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There is a close relationship between topology and combinatorics of complex line

arrangements. A complex line arrangement is a finite set L of lines of the complex

projective space CP2 =: P2. By topology, we mean the oriented homeomorphism

type of the pair (P2,
⋃

L ). By combinatorics, we mean the intersection pattern

of the lines.

This problem is in the intersection of two generalizations: either we consider hy-

perplanes in higher dimension or we consider plane curves of higher degree. In the

case of arrangement of hyperplanes it is well-known that the associated matroid

(which is a combinatorial invariant) determines the cohomology ring of the com-

plement of the arrangement. In the case of plane curves, there is a natural notion

of combinatorics, and Zariski showed that these combinatorics do not determine

the topology.

Taking into account the general results of hyperplane arrangements, it is a

natural question to decide whether combinatorics determine the topology of line

arrangements.

In a famous preprint [6], G. Rybnikov proves the existence of two line arrange-

ments L1, L2 in P2 := CP2 which have the same combinatorics but whose pairs,

(P2,
⋃

L1) and (P2,
⋃

L2), are not homeomorphic. Rybnikov claims that the fun-

damental groups of the complements are not homeomorphic, see [1] for a further

discussion of his work. We recall that Rybnikov’s examples do not admit real

equations.

In the present talk we are interested in the topology of complexified real ar-

rangements which form a very important class of arrangements. By a complexified

real arrangement we mean an arrangement such that there exists a coordinate

system for which all lines admit real equations. These arrangements belong to a

class of plane projective curves, which may be called totally real curves. A curve

is totally real if all its topological properties can be deduced from the type of their

singular points and from its real picture in a suitable coordinate system where its

equation has real coefficients.

This is part of a join work [2] with J. Carmona, J.I. Cogolludo and M. Marco.
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In this talk we will indicate how to prove the existence of complexified real

arrangements with the same combinatorics but different embeddings in P2. More-

over we produce counterexamples with an additional property: they admit Galois-

conjugated equations on the ring of polynomials over Q(
√

5). We set some defini-

tions.

Definition 1. A line combinatorics is a couple (L , P) where L is a finite set

and P ⊂ P(L ) verifies:

• ∀`, `′ ∈ L , ` 6= `′, ∃! p ∈ P such that `, `′ ∈ p.

• ∀p ∈ P the multiplicity ν(p) := #p of p verifies ν(p) ≥ 2.

Analogously ordered line combinatorics are defined. An automorphism of L is a

permutation of L preserving P. The group Aut L of such automorphisms is the

automorphism group of L .

A simple way to obtain line combinatorics is via point arrangements in FqP
2

for some finite field Fq. For example, the starting point in [6] is the MacLane

arrangement. This arrangement can be defined as follows. Consider F3P
2 as the

union of F2
3 and the line at infinity. Consider also the points of F2

3 \ {0}: the

MacLane combinatorics is the abstract line combinatorics corresponding to the

dual of this 8 point arrangement. It is easily seen that the automorphism group

of MacLane combinatorics is naturally isomorphic to GL(2; F3).

In this talk, we consider a point arrangement in F4P
2. The starting point of this

work is a similar idea. Let us consider F4P
2 = F2

4 ∪ L∞, where L∞ is the line at

infinity. Let us consider A :=
(

0 1
1 ζ

)

∈ GL(2; F4), where ζ is any of the elements of

F4\F2; note that A5 = I2. The orbit of ( 1
0 ) and L∞ is 10-point arrangement which

produces a line combinatorics C which has an automorphism group of order 20.

Note that deleting one point of the line at infinity produces the Falk-Sturmfels

line combinatorics, see [4].

Definition 2. Let C be a line combinatorics. An arrangement L of P2 = CP2 is

a complex realization of C if its combinatorics agrees with C . An ordered complex

realization of an ordered line combinatorics is defined accordingly. The space of

all complex realizations,resp. ordered, of a line combinatorics C is denoted by

Σ(C ), resp. Σord(C ).

The moduli space of a combinatorics C is the quotient M (C ) := Σ(C )/ PGL(3; C).

The ordered moduli space M ord(C ) of an ordered combinatorics C is defined ac-

cordingly.

We come back to MacLane line combinatorics N . It is well known that

#M (N ) = 1 and that #M ord(N ) = 2. This is a crucial step in Rybnikov’s
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Figure 1. Arrangement C +
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work. One can find representatives having equations in the polynomial ring over

the field of cubic roots of unity. Moreover, the MacLane line combinatorics has

no real realization. For our combinatorics C we have an analogous result.

Proposition 3. The space M ord(C ) has two elements. Moreover, representatives

can be chosen to have the following equations:

M1 : z = 0, M2 : x = 0, M3 : x = z, M4 : x = −(γ+1)z, M5 : x = (γ+2)z,

L1 : y = x, L2 : y = γ(x − z), L3 : y = γx + z, L4 : y = z, L5 : y = 0,

where γ2 + γ − 1 = 0. The space M (C ) has only one element.

Let us state the first main result of Rybnikov’s work [6]: if N ± are two rep-

resentatives of the elements of M ord(N ), hen there is no isomorphism of the

fundamental groups of P2 \
⋃

N + and P2 \
⋃

N − inducing the identity in the ho-

mology groups. In particular, there is is no orientation-preserving homeomorphism

between (P2,
⋃

N +) and (P2,
⋃

N −).

The next step in our work is to consider the two ordered arrangements C ± rep-

resenting the elements of M ord(C ), determined by the equations given in Proposi-

tion 3 and by the choice of γ± := −1±
√

5

2
. Let us denote by L±

i and M±
i , i = 1, . . . , 5

the lines as in section §2. Affine pictures are shown in Figures 1 and 2, where M±
1

are the corresponding lines at infinity.

Rybnikov’s approach does not work with C . Nevertheless, we are able to prove:

Theorem 4. There is no order-preserving homeomorphism between (P2,
⋃

C +)

and (P2,
⋃

C −).

The main point for the proof of this theorem is the use of the non-generic braid

monodromy with respect to the vertical projection of figures 1 and 2. We prove
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Figure 2. Arrangement C −
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that these braid monodromies are not equivalent (see [2] for the precise definition)

using a GAP4 [5] program. Then, we adapt the main result of [3] to prove theorem

4.

Since the line combinatorics N and C have a great symmetry, they verify

#M (N ) = #M (C ) = 1 and hence will not provide pairs of arrangements having

the same combinatorics but different topologies. We will add a suitable line which

will break the symmetries of C .

Let H ± := C ± ∪{N±} be two new arrangements, where N± is the line joining

the points L±
3 ∩ L±

5 ∩ M±
4 = [1 : 0 : −γ±] and L±

2 ∩ M±
2 = [0 : 1 : −(γ± + 1)]. In

particular, N± : γ±x + (γ± + 1)y + z = 0. Note that these two arrangements have

the same combinatorics, say H , since their equations are conjugate in Q(
√

5).

The new abstract line of H will be denoted by N . It can be proved that Aut H

is trivial due to the choice of the line N . This fact implies that #M (H ) = 2 and

H ± are representatives of the two elements and provides the main result of the

work:

Theorem 5. There is no homeomorphism between (P2,
⋃

H +) and (P2,
⋃

H −).

Remark 6. An important feature of this pair of arrangements is the fact that they

are defined by conjugate equations in Q(
√

5). This fact implies that they cannot

be distinguished by algebraic methods. Note for example that the fundamental

groups of P2 \ ⋃

H + and P2 \ ⋃

H − have isomorphic profinite completions.
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