambda$$} $\lim_{r \to \infty} r^{2/(p-1)} u(r\omega) = \lambda a(\omega)$ for a.e. $\omega \in S^{N-1}$.

Conversely, if $u \in C^2(\mathbf{R}^N)$ is a solution of (6) satisfying $(7)_{\lambda}$, then the function w defined by (5) satisfies (1)- $(2)_{\lambda}$ in the sense of $L^1_{\text{loc}}(\mathbf{R}^N)$. (See Lemma B.1 in [17].)

In this talk we investigate the problem (6)- $(7)_{\lambda}$ by making use of the methods for semilinear elliptic equations to derive the results for the Cauchy problem (1)- $(2)_{\lambda}$. First, we show the existence of the minimal solution by employing the comparison results based on the maximum principle. Next we apply the variational method due to [1, 6, 4] to show the existence of the second solution of the problem (6)- $(7)_{\lambda}$, which implies the non-uniqueness of solutions to the problem (1)- $(2)_{\lambda}$.

2. Existence of the minimal solution [17, Sec. 4]

For simplicity, we define $\mathcal{L}u$ by

$$\mathcal{L}u = \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u$$

for $u \in C^2(\mathbf{R}^N)$. First we obtain the following results.

Lemma 1. Let p > (N+2)/N. Assume that $-\mathcal{L}u \ge 0$ in \mathbb{R}^N , and that

$$\liminf_{|x| \to \infty} |x|^{2/(p-1)} u(x) \ge 0$$

Then u > 0 or $u \equiv 0$ in \mathbb{R}^N . In particular, if $-\mathcal{L}u \ge 0$ and $u \ge 0$ in \mathbb{R}^N then u > 0 or $u \equiv 0$ in \mathbb{R}^N .

Lemma 2. Assume that p > (N+2)/N, and that $\alpha, \beta \in L^{\infty}(S^{N-1})$ satisfy $0 \le \alpha(\omega) \le \beta(\omega)$ for a.e. $\omega \in S^{N-1}$. Suppose that there exists a positive function v satisfying

$$-\mathcal{L}v \geq v^p \quad in \ \mathbf{R}^N \quad and \quad \lim_{r \to \infty} r^{2/(p-1)} v(r\omega) = \beta(\omega), \quad a.e. \ \omega \in S^{N-1}.$$

Then there exists a positive solution u of the problem

$$-\mathcal{L}u = u^p \quad in \ \mathbf{R}^N \quad and \quad \lim_{r \to \infty} r^{2/(p-1)} u(r\omega) = \alpha(\omega), \quad a.e. \ \omega \in S^{N-1}$$

By using of Lemmas 1 and 2 we obtain the following:

Theorem 1. Assume that p > (N+2)/N. Then there exists a constant $\overline{\lambda} > 0$ such that

(i) for $0 < \lambda < \overline{\lambda}$, (6)-(7) $_{\lambda}$ has a positive minimal solution $\underline{u}_{\lambda} \in C^{2}(\mathbf{R}^{N})$; the solution \underline{u}_{λ} is increasing with respect to λ and satisfies $\|\underline{u}_{\lambda}\|_{L^{\infty}(\mathbf{R}^{N})} \to 0$ as $\lambda \to 0$;

(ii) for $\lambda > \overline{\lambda}$, there are no positive solutions $u \in C^2(\mathbf{R}^N)$ of (6)- $(7)_{\lambda}$.

3. Weighted Sobolev space

Put $\rho(x) = e^{|x|^2/4}$. Then the equation (6) can be written as

$$\nabla \cdot (\rho \nabla u) + \rho \left(\frac{1}{p-1} u + u^p \right) = 0.$$

Escobedo-Kavian [8] investigated the corresponding functional

$$I_0(u) = \frac{1}{2} \int_{\mathbf{R}^N} \left(|\nabla u|^2 - \frac{1}{p-1} u^2 \right) \rho dx - \frac{1}{p+1} \int_{\mathbf{R}^N} u^{p+1} \rho dx$$

on the weighted functional spaces

$$L^{q}_{\rho}(\mathbf{R}^{N}) = \left\{ u \in L^{q}(\mathbf{R}^{N}) : \int_{\mathbf{R}^{N}} u^{q} \rho dx < \infty \right\} \quad \text{for } 1 \le q < \infty$$

and

$$H^1_{\rho}(\mathbf{R}^N) = \left\{ u \in H^1(\mathbf{R}^N) : \int_{\mathbf{R}^N} (|\nabla u|^2 + u^2)\rho dx < \infty \right\}.$$

We recall here some results about the weighted Sobolev space $H^1_{\rho}(\mathbf{R}^N)$.

Lemma 3 [8, 14]. (i) For every $u \in H^1_\rho(\mathbf{R}^N)$,

$$\frac{N}{2} \int_{\mathbf{R}^N} u^2 \rho dx \le \int_{\mathbf{R}^N} |\nabla u|^2 \rho dx.$$

(ii) The embedding $H^1_{\rho}(\mathbf{R}^N) \subset L^{p+1}_{\rho}(\mathbf{R}^N)$ is continuous for $1 \leq p \leq (N+2)/(N-2)$, and is compact for $1 \leq p < (N+2)/(N-2)$.

It was shown by [8, 24] that there exists a solution u_0 of the problem

(8)
$$\begin{cases} \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + u^p = 0 \quad \text{in } \mathbf{R}^N, \\ u \in H^1_\rho(\mathbf{R}^N) \quad \text{and} \quad u > 0 \quad \text{in } \mathbf{R}^N, \end{cases}$$

with $(N+2)/N . Moreover, it was shown in [8] that <math>u_0 \in C^2(\mathbf{R}^N)$ and $u_0(x) = O(e^{-|x|^2/8})$ as $|x| \to \infty$. The uniqueness of the solution to the problem (8) was obtained by combining the results [7, 27, 19].

Now put

(9)
$$w_0(x,t) = t^{-1/(p-1)} u_0(x/\sqrt{t}),$$

where u_0 is the solution of the problem (8). We note that $u_0 \in L^q(\mathbf{R}^N)$ for all $q \ge 1$ and

$$||w_0(\cdot,t)||_{L^q(\mathbf{R}^N)} = t^{-1/(p-1)+N/2q} ||u_0||_{L^q(\mathbf{R}^N)}.$$

Then w_0 solves the Cauchy problem (4) in $C([0,\infty); L^q(\mathbf{R}^N))$ for $1 \leq q < N(p-1)/2$. By the uniqueness result [19], we find that w_0 defined by (9) coincides with the non-unique solution of (4) constructed by [13].

4. Existence of the second solution: subcritical case [17, Sec. 5]

Let \underline{u}_{λ} be the positive minimal solution of (6)- $(7)_{\lambda}$ obtained in Theorem 1. In order to find a second solution of (6)- $(7)_{\lambda}$ we introduce the following problem:

(10)_{$$\lambda$$}
$$\begin{cases} \Delta u + \frac{1}{2}x \cdot \nabla u + \frac{1}{p-1}u + g(u, \underline{u}_{\lambda}) = 0 \quad \text{in } \mathbf{R}^{N}, \\ u \in H^{1}_{\rho}(\mathbf{R}^{N}) \quad \text{and} \quad u > 0 \quad \text{in } \mathbf{R}^{N}, \end{cases}$$

where $g(t,s) = (t+s)^p - s^p$. We easily see that, if $(10)_{\lambda}$ possesses a solution u_{λ} , then we can get another positive solution $\overline{u}_{\lambda} = \underline{u}_{\lambda} + u_{\lambda}$ of (6)- $(7)_{\lambda}$.

In this section we will show the existence of solutions of $(10)_{\lambda}$ in the subcritical case (N+2)/N by using the variational method. $To this end we define the corresponding functional of <math>(10)_{\lambda}$ by

$$I_{\lambda}(u) = \frac{1}{2} \int_{\mathbf{R}^{N}} \left(|\nabla u|^{2} - \frac{1}{p-1} u^{2} \right) \rho dx - \int_{\mathbf{R}^{N}} G(u, \underline{u}_{\lambda}) \rho dx$$

with $u \in H^1_{\rho}(\mathbf{R}^N)$, where

$$G(t,s) = \frac{1}{p+1}(t+s)^{p+1} - \frac{1}{p+1}s^{p+1} - s^p t.$$

We see that the nontrivial critical point $u \in H^1_{\rho}(\mathbf{R}^N)$ of the functional I_{λ} is a weak solution of the equation in $(10)_{\lambda}$. Moreover, we have $u_{\lambda} \in C^2(\mathbf{R}^N)$ and $u_{\lambda} > 0$ in \mathbf{R}^N by employing the bootstrap arguments and the maximum principle.

We will verify the existence of nontrivial solution of $(10)_{\lambda}$ by means of the Mountain Pass lemma ([1, 20]).

Lemma 4. For $\lambda \in (0, \overline{\lambda})$ there exist some constants $\delta = \delta(\lambda) > 0$ and $\eta = \eta(\lambda) > 0$ such that $I_{\lambda}(u) \ge \eta$ for all $u \in H^{1}_{\rho}(\mathbf{R}^{N})$ with $\|\nabla u\|_{L^{2}_{\rho}} = \delta$.

Lemma 5. For any $v \in H^1_{\rho}(\mathbf{R}^N)$ with $v \ge 0$, $v \ne 0$, we have $I_{\lambda}(tv) \to -\infty$ as $t \to \infty$.

Lemma 6. The functional I_{λ} satisfies the Palais-Smale condition, that is, any sequence $\{u_k\} \subset H^1_{\rho}(\mathbf{R}^N)$ such that

 $\{I_{\lambda}(u_k)\}$ is bounded and $I'_{\lambda}(u_k) \to 0$ as $k \to \infty$

contains a convergent subsequence.

In the proofs of Lemmas 4-6, the following results play a crucial role.

Lemma 7. Let \underline{u}_{λ} be the minimal solution obtained in Theorem 1 for $\lambda \in (0, \overline{\lambda})$. Then the linearized eigenvalue problem

$$\begin{cases} -\Delta w - \frac{1}{2}x \cdot \nabla w - \frac{1}{p-1}w = \mu p[\underline{u}_{\lambda}]^{p-1}w & \text{in } \mathbf{R}^{N}, \\ w \in H^{1}_{\rho}(\mathbf{R}^{N}), \end{cases}$$

has the first eigenvalue $\mu = \mu(\lambda) > 1$. Moreover, $\mu(\lambda)$ is strictly decreasing in $\lambda \in (0, \overline{\lambda})$.

Lemma 7 follows from the fact that \underline{u}_{λ} is the positive minimal solution. As a consequence of Lemmas 4-6 we obtain the following:

Theorem 2. Assume that $(N+2)/N . Then, for <math>0 < \lambda < \overline{\lambda}$, there exists a positive solution \overline{u}_{λ} of (6)-(7)_{λ} satisfying $\overline{u}_{\lambda} > \underline{u}_{\lambda}$,

$$\overline{u}_{\lambda} - \underline{u}_{\lambda} \in H^1_{\rho}(\mathbf{R}^N), \quad and \quad \overline{u}_{\lambda}(x) - \underline{u}_{\lambda}(x) = O(e^{-|x|^2/4}) \quad as \ |x| \to \infty.$$

Furthermore,

$$\overline{u}_{\lambda} - \underline{u}_{\lambda} \to u_0 \quad in \ H^1_{\rho}(\mathbf{R}^N) \cap L^{\infty}(\mathbf{R}^N) \quad as \ \lambda \to 0,$$

where u_0 is the solution of the problem (8). In particular, $\overline{u}_{\lambda} \to u_0$ in $L^{\infty}(\mathbf{R}^N)$ as $\lambda \to 0$.

Now we consider the Cauchy problem (1)- $(2)_{\lambda}$. Recall that, if u is a solution of (6)- $(7)_{\lambda}$, then the function w defined by (5) is a solution of (1)- $(2)_{\lambda}$ in the sense of $L^{1}_{loc}(\mathbf{R}^{N})$, and that w_{0} defined by (9) coincides with the non-unique solution of (4) constructed by [13]. As a consequence of Theorems 1 and 2, we obtain the following results. **Corollary 1.** Assume that p > (N+2)/N. Then there exists a constant $\overline{\lambda} > 0$ such that

(i) for $0 < \lambda < \overline{\lambda}$, (1)- $(2)_{\lambda}$ has a positive self-similar solution \underline{w}_{λ} ; the solution $\underline{w}_{\lambda}(\cdot, t)$ satisfies, for each fixed t > 0,

$$\|\underline{w}_{\lambda}(\cdot,t)\|_{L^{\infty}(\mathbf{R}^{N})} \to 0 \quad as \ \lambda \to 0;$$

(ii) for $\lambda > \overline{\lambda}$, (1)-(2) $_{\lambda}$ has no positive self-similar solutions.

Assume, furthermore, that p < (N+2)/(N-2). Then $(1)-(2)_{\lambda}$ has a positive self-similar solution \overline{w}_{λ} satisfying $\overline{w}_{\lambda} > \underline{w}_{\lambda}$ in $\mathbf{R}^{N} \times (0, \infty)$ for $0 < \lambda < \overline{\lambda}$. The solution \overline{w}_{λ} satisfies, for each fixed t > 0,

$$\|\overline{w}_{\lambda}(\cdot,t) - w_0(\cdot,t)\|_{L^{\infty}(\mathbf{R}^N)} \to 0 \quad as \ \lambda \to 0,$$

where w_0 is the non-unique solution of (4) in $C([0,\infty); L^q(\mathbf{R}^N))$ for $1 \le q < N(p-1)/2$, which is constructed by [13].

5. Existence and nonexistence of second solutions: critical case [18]

In this section we consider the existence and nonexistence of second solutions of the problem (6)- $(7)_{\lambda}$ in the critical case p = (N+2)/(N-2) by following the argument due to Brezis-Nirenberg [4].

For the critical growth case, there are serious difficulties in obtaining solutions by using variational methods because the Sobolev embedding $H^1 \subset L^{p+1}$ is not compact. It is well known that this lack of compactness exhibits many interesting existence and nonexistence phenomena. See, e.g., [4, 2].

Let us denote by S the best Sobolev constant of the embedding $H^1(\mathbf{R}^N) \subset L^{2N/(N+2)}(\mathbf{R}^N)$, which is given by

$$S = \inf_{u \in H^{1}(\mathbf{R}^{N}) \setminus \{0\}} \frac{\int_{\mathbf{R}^{N}} |\nabla u|^{2} dx}{\left(\int_{\mathbf{R}^{N}} |u|^{2N/(N-2)} dx\right)^{(N-2)/N}}$$

In the critical case, the functional I_{λ} satisfies the following local Palais-Smale condition.

Lemma 8. Let p = (N+2)/(N-2). Then I_{λ} satisfies the $(PS)_c$ condition for $c \in (0, S^{N/2}/N)$, that is, any sequence $\{u_k\} \subset H^1_o(\mathbf{R}^N)$ such that

$$I_{\lambda}(u_k) \to c \in \left(0, \frac{1}{N} S^{N/2}\right) \quad and \quad I'_{\lambda}(u_k) \to 0 \quad as \ k \to \infty$$

contains a convergent subsequence.

By Lemma 8 and the Mountain Pass lemma, we obtain the following existence result.

Lemma 9. Let p = (N+2)/(N-2). Assume that there exists $v_0 \in H^1_{\rho}(\mathbf{R}^N)$ with $v_0 \ge 0$, $v_0 \ne 0$ such that

(11)
$$\sup_{t>0} I_{\lambda}(tv_0) < \frac{1}{N} S^{N/2}.$$

Then there exists a positive solution $u_{\lambda} \in H^{1}_{\rho}(\mathbf{R}^{N})$ of $(10)_{\lambda}$.

Moreover, we have $u_{\lambda} \in C^2(\mathbf{R}^N)$ by employing the estimate due to Brezis-Kato [3], based on the Moser's iteration technique.

In order to find a positive function $v_0 \in H^1_{\rho}(\mathbf{R}^N)$ satisfying (11), we set

$$u_{\varepsilon}(x) = \frac{\phi(x)}{(\varepsilon + |x|^2)^{(N-2)/2}} \rho^{-1/2} \quad \text{and} \quad v_{\varepsilon}(x) = \frac{u_{\varepsilon}(x)}{\|u_{\varepsilon}\|_{L_{\rho}^{p+1}}}$$

for $\varepsilon > 0$, where $\phi \in C_0^{\infty}(\mathbf{R}^N)$ is a cut off function. We remark that the functional I_{λ} can be written as

$$\begin{split} I_{\lambda}(u) &= \frac{1}{2} \int_{\mathbf{R}^{N}} \left(|\nabla u|^{2} - \frac{1}{p-1} u^{2} \right) \rho dx - \frac{1}{p+1} \int_{\mathbf{R}^{N}} u^{p+1} \rho dx \\ &- \int_{\mathbf{R}^{N}} H(u, \underline{u}_{\lambda}) \rho dx \\ &\equiv I_{0}(u) - \int_{\mathbf{R}^{N}} H(u, \underline{u}_{\lambda}) \rho dx, \end{split}$$

where

$$H(t,s) = G(t,s) - \frac{1}{p+1}t^{p+1}.$$

Lemma 10. For sufficient small $\varepsilon > 0$, there exists $t_{\varepsilon} > 0$ such that $\sup_{t>0} I_{\lambda}(tv_{\varepsilon}) = I_{\lambda}(t_{\varepsilon}v_{\varepsilon})$. Moreover, as $\varepsilon \to 0$ we have

$$\begin{split} I_0(t_{\varepsilon}v_{\varepsilon}) &\leq \frac{1}{N}S^{N/2} + \begin{cases} O(\varepsilon), & N \geq 5\\ O(\varepsilon|\log\varepsilon|), & N = 4\\ O(\varepsilon^{1/2}), & N = 3 \end{cases} \\ \int_{\mathbf{R}^N} H(t_{\varepsilon}v_{\varepsilon},\underline{u}_{\lambda})\rho dx &\geq \begin{cases} C\varepsilon^{3/4}, & N = 5\\ C\varepsilon^{1/2}, & N = 4\\ C\varepsilon^{1/4}, & N = 3 \end{cases} \end{split}$$

with some constant C > 0.

As a consequence, we obtain the following:

Theorem 3. Let p = (N+2)/(N-2) and N = 3, 4, 5. Then, for $0 < \lambda < \overline{\lambda}$, the problem (6)-(7)_{λ} has a positive solution $\overline{u}_{\lambda} \in C^2(\mathbf{R}^N)$ satisfying $\overline{u}_{\lambda} > \underline{u}_{\lambda}$ and $\overline{u}_{\lambda} - \underline{u}_{\lambda} \in H^1_{\rho}(\mathbf{R}^N)$.

On the other hand, for the case $N \ge 6$ we obtain the uniqueness result in the radial class by employing the Pohozaev type identity.

Theorem 4. Let p = (N+2)/(N-2) and $N \ge 6$. Assume that $a \equiv 1$ in $(7)_{\lambda}$. Then there exists a constant $\lambda_0 \in (0, \overline{\lambda})$ such that (6)- $(7)_{\lambda}$ has no positive radial solutions $u \in C^2(\mathbf{R}^N)$ with $u \not\equiv \underline{u}_{\lambda}$ for $\lambda \in (0, \lambda_0)$, that is, (6)- $(7)_{\lambda}$ has a unique positive radial solution \underline{u}_{λ} for $0 < \lambda < \lambda_0$.

REFERENCES

- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
- [2] H. Brezis, Elliptic equations with limiting Sobolev exponents—the impact of topology, Comm. Pure Appl. Math. 39 (1986), 17-39.
- [3] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137-151.
- [4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [5] T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 (1998), 83-120.
- [6] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207-218.
- [7] C. Dohmen and M. Hirose, Structure of positive radial solutions to the Haraux-Weissler equation, Nonlinear Anal. TMA 33 (1998), 51-69.
- [8] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions for the heat equation, Nonlinear Anal. TMA 11 (1987), 1103-1133.
- [9] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect.I **13** (1966), 109-124.
- [10] V. A. Galaktionov and J. L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997) 1-67.
- [11] Y. Giga, Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations **62** (1986), 186-212.

- [12] Y. Giga and T. Miyakawa, Navier-Stokes flow in R³ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618.
- [13] A. Haraux and F. B. Weissler, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. **31** (1982), 167-189.
- [14] O. Kavian, Remarks on the large time behavior of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 423-452.
- [15] T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 1-15.
- [16] H. Kozono and M. Yamazaki Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959-1014.
- [17] Y. Naito, Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data, Math. Ann. **329** (2004), 161-196.
- [18] Y. Naito, Self-similar solutions for a semilinear heat equation with critical Sobolev exponent, preprint.
- [19] Y. Naito and T. Suzuki, Radial symmetry of self-similar solutions for semilinear heat equations, J. Differential Equations 163 (2000), 407-428.
- [20] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer.Math. Soc., Providence, 1986.
- [21] S. Snoussi and S. Tayachi, and F. B. Weissler, Asymptotically self-similar global solutions of a general semilinear heat equation, Math. Ann. 321 (2001), 131-155.
- [22] P. Souplet and F. B. Weissler, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), 213-235.
- [23] F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal. 32 (1979), 277-296.
- [24] F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in L^p, Indiana Univ. Math. J. 29 (1980), 79-102.
- [25] F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40.
- [26] F. B. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rational Mech. Anal. **91** (1985), 247-266.
- [27] E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler equation, J. Differential Equations 127 (1996), 561-570.