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Abstract

We establish the interior gradient estimate for general 1-D anisotropic
curvature flow. The estimate depends only on the height of the graph
and not on the gradient at initial time.

1 Introduction

Let Ω be a bounded domain in R
n. A surface given as a graph u : Ω → R is

a minimal surface when u satisfies

(1.1) div

(
∇u√

1 + |∇u|2

)
= 0.

For this equation, the following interior gradient estimates are well-known
([6, 8, 9]): Given a constant M and Ω̃ ⊂⊂ Ω, there exists a constant C
depending only on M and Ω̃ such that if supΩ |u| ≤ M , then supΩ̃ |∇u| ≤ C .
The standard elliptic theory ([5]) subsequently gives all the interior Ck,α(Ω̃)
estimates of the graph u which depends only on M and Ω̃. The similar
estimates are also known for the mean curvature flow equation ([3]). That
is, if u : Ω × (0, T ) → R satisfies

(1.2)
ut√

1 + |∇u|2 = div

(
∇u√

1 + |∇u|2

)
,

and supΩ×[0,T ] |u| ≤ M , Ω̃ ⊂⊂ Ω, 0 < T0 < T , then there exists C such that

supΩ̃×[T0,T ] |∇u| ≤ C . Again, C is a constant depending only on M , Ω̃ and
T0. Note that C is independent of the gradient at t = 0.
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One direction to extend those results are to consider general anisotropic
curvature problem, namely, to consider the variational problem correspond-
ing to the energy functional

F (u) =

∫
Ω

a(ν)
√

1 + |∇u|2,

where ν = (∇u,−1)/
√

1 + |∇u|2 is the unit normal vector to the graph of
u and the function a : Sn−1 → R+ is the surface energy density and should
satisfy certain convexity property. The Euler-Lagrange equation is

(1.3) divpap(ν) = 0,

and the curvature flow equation is

(1.4)
ut√

1 + |∇u|2 = divpap(ν).

For both elliptic and parabolic problems in general dimensions, it is not
known if the similar interior estimates for (1.1) and (1.2) hold equally for the
anisotropic equations (1.3) and (1.4) so far. The main reason for the difficulty
to extend the results is the lack of monotonicity formula for the mass ratio,
which plays an important role in the measure-theoretic treatment of minimal
submanifolds. On the other hand, if one allows the interior gradient estimate
to depend on the gradient at t = 0, then the argument of [7] gives the interior
gradient estimate.

In this paper, we show the interior gradient estimates for general anisotropic
curvature flow for one-dimensional case which is independent of the initial
time gradient. The proof utilizes the result of Angenent ([2]), which says that
the number of zeros of the solution of parabolic equations is nonincreasing as
time increases. We compare the solution to those for a suitable heat equation
and use this result. We utilize the fact that the equation is invariant under
the rotation here. We remark that the method we use is valid only for 1
dimensional case.

2 Theorem

Let r > 0 be given. The graph u : [−r, r] × [0, T ] → R is said to be an
anisotropic curvature flow if smooth function u satisfies

(2.1)
ut√

1 + u2
x

= (ap(ux,−1))x.
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where a : R2 → [0,∞) is an anisotropic surface energy density function
satisfying the following assumptions:

(a) a(tp, tq) = t a(p, q) for all t > 0,

(b) a is a convex function,

(c) there exists δ0 > 0 such that a(p, q) − δ0|(p, q)| is a convex function,

(d) a is smooth except at (0, 0).

The left-hand side of the equation corresponds to the normal velocity of
the curve (x, u(x, ·)) while the right-hand side is the weighted anisotropic
curvature. This is a gradient flow of the anisotropic surface energy functional∫ r

−r

a(ν) ds,

where ds =
√

1 + u2
xdx and ν = (−ux, 1)/

√
1 + u2

x with homogeneous Dirich-
let (u = 0) or Neumann (ap(−ux, 1) = 0) boundary conditions, since

d

dt

∫ r

−r

a(ν) ds =

∫ r

−r

ap(−ux, 1)uxt dx = −
∫ r

−r

|(ap(−ux, 1))x|2 ds.

Under these assumptions, we show

Theorem 1
Suppose u is a smooth solution of (2.1) on [−r, r] × [0, T ] satisfying

sup
[−r,r]×[0,T ]

|u| ≤ M.

Given 0 < s < r and 0 < t0 < T , there exists a constant C > 0 depending
only on δ0, M, t0, s, r such that

sup
[−(r−s),r−s]×[t0,T ]

|ux| ≤ C.

Note that the estimate is independent the gradient of the initial data.
Also we point out that the dependence of C on a is only through the lower
bound of the uniform convexity δ0, but not on the upper bound (such as C1

bound). Thus, the result in this paper can be extended equally to the non-
smooth anisotropic curvature flow problem [4] by approximations. Before
the proof, we cite the following theorem due to Angenent [2] which is crucial
in the proof:

3



Lemma 1 Suppose u ∈ C∞([x1, x2] × [0, T ]) satisfies the equation

(2.2) ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

on [x1, x2] × [0, T ] and

u(xj, t) �= 0 for t ∈ [0, T ] j = 1, 2.

Here, a, b, c are smooth functions of (x, t) and a > 0. Then for all t ∈ (0, T ],
the zero set of x → u(x, t) will be finite, even when counted with multiplicity.
The number of zeros of x → u(x, t) counted with multiplicity is nonincreasing
function of t.

Proof of Theorem. Given 0 < s < r and 0 < t0 < T , we construct a
solution v for (2.1) on [−s, s] × (0, T ] with the following properties:

(a) v(−s, t) = −M − 1 and v(s, t) = M + 1 for 0 < t ≤ T ,

(b) vx > 0 on [−s, s] × (0, T ],

(c) for any −s < x ≤ s, limt→0 v(x, t) > M .

The property (c) means that v has an initial data which is vertical at x =
−s. We show that the function v has a gradient bound 0 < vx ≤ C on
[−s, s]×[t0, T ], where C depends only on M, δ0, s, t0. We show the existence of
such v later in the proof. Assuming such v exists for now, we then prove that
any solution with sup[−r,r]×[0,T ] |u| ≤ M satisfies sup[−(r−s),r−s]×[t0,T ] ux ≤ C .
The same argument using −u will show sup[−(r−s),r−s]×[t0,T ] |ux| ≤ C . For a
contradiction, assume that there exists a point (x̄, t̄) ∈ [−(r−s), r−s]×[t0, T ]
with ux(x̄, t̄) > C. Since sup |u| ≤ M and by (a), we may choose λ so that
|x̄−λ| < s and v(x̄−λ, t̄) = u(x̄, t̄). With this λ, define vλ(x, t) = v(x−λ, t).
Since ux(x̄, t̄) > C ≥ (vλ)x(x̄, t̄) and vλ(λ + s, t̄) = v(s, t̄) = M + 1 >
u(λ + s, t̄), there has to be at least another point x̄ < x̃ < λ + s such
that u(x̃, t̄) = vλ(x̃, t̄). Thus u − vλ has at least two zeros at t = t̄ on
λ − s < x < λ + s. Function u − vλ satisfies the equation of the type (2.2)
on [λ− s, λ + s] × (0, T ], with non-zero boundary values for all t > 0 due to
sup |u| ≤ M and (a). Thus we may use Lemma 1 and conclude that u − vλ

has at least two zeros in x variable for all t̄ > t > 0. Since vλ > M for x away
from λ − s and all small t, and since we assume that u is a smooth function
up to t = 0, this is impossible to satisfy for all small enough t.
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Thus it remains to prove the existence of such v. To do this, we invert
the role of independent variable x and dependent variable y = v(x, t). Let
y = w(x, t) be the inverse function of v with respect to the space variables,
i.e., w satisfies y = v(w(y, t), t) identically. Since the equation is geometric,
w should satisfy the similar equation to (2.1) on [−M − 1,M + 1] × (0, T ]
with the role of y and x exchanged. Now, the conditions on v in terms of w
are

(a’) w(−M − 1, t) = −s and w(M + 1, t) = s for 0 < t ≤ T ,

(b’) wx > 0 on [−M − 1,M + 1] × (0, T ],

(c’) for any −M − 1 ≤ x ≤ M , limt→0 w(x, t) = −s.

Furthermore, on [−M − 1,M + 1] × (0, T ], w should satisfy

(2.3)
wt√

1 + w2
x

= (aq(1, wx))x.

Since ∂y
∂x

= 1/∂x
∂y

, we need to show that there exists a constant C > 0 such

that wx > C on [−M, M ] × [t0, T ]. We solve (2.3) with the following convex
initial data. Let Γ ∈ C∞([−M − 1,M + 1]) be

• Γ(x) = −s for x ∈ [−M − 1,M ],

• Γ(M + 1) = s, Γ′′(M + 1) = 0,

• Γ(x) ≥ −s, Γ′(x) ≤ 3s, Γ′′(x) ≥ 0 for x ∈ [M, M + 1].

Let w be the unique smooth solution of (2.3) with the initial data Γ and the
boundary data (a’). Since any functions c1 + c2x are solutions of (2.3), one
obtains the gradient estimate

(2.4) 0 ≤ wx ≤ 3s

on [−M − 1,M + 1] × [0, T ], by using these functions as barriers and the
standard maximum principle applied to wx. Also, note that the convexity
of w is preserved, i.e., wxx ≥ 0. This is seen by differentiating the equation
with respect to t and then applying the maximum principle to wt. wt = 0
on the boundary and wt = aqqwxx ≥ 0 for t = 0 imply wt ≥ 0. The equation
then yields wxx ≥ 0 on [−M − 1,M + 1] × [0, T ].
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Now, (2.4) implies that aqq(−1, wx) ≥ c(s, δ0)(call this δ)> 0 by assump-
tion (c). We claim that the solution of


zt = δzxx [−M − 1,M + 1] × [0, T ],
z(±(M + 1), t) = ±s t ∈ [0, T ],
z(x, 0) = Γ(x) x ∈ [−M − 1,M + 1]

satisfies w ≥ z on [−M − 1,M + 1]× [0, T ]. This is because of the following
combined with the standard maximum principle:

(w−z)t = aqq(−1, wx)wxx−δzxx = aqq(−1, wx)(w−z)xx+(aqq(−1, wx)−δ)zxx

≥ aqq(−1, wx)(w − z)xx.

In the last line, we used zxx ≥ 0, which follows by the same reason for
wxx ≥ 0 before, and aqq(−1, wx) ≥ δ. We next claim that for t0 ≤ t, there
exists c = c(t0, s, δ) > 0 such that zx ≥ c on [−M − 1,M + 1] × [t0, T ].
zx satisfies again the heat equation with non-negative initial data and the
homogeneous Neumann data, and thus by the strong maximum principle
(or extending the solution to R by a suitable reflection argument and then
using the representation formula with the heat kernel) we have such c. Since
wxx ≥ 0, for (x, t) with t ≥ t0, we have

wx(x, t) ≥ wx(−M − 1, t) ≥ zx(−M − 1, t) ≥ c

as the result. Note that we are using w ≥ z and w = z on the boundary
x = −M − 1. This completes the proof.

Remark 1 After completing the manuscript, we learned that Julie Clutter-
buck at Australian National University has recently considered the problem
and obtained the similar interior estimates.
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