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1 Introduction

The motion of an incompressible viscous fluid in a bounded domain Ω in
R3 is described by the Navier-Stokes equations :

∂v

∂t
+ (v · ∇)v −∇ ·P(v, p) = f, ∇ · v = 0. (1.1)
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Here v = v(x, t) is the velocity vector field, p = p(x, t) is the pressure,
P(v, p) = −pI3 + 2νD(v) is the stress tensor, I3 is an identity matrix of
degree 3, D(v) is the velocity deformation tensor with the elements Dij =
1
2
( ∂vi

∂xj
+

∂vj

∂xi
), ν > 0 is a constant coefficient of viscosity and f = f(x, t) is a

given vector field of external forces.
Equations (1.1) is considered under the initial condition

v|t=0 = v0(x) (1.2)

and the boundary conditions

v · n = 0, v · τ = KPn · τ, (1.3)

or equivalently,

v · n = 0, v = K [Pn− (Pn · n) n] , (1.4)

where n and τ are a unit inward normal and a unit tangential vectors to a
smooth boundary Γ of Ω, respectively, such that n×τ = 1 and K = K(x, t) is
assumed to be a nonnegative function defined on Γ∞ = Γ× (0,∞). Dividing
both sides of (1.4)2 by 1 + νK and using the same letter K in place of
1/(1 + νK), we have

v · n = 0, 2(1−K)ΠD(v)n−Kv = 0, (1.5)

where 0 ≤ K ≤ 1 and Πw = w − (w · n)n. Condition (1.3) implies that
the fluid particles are partially slipping on a solid boundary (see Navier [8],
Goldstein [4], Serrin [10], Sect. 64, and references therein ). We note that if
K ≡ 1, then condition (1.5) reduces the well-investigated adherence one.

The aim of the present paper is to prove the existence of a unique solution
(v̄(x), p̄(x)) to the stationary problem





(v̄ · ∇)v̄ −∇ ·P(v̄, p̄) = f̄ , ∇ · v̄ = 0 in Ω,

v̄ · n = 0, 2(1− K̄)ΠD(v̄)n− K̄v̄ = 0 on Γ
(1.6)

and to study its stability with respect to the corresponding nonstationary
problem (1.1)-(1.2), (1.5). In §§3 − 4, we prove the following existence the-
orem to stationary problem (1.6). Throughout Theorems 1.1-1.4 we always

assume that the boundary Γ belongs to W
5
2
+l

2 (1
2

< l < 1) (as for function
spaces, see §2).

Throughout this paper we denote by ci (i = 1, 2, 3, . . . ) positive constants
that will be used later. Otherwise we do not distinguish them and use the
same symbol c.
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Theorem 1.1 Let K̄ ∈ W
1
2
+l

2 (Γ) (0 ≤ K̄ ≤ 1). If f̄ ∈ W l
2(Ω) satisfies

condition (4.6), then there exists a unique solution (v̄,∇p̄) ∈ (W 2+l
2 (Ω) ∩

H(Ω))×W l
2(Ω) of (1.6) satisfying the inequality

‖v̄‖W 2+l
2 (Ω) + ‖∇p̄‖W l

2(Ω) ≤ c‖f̄‖W l
2(Ω). (1.7)

The proof of Theorem 1.1 depends on the investigation of the linearized
problem for (1.6) and the contraction mapping principle. In studying the
linearized problem we follow the general theory of elliptic boundary value
problems developed by [1, 11, 16]. But our problem is not included completely
in the framework of known theory [1, 11, 16], because in boundary condition
2(1 − K)ΠD(v)n − Kv = 0 we must regard both terms 2(1 − K)ΠD(v)n
and Kv are principal, since 0 ≤ K ≤ 1. To overcome this difficulty we make
some devices. The most important one is a partition of unity of a domain
which was originally introduced by Tani [15] for the study of time-dependent
compressible Navier-Stokes equations under condition (1.5), and later used
by the authors [5, 14] for incompressible case. We follow this idea with some
natural modifications for stationary case (see §3.4 ).

Now let us turn to nonstationary problem (1.1)-(1.2), (1.5). First of all
existence of a temporally local solution was established in [14].

Theorem 1.2 ([14]) Suppose K ∈ W
1
2
+l, 1

4
+ l

2
2 (Γ∞), f ∈ W

l, l
2

2 (Q∞) (Q∞ =
Ω×(0,∞)), v0 ∈ W 1+l

2 (Ω) and v0 satisfies the compatibility conditions. Then

problem (1.1)-(1.2), (1.5) has a unique solution (v,∇p) ∈ W
2+l,1+ l

2
2 (QT1) ×

W
l, l

2
2 (QT1) for some T1 ∈ (0,∞) such that

‖v‖
W

2+l,1+ l
2

2 (QT1
)
+ ‖∇p‖

W
l, l

2
2 (QT1

)
≤ c1

(‖v0‖W 1+l
2 (Ω) + ‖f‖

W
l, l

2
2 (Q∞)

) ≡ c1E.

(1.8)

Moreover, the number T1 increases unboundedly as E tends to zero.

Theorem 1.2 and the a priori estimates proved in §5 yield the following
temporally global existence theorem.

Theorem 1.3 In addition to the assumptions of Theorem 1.2, suppose f ∈
W 2l,l

2 (Q∞) . If E0 = ‖v0‖W 1+l
2 (Ω) + ‖f‖W 2l,l

2 (Q∞) < ε0 with a sufficiently small

positive number ε0, then the solution (v,∇p) of Theorem 1.2 exists for all
t > 0 and satisfies the inequality

sup
t≥t1>0

(‖v(t)‖W 2+l
2 (Ω) + ‖∇p(t)‖W l

2(Ω)

) ≤ cE0 (1.9)

for each t1 > 0.
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Finally stability of stationary solution from Theorem 1.1 is discussed in
§6.

Theorem 1.4 Let (v(x, t), p(x, t)) and (v̄(x), p̄(x)) be the solution of nonsta-
tionary problem (1.1)-(1.2), (1.5) from Theorem 1.3 and of stationary prob-

lem (1.6) from Theorem 1.1, respectively. Suppose that
K − K̄

(1−K)(1− K̄)
∈

L2(Γ̂(t)) (Γ̂(t) = {x ∈ Γ |K(x, t) 6= 1, K̄(x) 6= 1 }). Then the difference
u = v − v̄ obeys the inequality

‖u(t)‖2
L2(Ω) ≤ e−Mt

(‖u(0)‖2
L2(Ω) +

∫ t

0

eMsF (s) ds
)

(1.10)

for any t > 0, where M and F (t) are defined by (6.5) and (6.6), respectively.

In conclution let us mention some previous works about Navier-Stokes
and Stokes equations under slip boundary conditions. In the case of perfect
slip, i.e., K ≡ 0, stationary problem for incompressible Stokes equations was
discussed by Solonnikov-Sčadilov [13], while for compressible heat-conductive
Navier-Stokes equations by Farwig [2]. Note that the problem with perfect
slip condition is closely resemble to that of stationary motion with a free
boundary (see e.g., [9]).

On the other hand, the time-dependent problem (1.1)-(1.2), (1.5), besides
our previous work [14] mentioned above, was also investigated in [5]. In [5],
it was proved that the solution exists for a small time interval in Hölder class
of functions and that this solution exists for all time without restriction of
smallness of the data provided the space dimension is two. The existence of
a temporally global solution for non-homogeneous fluid was also established
in [6].

Finally the initial value problem for viscous compressible heat conducting
fluid with general slip boundary condition was studied by Tani [15] in Hölder
class of functions.

2 Preliminaries

2.1. Function spaces

Throughout this paper we use the Sobolev-Slobodetskĭı spaces defined as
follows. Let Ω be a domain in Rn and l > 0 be a noninteger with an integral
part [l] and a nonintegral part {l}. By W l

2(Ω) we mean the space of functions
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u(x), x ∈ Ω, equipped with the norm

‖u‖2
W l

2(Ω) =

[l]∑

|α|=0

‖Dα
xu‖2

L2(Ω) +
∑

|α|=[l]

∫

Ω

∫

Ω

|Dα
xu(x)−Dα

y u(y)|2
|x− y|n+2{l} dxdy

≡ ‖u‖2

W
[l]
2 (Ω)

+ ‖u‖2
Ẇ l

2(Ω),

where

Dα
xu(x) =

∂|α|u(x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

, α = (α1, α2, . . . , αn)

denotes a distributional derivative of u(x) of order |α| = α1 + α2 + · · ·+ αn.

Now we define anisotropic spaces W
l, l

2
2 (QT ) of functions u(x, t) in a cylindrical

domain QT = Ω × (0, T ) (0 < T ≤ ∞) as W
l, l

2
2 (QT ) = L2(0, T ; W l

2(Ω)) ∩
L2(Ω; W

l
2

2 (0, T )) and introduce in this space the norm

‖u‖2

W
l, l

2
2 (QT )

=

∫ T

0

‖u(·, t)‖2
W l

2(Ω)dt +

∫

Ω

‖u(x, ·)‖2

W
l
2
2 (0,T )

dx

≡ ‖u‖2

W l,0
2 (QT )

+ ‖u‖2

W
0, l

2
2 (QT )

.

Here the norm in W
l
2
2 (0, T ) is defined by

‖u(x, ·)‖2

W
l
2
2 (0,T )

=

[ l
2
]∑

j=0

‖∂j
t u(x, ·)‖2

L2(0,T )

+

∫ T

0

dt

∫ t

0

∣∣∣∂[ l
2
]

t u(x, t)− ∂
[ l
2
]

t u(x, t− τ)
∣∣∣
2 dτ

τ 1+2{ l
2
}

≡ ‖u‖2

W
[ l
2 ]

2 (0,T )
+ ‖u‖2

Ẇ
l
2
2 (0,T )

,

where ∂t = ∂
∂t

.
For a smooth manifold ∂Ω = Γ, the space W l

2(Γ) of functions defined
on Γ is introduced in a standard manner by means of the local coordinates
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and the partition of unity, and W
l, l

2
2 (ΓT ) can be defined in the same way as

above.

The spaces of vector fields whose components belong to W l
2(Ω), W

l, l
2

2 (QT )

etc. are denoted by the same notation as the scalar case W l
2(Ω), W

l, l
2

2 (QT )
etc. and their norms are supposed to be equal to the sum of norms of all its
components.

2.2. Auxiliary lemmas
In this subsection, we present auxiliary inequalities which will be frequently

used in later sections. Hereafter, we assume that Ω is a bounded domain in

R3 with a boundary Γ ∈ W
5
2
+l

2 (l > 1
2
).

Lemma 2.1 ([7]) Suppose u ∈ W 1
2 (Ω). Then u ∈ L4(Γ) and

‖u‖L4(Γ) ≤ c2‖u‖W 1
2 (Ω).

Lemma 2.2 ([3]) Let u be a vector function in W 1
2 (Ω) satisfying u · n = 0

on Γ. Then we have

‖u‖L2(Ω) ≤ c3‖∇u‖L2(Ω).

Next we state Korn’s inequality discussed in [13]. For vectors u, v ∈
W 1

2 (Ω), we introduce

E(u, v) =

∫

Ω

3∑
i,j=1

(
∂ui

∂xj

+
∂uj

∂xi

)(
∂ui

∂xj

+
∂uj

∂xi

)
dx.

We recall that the vectors satisfying E(u, u) = 0 form a finite-dimentional
affine space of vectors of the form

u = A + B × x,

where A and B are constant vectors. Let us define H̃(Ω) = {u ∈ W 1
2 (Ω) |E(u)

≡ E(u, u) < ∞, u ·n = 0 on Γ }. If Ω is a region obtained by rotation about
a vector B, we denote by H(Ω) the space of functions in H̃(Ω) satysfying the
condition ∫

Ω

u · (B × x) dx = 0.

Otherwise we set H(Ω) = H̃(Ω).

Lemma 2.3 ([13]) The inequality

‖∇u‖2
L2(Ω) ≤ c4E(u)

is valid for each u ∈ H(Ω).
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3 Stationary Stokes problem

In this section we consider the problem



−ν∆u +∇q = f̄ , ∇ · u = ρ in Ω,

2(1− K̄)ΠD(u)n− K̄u = bτ , u · n = bn on Γ.
(3.1)

We prove

Theorem 3.1 Let 1
2

< l < 1 . Suppose Γ ∈ W
5
2
+l, K̄ ∈ W

1
2
+l

2 (Γ),




f̄ ∈ W l
2(Ω), ρ ∈ W 1+l

2 (Ω),

bτ ∈ W
1
2
+l

2 (Γ) ∩W
3
2
+l

2 (γ), γ = {x ∈ Γ | K̄(x) = 1 },

bn ∈ W
3
2
+l

2 (Γ)

(3.2)

and ∫

Ω

ρ dx = −
∫

Γ

bn dS. (3.3)

Then problem (3.1) has a unique solution (u,∇q) such that

(u,∇q) ∈ Vl ≡ W 2+l
2 (Ω)×W l

2(Ω) (3.4)

and

‖(u,∇q)‖Vl
≡ ‖u‖W 2+l

2 (Ω) + ‖∇q‖W l
2(Ω)

≤ c5

( ‖f̄‖W l
2(Ω) + ‖ρ‖W 1+l

2 (Ω) + ‖bτ‖
W

1
2+l

2 (Γ)
+ ‖bτ‖

W
3
2+l

2 (γ)
+ ‖bn‖

W
3
2+l

2 (Γ)

)

≡ c5‖(f̄ , ρ, bτ , bn)‖Hl
. (3.5)

As usual we start with the study of a model problem.

3.1. Half-space problem for the homogeneous system
First of all, let us consider the boundary value problem for the homoge-

neous Stokes system in a half space R3
+ = {x = (x′, x3) | x′ ∈ R2, x3 > 0 }:





−ν∆u +∇q = 0, ∇ · u = 0 in R3
+,

(1− k)

(
∂u3

∂xj

+
∂uj

∂x3

)
− kuj

∣∣∣∣
x3=0

= bj (j = 1, 2),

u3|x3=0 = 0 on R2,

(3.6)
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where 0 ≤ k ≤ 1 is a constant and b1, b2 are given functions on R2. Applying
to (3.6) the Fourier transform with respect to x′ = (x1, x2):

f̂(ξ, x3) = F [f ] =

∫

R2

e−ix′·ξf(x′, x3) dx′, (3.7)

where ξ = (ξ1, ξ2), x′ · ξ = x1ξ1 + x2ξ2. Then we have the following system
of ordinary differential equations:





ν

(
ξ2 − d2

dx2
3

)
ûj + iξj q̂ = 0 (j = 1, 2),

ν

(
ξ2 − d2

dx2
3

)
û3 +

dq̂

dx3

= 0,

iξ1û1 + iξ2û2 +
dû3

dx3

= 0, (û, q̂) −→ 0 (x3 −→ +∞),

(3.8)





(1− k)

(
iξjû3 +

dûj

dx3

)
− kûj

∣∣∣∣
x3=0

= b̂j (j = 1, 2),

û3|x3=0 = 0.

(3.9)

We seek the solution to (3.8), (3.9) in the form




û1

û2

û3

q̂


 = a1







−|ξ|
0

−(iξ1 + 1)
−2ν|ξ|


 e−|ξ|x3 +




iξ1

iξ2

−|ξ|
0


 x3e

−|ξ|x3




+a2







0
−|ξ|

−(iξ2 + 1)
−2ν|ξ|


 e−|ξ|x3 +




iξ1

iξ2

−|ξ|
0


 x3e

−|ξ|x3


 (3.10)

+a3




iξ1

iξ2

−|ξ|
0


 e−|ξ|x3 .
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The coefficient (a1, a2, a3) is determined by substituting (3.10) into (3.9).
We have



û1

û2

û3

q̂


 =




G11 G12 0
G21 G22 0
0 0 0

G41 G42 0







b̂1

b̂2

0


 e−|ξ|x3 +




H11 H12 0
H21 H22 0
H31 H32 0
0 0 0







b̂1

b̂2

0


 x3e

−|ξ|x3 ,

(3.11)

where

Gmj = − 1

(1− k)|ξ|+ k

(
δmj +

(1− k)

2(1− k)|ξ|+ k

(iξm)(iξj)

|ξ|
)

(m, j = 1, 2),

G4j = 2ν
iξj

2(1− k)|ξ|+ k
(j = 1, 2), (3.12)

Hmj = − 1

2(1− k)|ξ|+ k

(iξm)(iξj)

|ξ| (m, j = 1, 2),

H3j =
iξj

2(1− k)|ξ|+ k
(j = 1, 2).

In order to estimate (3.11) in W l
2(R3

+), we make use of Parseval’s equality.
Indeed, we find

Lemma 3.1 Let us introduce the norms

‖u‖2
l,R2 =

∫

R2

|û(ξ)|2|ξ|2ldξ,

‖u‖2
l,R3

+
=

∑

k<l

∫

R2

∥∥( d

dx3

)k
û(ξ, ·)

∥∥2

L2(R+)
|ξ|2(l−k)dξ +

∫

R2

‖û(ξ, ·)‖2
Ẇ l

2(R+)
dξ.

Then the norms ‖u‖l,R2 and ‖u‖l,R3
+

are equivalent to ‖u‖Ẇ l
2(R2) and ‖u‖Ẇ l

2(R3
+),

respectively.

As for the estimates of e−|ξ|x3 and x3e
−|ξ|x3 , we obtain the following lemma

by direct calculations.
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Lemma 3.2 Let k ≥ 0 be an integer and α ∈ (0, 1). Then we have
∫ ∞

0

∣∣( d

dx3

)k
e−|ξ|x3

∣∣2dx3 ≤ c|ξ|2k−1,

∫ ∞

0

∫ ∞

0

∣∣( d

dx3

)k
e−|ξ|(x3+y3) − ( d

dx3

)k
e−|ξ|x3

∣∣2 dx3dy3

y1+2α
3

≤ c|ξ|2(k+α)−1,

∫ ∞

0

∣∣( d

dx3

)k
x3e

−|ξ|x3
∣∣2dx3 ≤ c|ξ|2k−3,

∫ ∞

0

∫ ∞

0

∣∣( d

dx3

)k
(x3 + y3)e

−|ξ|(x3+y3) − ( d

dx3

)k
x3e

−|ξ|x3
∣∣2 dx3dy3

y1+2α
3

≤ c|ξ|2(k+α)−3

with a constant c independent of |ξ|.
From (3.12) and Lemmas 3.1 and 3.2, we obtain

Lemma 3.3 Let b = (b1, b2) = (1 − k)bN − kbD with bN ∈ Ẇ
1
2
+l

2 (R2),

bD ∈ Ẇ
3
2
+l

2 (R2), l ≥ 0. Then solution (3.11) to problem (3.6) satisfies the
inequality

‖u‖Ẇ 2+l
2 (R3

+) + ‖∇q‖Ẇ l
2(R3

+) ≤ c
( ‖bN‖

Ẇ
1
2+l

2 (R2)
+ ‖bD‖

Ẇ
3
2+l

2 (R2)

)
. (3.13)

3.2. Non-homogeneous system
Now we consider the non-homogeneous system





−ν∆u +∇q = f̄ , ∇ · u = ρ in R3
+,

(1− k)

(
∂u3

∂xj

+
∂uj

∂x3

)
− kuj

∣∣∣∣
x3=0

= bj (j = 1, 2),

u3|x3=0 = b3 on R2.

(3.14)

We prove

Lemma 3.4 Let b = (b1, b2) be as in Lemma 3.3. Suppose that f̄ ∈ Ẇ l
2(R3

+),

ρ ∈ Ẇ 1+l
2 (R3

+), b3 ∈ Ẇ
3
2
+l

2 (R2) and the condition
∫
R3

+
ρ dx = − ∫

R2 b3 dx′ is

satisfied. Then the solution (u,∇q) to problem (3.14) satisfies the estimate

‖u‖Ẇ 2+l
2 (R3

+) + ‖∇q‖Ẇ l
2(R3

+) (3.15)

≤ c
(‖f̄‖Ẇ l

2(R3
+) + ‖ρ‖Ẇ 1+l

2 (R3
+) + ‖bN‖

Ẇ
1
2+l

2 (R2)
+ ‖bD‖

Ẇ
3
2+l

2 (R2)
+ ‖b3‖

Ẇ
3
2+l

2 (R2)

)
.
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Proof. We seek the solution of (3.14) in the form (u, q) = (u(1) + u(2) +
u(3), νρ′ + q(3)). Here u(1) is a solution of Dirichlet problem:

−ν∆u(1) = f̄ in R3
+, u(1)

∣∣
x3=0

= 0 on R2. (3.16)

While u(2) = ∇φ, where φ is a solution of Neumann problem

∆φ = ρ−∇ · u(1) ≡ ρ′ in R3
+,

∂φ

∂x3

∣∣∣∣
x3=0

= b3 on R2, (3.17)

and (u(3), q(3)) is a solution of problem (3.6) with b = (b1, b2) replaced by
d = (d1, d2), where

dj = bj − (1− k)

(
∂

∂xj

(u
(1)
3 + u

(2)
3 ) +

∂

∂x3

(u
(1)
j + u

(2)
j )

)
+ k (u

(1)
j + u

(2)
j )

∣∣∣∣
x3=0

≡ (1− k)dN
j − kdD

j (j = 1, 2).

From the known estimates to problem (3.16) and (3.17) combined with
Lemma 3.3 yields (3.15).

3.3. Uniqueness of the solution
Before proving the normal solvability to problem (3.1), we discuss unique-

ness of the solution.

Lemma 3.5 The solution to problem (3.1) is unique. (Here uniqueness of q
means within an additive constant.)

Proof. Let (u, q) be a solution of (3.1) with f̄ = ρ = bτ = bn = 0. Then we
have

0 = −
∫

Ω

(∇ ·P(u, q)
) · u dx =

∫

Γ

P(u, q)n · u dS +
ν

2
E(u)

=

∫

Γ

2νD(u)n · u dS +
ν

2
E(u)

= ν

∫

Γ∗

K̄

1− K̄
|u|2 dS +

ν

2
E(u),

where Γ∗ = {x ∈ Γ | K̄(x) 6= 1 }. Therefore the boundary condition u ·n = 0
implies u ≡ 0.
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3.4. Proof of Theorem 3.1
Here and in what follows we simply write ‖ · ‖L2(Ω) as ‖ · ‖.
We decompose a solution (3.1) in a similar manner as in §3.2. Namely

(u, q) = (u(1) + u(2) + v, νρ′ + p), where u(1), u(2) = ∇φ and (v, p) satisfy the
following equations, respectively:

− ν∆u(1) = f̄ in Ω, u(1) = 0 on Γ, (3.18)

− ν∆φ = ρ−∇ · u(1) ≡ ρ′ in Ω,
∂φ

∂n
= bn on Γ, (3.19)





−ν∆v +∇p = 0, ∇ · v = 0 in Ω,

2(1− K̄)ΠD(v)n− K̄v

= bτ − 2(1− K̄)ΠD(u(1) +∇φ) + K̄(u(1) +∇φ)
∣∣
Γ
≡ dτ ,

v · n = 0 on Γ.

(3.20)

Since problems (3.18) and (3.19) are well investigated, we have only to con-
sider problem (3.20). The solvability of (3.20) will be proved by the method
of the regularizer (cf.,[11, 16]), which necessitates to introduce two systems
of covering {ω(k)} and {Ω(k)} of Ω̄. As was mentioned in introduction, we
make some devices for {ω(k)} and {Ω(k)} because of boundary condition
2(1− K̄)ΠD(v)n− K̄v = dτ (0 ≤ K̄ ≤ 1).

For arbitrary small positive number λ, {ω(k)} and {Ω(k)} are constructed
as follows :
For k = k′ satisfying ω(k′)∩Γ = ∅, {ω(k′)} and {Ω(k′)} are the cubes with the
same center and with the length of their edges, in a parallel direction with
axes, equal to λ/2 and λ, respectively.
For k = k′′ such that ξ(k′′) ∈ Γ − γ (γ = {x ∈ Γ | K̄(x) = 1}), we define by
the local rectangular coordinate system {y}:

ω(k′′) = Πy
x

{ |yj| ≤ 1

2
β1λ (j = 1, 2), 0 ≤ y3 − F (y′; ξ(k′′)) ≤ β1λ

}
,

Ω(k′′) = Πy
x

{ |yj| ≤ β1λ (j = 1, 2), 0 ≤ y3 − F (y′; ξ(k′′)) ≤ 2β1λ
}
.

Here the equation y3 = F (y′; ξ(k′′)) (y′ = (y1, y2)) represents the boundary
Γ in the neighborhood of the point ξ(k′′), Πy

x is the transformation from {y}
to {x} and β1 is some positive constant independent of λ. If γ is covered
by ∪k′′(ω

(k′′) ∩ Γ), then it is clear that Ω̄ is covered by {ω(k)} and {Ω(k)}
constructed above.
Otherwise (in this case we shall denote k = k′′′), we define {ω(k′′′)} and
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{Ω(k′′′)} by the same way as {ω(k′′)} and {Ω(k′′)} with another positive con-
stant β2(≤ β1) also independent of λ so that γ−∪k′′(ω

(k′′)∩Γ) ⊂ ∪k′′′(Ω
(k′′′)∩

Γ) ⊂ γ.
Once we introduce the system of coverings as above, the rest of the proof is
carried out in line with the general theory of Solonnikov [11]. Hence we only
describe it briefly.

Now we consider two families of smooth functions {ζ(k)(x)} and {η(k)(x)}
associated with the coverings {ω(k)} and {Ω(k)}: ζ(k)(x) = 1 if x ∈ ω(k)(t),
ζ(k)(x) = 0 if x ∈ Ω̄ − Ω(k), 0 ≤ ζ(k)(x) ≤ 1, |Dr

xζ
(k)(x)| ≤ cλ−|r|, η(k)(x) ≡

ζ(k)(x)P
k(ζ(k)(x))2

. Ovbiously, {η(k)(x)} are smooth functions such that η(k)(x) = 0

if x ∈ Ω̄− Ω(k),
∑

k η(k)(x)ζ(k)(x) = 1 and

|Dr
xη

(k)(x)| ≤ cλ−|r|. (3.21)

We note that Γ ∈ W
5
2
+l means that F (y′; ξ(k)) ∈ W

5
2
+l(Br), Br ≡ {y′ ∈

R2 | |y′| < r}, has the properties F (0) = 0, ∇′F (0) = 0, ‖F‖
W

5
2+l(Br)

≤ N

with the constants r and N being independent of y′. We take λ small enough
so that β1λ ≤ r

2
holds. Clearly,

|F (y′)| = |F (y′)− F (0)| ≤ N |y′|,

|∇′F (y′)| = |∇′F (y′)−∇′F (0)| ≤ N |y′|. (3.22)

We define operator R by

Rh =
∑

k′′, k′′′
η(k)(x) Πz

xR(k) Πx
z (hζ(k))(x)

=
∑

k′′, k′′′
η(k)(x) Πz

x (v̄(k),∇p̄(k))(z)

=
∑

k′′, k′′′
η(k)(x) (v(k),∇p(k))(x)

where h = (0, 0, dτ , 0), the local coordinate system {z} connected with {y} is
given by the relation z′ = y′, z3 = y3 − F (y′; ξ(k′′)), Πz

x is the transformation
from {z} to {x}, Πx

z is its inverse and R(k) Πx
z (hζ(k))(x) = (v̄(k),∇p̄(k))(z),

(v̄(k),∇p̄(k))(z) is the solution of following problem in the half space R3(k)
+ =
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Πz
xΩ

(k):




−ν∆v̄(k) +∇p̄(k) = 0, ∇ · v̄(k) = 0 in R3(k)
+ ,

(1− K̄(ξ(k), 0))

(
∂v̄

(k)
3

∂xj
+

∂v̄
(k)
j

∂x3

)
− K̄(ξ(k), 0)v̄

(k)
j

∣∣∣∣
z3=0

= Πx
zζ

(k)dτj (j = 1, 2),

v̄
(k)
3

∣∣∣
z3=0

= 0 on R2(k) = Πx
z∂Ω(k) ∩ {z3 = 0}.

Then one can easily show that Rh = (v′,∇p′)(x) satisfies




−ν∆v′ +∇p′ = M1h, ∇ · v′ = M2h in Ω,

2(1− K̄)ΠD(v′)n− K̄v′ = dτ +M3h,

v′ · n = M4h on Γ.

(3.23)

Here the operatorM = (M1,M2,M3,M4) is defined on Hl = {(f̄ , ρ, bτ , bn) |
(f̄ , ρ, bτ , bn) has the smoothness property in (3.2)} equipped with the norm
‖(f̄ , ρ, bτ , bn)‖Hl

(cf.(3.5)), and is represented as follows:

M1h =
∑

k′′, k′′′

(−ν
(
∆(η(k)v(k))− η(k)∆v(k)

)
+∇(η(k)p(k))− η(k)∇p(k)

)

+
∑

k′′, k′′′
η(k) Πz

x

(−ν(∆(k) −∆)v̄(k) + (∇(k) −∇)p̄(k)
)

≡ T1h +K1h,

M2h =
∑

k′′, k′′′

(∇ · (η(k)v(k))− η(k)∇ · v(k)
)

+
∑

k′′, k′′′
η(k) Πz

x (∇(k) −∇) · v̄(k)

≡ T2h +K2h,

M3h =
∑

k′′
2
(
1− K̄(x)

)
Π

(
D(η(k)v(k))n− η(k)D(v(k))n

)

+
∑

k′′

(
η(k)

(
K̄(ξ(k))− K̄(x)

) (
2ΠD(v(k))n + v(k)

)

+ 2η(k)
(
1− K̄(ξ(k))

)
Πz

x

(
ΠD(k)(v̄(k))n− Π0D(v̄(k))n0

))

≡ T3h +K3h,

M4h =
∑

k′′, k′′′
η(k)v(k) · (n− n0) ≡ K4h,
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where ∇(k) = Πx
z∇x = t(∂xi

∂zj
)−1∇z ≡ g∇z, ∆(k) = ∇(k) · ∇(k), D(k) = Πx

zD,

n0 = n(ξ(k)) = (0, 0, 1)t and Π0w = w − (w · n0)n0.
If we denote by A the differential operators in the left hand side of (3.23),
then we find

ARh = h + T h +Kh, (3.24)

where T = (T1, T2, T3, 0) and K = (K1,K2,K3,K4).
To estimate ‖T h‖Hl

and ‖Kh‖Hl
, we introduce the norm depending on

parameter λ:

〈u〉2l,Ω(k) =

[l]∑
j=0

1

λl−j
‖u‖2

W j
2 (Ω(k))

+ ‖u‖2
Ẇ l

2(Ω(k))
.

Certainly the norms ‖u‖W l
2(Ω(k)) and 〈u〉l,Ω(k) are equivalent for each λ > 0,

and the interpolation inequality implies

‖u‖W m
2 (Ω(k)) ≤ cλl−m〈u〉l,Ω(k)

for 0 ≤ m < l. By making use of (3.21), (3.22) and the smoothness of K̄(x),
one can show that K is a contraction operator on Hl for small λ, and T
is a compact operator on Hl for each λ, since the imbedding operator from
Hl into Hl−m is compact for a bounded Ω. Therefore, (3.24) implies that
existence of the right regularizer.

Now let us consider RAu. Similar calculations yield

RAu = u + Su +Qu, (3.25)

where u = (v,∇p) ∈ Vl, S = (S1,S2,S3, 0), Q = (Q1,Q2,Q3,Q4),

S1u =
∑

k′′, k′′′
η(k) Πz

xR(k) Πx
z

(−ν
(
ζ(k)∆v −∆(ζ(k)v)

)
+ ζ(k)∇p−∇(ζ(k)p)

)
,

Q1u =
∑

k′′, k′′′
η(k) Πz

xR(k)
(−ν(∆(k) −∆)v̄(k) + (∇(k) −∇)p̄(k)

)
,

S2u =
∑

k′′, k′′′
η(k) Πz

xR(k) Πx
z

(
ζ(k)∇ · v −∇ · (ζ(k)v)

)
,

Q2u =
∑

k′′, k′′′
η(k) Πz

xR(k)(∇(k) −∇) · v̄(k),

S3u =
∑

k′′
η(k) Πz

xR(k) Πx
z 2

(
1− K̄(x)

)
Π

(
ζ(k)D(v)n−D(ζ(k)v)n

)
,
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Q3u =
∑

k′′
η(k) Πz

xR(k) Πx
z

((
K̄(ξ(k))− K̄(x)

) (
2ΠD(ζ(k)v)n + ζ(k)v

)

+
∑

k′′
η(k) Πz

xR(k)2
(
1− K̄(ξ(k))

) (
ΠD(k)(v̄(k))n− Π0D(v̄(k))n0

)

Q4u =
∑

k′′, k′′′
η(k) Πz

xR(k) Πx
z ζ(k)v · (n− n0).

By exactly the same way as K and T , one can show that Q is a contraction
operator on Vl and that S is a compact operator on Vl, which together with
(3.25) imply the existence of the left regularizer. By combining these and
uniqueness of a solution from Lemma 3.5, Theorem 3.1 is proved.

4 Proof of Theorem 1.1

We solve (1.6) by the method of successive approximations. Let (v̄(0),∇p̄(0)) =
(0, 0) and (v̄(m),∇p̄(m)) ∈ X̄(Ω) ≡ { (v̄(m),∇p̄(m)) ∈ Vl | ‖(v̄(m),∇p̄(m))‖Vl

≤
2c5‖f̄‖W l

2(Ω) } (m = 1, 2, 3, . . . ). We define (v̄(m+1),∇p̄(m+1)) as a solution to
the linear problem





−ν∆v̄(m+1) +∇p̄(m+1) = f̄ − (v̄(m) · ∇)v̄(m),

∇ · v̄(m+1) = 0 in Ω,

v̄(m+1) · n = 0, 2(1− K̄)ΠD(v̄(m+1))n− K̄v̄(m+1) = 0 on Γ.

(4.1)

By Theorem 3.1 problem (4.1) has a unique solution (v̄(m+1),∇p̄(m+1)) ∈ Vl

satisfying

‖(v̄(m+1),∇p̄(m+1))‖Vl
≤ c5

( ‖f̄‖W l
2(Ω) + ‖(v̄(m) · ∇)v̄(m)‖W l

2(Ω)

)

≤ c5

( ‖f̄‖W l
2(Ω) + c6‖v̄(m)‖2

W 1+l
2 (Ω)

)

≤ c5

( ‖f̄‖W l
2(Ω) + c6(2c5‖f̄‖W l

2(Ω))
2
)

≤ c5

(
1 + 4c2

5c6‖f̄‖W l
2(Ω)

)‖f̄‖W l
2(Ω). (4.2)

Hence we find (v̄(m+1),∇p̄(m+1)) ∈ X̄(Ω) provided

4c2
5c6‖f̄‖W l

2(Ω) ≤ 1. (4.3)
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Now let us prove the convergence of the successive approximations. Sub-
tracting from (4.1) the similar equations for (v̄(m),∇p̄(m)) and setting
(V̄ (m+1),∇P̄ (m+1)) = (v̄(m+1) − v̄(m),∇p̄(m+1) −∇p̄(m)), we obtain





−ν∆V̄ (m+1) +∇p̄(m+1) = −(v̄(m) · ∇)V̄ (m) − (V̄ (m) · ∇)v̄(m−1),

∇ · V̄ (m+1) = 0 in Ω,

V̄ (m+1) · n = 0, 2(1− K̄)ΠD(V̄ (m+1))n− K̄V̄ (m+1) = 0 on Γ.

(4.4)

By virtue of Theorem 3.1, there exists a unique solution (V̄ (m+1),∇P̄ (m+1)) ∈
Vl of (4.4), which satisfies

‖(V̄ (m+1),∇P̄ (m+1))‖Vl
≤ c5

( ‖(v̄(m) · ∇)V̄ (m)‖W l
2(Ω) + ‖(V̄ (m) · ∇)v̄(m−1)‖W l

2(Ω)

)

≤ c5c6

( ‖v̄(m)‖W 1+l
2 (Ω) + ‖v̄(m−1)‖W 1+l

2 (Ω)

)‖V̄ (m)‖W 1+l
2 (Ω)

≤ 4c2
5c6‖f̄‖W l

2(Ω)‖(V̄ (m),∇P̄ (m))‖Vl
. (4.5)

Therefore if we assume

4c2
5c6‖f̄‖W l

2(Ω) < 1, (4.6)

then we see that the sequence (v̄(m),∇p̄(m)) converges to some (v̄,∇p̄) ∈ X̄(Ω)
as m → ∞, which is our desired solution to (1.6). The uniqueness of the
solution follows from the estimate similar to (4.5).

5 Proof of Theorem 1.3

We begin with the conservation of energy for (1.1)-(1.2), (1.5).

Lemma 5.1 The estimate

‖v(t)‖ ≤ ‖v0‖+

∫ t

0

‖f(s)‖ds (t > 0) (5.1)

is true for the solution (v,∇p) to problem (1.1)-(1.2), (1.5).

Proof. Multiplying v for (1.1)1 and integrating it over Ω, we have the equality

1

2

d

dt
‖v‖2 +

ν

2
E(v) = −

∫

Γ

P(v, p)n · v dS +

∫

Ω

f · v dx.
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Similarly in the proof of Lemma 3.5, we find

1

2

d

dt
‖v‖2 +

ν

2
E(v) + ν

∫

Γ∗(t)

K

1−K
|v|2 dS =

∫

Ω

f · v dx ≤ ‖f‖‖v‖, (5.2)

where Γ∗(t) = {x ∈ Γ |K(x, t) 6= 1 }.
For the estimates of higher derivatives of the solution, we follow Solon-

nikov [12].

Lemma 5.2 Let the solution from Theorem 1.2 satisfy the condition

‖v‖
W

2+l,1+ l
2

2 (QT1
)
≤ δ (5.3)

with a sufficiently small number δ > 0. Then

U(λ) = ‖v‖
W

2+l,1+ l
2

2 (Q(λ))
+ ‖∇p‖

W
l, l

2
2 (Q(λ))

≤ c
(
λ−

l
2‖v‖L2(Q(0)) + ‖f‖

W
l, l

2
2 (Q∞)

)
,

(5.4)

where λ ∈ (0, 1), Q(λ) = Ω×(2t0 +λ, T1), t0 > 0, 2t0 +λ < T1. Furthermore,

sup
t∈(t1,T1)

(‖v(t)‖W 2+l
2 (Ω) + ‖∇p(t)‖W l

2(Ω)

) ≤ c
(‖v‖L2(Q(0)) + ‖f‖W 2l,l

2 (Q∞)

)
(5.5)

is valid for each t1 ∈ (2t0, T1).

Proof. Let ζλ(t) be a smooth function of t ∈ R which vanishes for t ≤ t0 + λ
2
,

equals to 1 for t ≥ t0 + λ and satisfies 0 ≤ ζλ(t) ≤ 1, |ζ(k)
λ (t)| ≤ cλ−k. Then

it is easily seen that (vλ,∇pλ) = (ζλv, ζλ∇p) satisfies the equations




∂vλ

∂t
−∇ ·P(vλ, pλ) = ζλf + ζλ(v · ∇)v − ζ ′λv, ∇ · vλ = 0 in Q(λ),

vλ|t=0 = 0 on Ω,

vλ · n = 0, 2(1−K)ΠD(vλ)n−Kvλ = 0 on Γ(λ) = Γ× (2t0 + λ, T1).

(5.6)

Applying Theorem 3.4 in [14], we obtain

‖vλ‖
W

2+l,1+ l
2

2 (QT1
)
+ ‖∇pλ‖

W
l, l

2
2 (QT1

)

≤ c
(‖ζλf‖

W
l, l

2
2 (QT1

)
+ ‖ζλ(v · ∇)v‖

W
l, l

2
2 (QT1

)
+ ‖ζ ′λv‖

W
l, l

2
2 (QT1

)

)

≤ c
(‖f‖

W
l, l

2
2 (QT1

)
+ δ‖vλ‖

W
1+l, 12+ l

2
2 (QT1

)
+ λ−1‖v‖

W
l, l

2
2 (QT1

)

)
.
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Therefore,

U(λ) ≤ c
(‖f‖

W
l, l

2
2 (Q∞)

+ λ−1‖v‖
W

l, l
2

2 (Q(λ
2
))

)
. (5.7)

Using the interpolation inequality (see [12]), we find

cλ−1‖v‖
W

l, l
2

2 (Q(λ
2
))
≤ ε1‖v‖

W
2+l,1+ l

2
2 (Q(λ

2
))

+
(ε1λ

c

)− l
2‖v‖L2(Q(0)), (5.8)

where ε1 > 0 is an arbitrary small number. Substituting (5.8) into (5.7) leads
to

U(λ) ≤ ε1U
(λ

2

)
+

(ε1λ

c

)− l
2‖v‖L2(Q(0)) + c‖f‖

W
l, l

2
2 (Q∞)

. (5.9)

If ε1 > 0 is so small that
ε1

2
l
2

< 1, then using (5.9) recursively, we get (5.4).

Next consider the difference (v(s)(x, t), ∇p(s)(x, t)) = (vλ(x, t)− vλ(x, t−
s), ∇pλ(x, t)−∇pλ(x, t− s)), 0 < s < t0. Subtracting from (5.6) the similar
equations for (vλ(x, t− s), ∇pλ(x, t− s)), we obtain the system of equations
for (v(s)(x, t), ∇p(s)(x, t)). We apply to it Theorem 3.4 in [14] once again.
Then the following inequality holds :

‖v(s)‖
W

2+l,1+ l
2

2 (QT1
)
+ ‖∇p(s)‖

W
l, l

2
2 (QT1

)

≤ c
(‖(ζλ(v · ∇)v

)
(t)− (

ζλ(v · ∇)v
)
(t− s)‖

W
l, l

2
2 (QT1

)

+ ‖(ζ ′λv)(t)− (ζ ′λv)(t− s)‖
W

l, l
2

2 (QT1
)
+ ‖(ζλf)(t)− (ζλf)(t− s)‖

W
l, l

2
2 (QT1

)

)
.

(5.10)

We calculate the right hand side of (5.10), for example, as follows.

‖(ζλ(v · ∇)v
)
(t)− (

ζλ(v · ∇)v
)
(t− s)‖

W
l, l

2
2 (QT1

)

≤ ‖(v(s) · ∇)v(t)‖
W

l, l
2

2 (QT1
)
+ ‖(v(t− s) · ∇)v(s)‖

W
l, l

2
2 (QT1

)

+ ‖(ζλ(t− s)− ζλ(t))(v(t− s) · ∇)v(t)‖
W

l, l
2

2 (QT1
)

≤ c
(
δ‖v(s)‖

W
1+l, 12+ l

2
2 (QT1

)
+ λ−1δs‖v‖

W
1+l, 12+ l

2
2 (Q(λ))

),
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‖(ζ ′λv)(t)− (ζ ′λv)(t− s)‖
W

l, l
2

2 (QT1
)

≤ ‖(ζ ′λ(t)− ζ ′λ(t− s))v(t)‖
W

l, l
2

2 (QT1
)
+ ‖ζ ′λ(t− s)(v(t)− v(t− s))‖

W
l, l

2
2 (QT1

)

≤ c(λ−1 + λ−2) s ‖v‖
W

2+l,1+ l
2

2 (Q(λ))
.

Therefore we conclude from (5.10) that

‖v(s)‖
W

2+l,1+ l
2

2 (QT1
)
+ ‖∇p(s)‖

W
l, l

2
2 (QT1

)
≤ c

(‖v‖L2(Q(0)) + ‖f‖W 2l,l
2 (Q∞)

)
sl.

(5.11)

Since l > 1
2
, (5.11) together with well-known imbedding theorem yields (5.5).

Proof of Theorem 1.3. Let ε0 be a number such that if E0 < ε0, then
solution (v,∇p) from Theorem 1.2 exists on [0, 1]. This solution satisfies

‖v‖
W

2+l,1+ l
2

2 (Q1)
+ ‖∇p‖

W
l, l

2
2 (Q1)

≤ c1E0,

where Q1 = Ω × (0, 1). Then condition (5.3) is true provided c1E0 < δ. On
the other hand

sup
t∈(t1,1)

‖v(·, t)‖W 2+l
2 (Ω) ≤ c7E0

holds by virtue of Lemmas 5.1 and 5.2. Therefore assuming c7E0 < ε0, we
have

‖v(·, 1)‖W 2+l
2 (Ω) ≤ ε0,

which implies that Theorem 1.2 is applicable for the initial time t = 1. This

means that the solution exists on [1, 2]. Hence if E0 < min{ε0,
δ

c1

,
ε0

c7

}, then

we can repeat above argument infinitly many times. This completes the
proof.

6 Proof of Theorem 1.4

It is easy to see that (u,∇q) = (v − v̄,∇p−∇p̄) satisfies the equations
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∂u

∂t
+ (u · ∇)u−∇ ·P(u, q) = −(

(v̄ · ∇)u + (u · ∇)v̄
)

+ (f − f̄),

∇ · u = 0 x ∈ Ω, t > 0,

u|t=0 = v0(x)− v̄(x) ≡ u0(x) x ∈ Ω,

u · n = 0,

2(1− K̄)ΠD(u)n− K̄u = (K − K̄)
(
2ΠD(v)n + v

)
x ∈ Γ, t > 0.

(6.1)

Multiplying the first equation of (6.1) by u and integrating it over Ω, we find

1

2

d

dt
‖u‖2 +

ν

2
E(u)

= −
∫

Γ

P(u, q)n · u dS −
∫

Ω

(u · ∇)v̄ · u dx +

∫

Ω

(f − f̄) · u dx, (6.2)

from which

1

2

d

dt
‖u‖2 +

ν

2
E(u) + ν

∫

Γ∗

K̄

1− K̄
|u|2dS

= −ν

∫

Γ̂(t)

K − K̄

(1−K)(1− K̄)
u · vdS −

∫

Ω

(u · ∇)v̄ · u dx +

∫

Ω

(f − f̄) · u dx

≤ ν

∥∥∥∥
K − K̄

(1−K)(1− K̄)

∥∥∥∥
L2(Γ̂(t))

‖u‖L4(Γ)‖v‖L4(Γ) + ‖∇v̄‖L∞(Ω)‖u‖2 + ‖f − f̄‖‖u‖

≤ ενE(u) + ‖∇v̄‖L∞(Ω)‖u‖2 + c8

(∥∥∥∥
K − K̄

(1− K̄)(1−K)

∥∥∥∥
2

L2(Γ̂(t))

‖v‖2
W 1

2 (Ω) + ‖f − f̄‖2

)
,

(6.3)

where 0 < ε <
1

2
. Inequality (6.3) can be written as

d

dt
‖u‖2 + M‖u‖2 ≤ F (t) (6.4)

with

M = c−2
3 c−1

4 ν(1− 2ε)− 2‖∇v̄‖L∞(Ω), (6.5)

F (t) = 2c8

(∥∥∥∥
K − K̄

(1− K̄)(1−K)

∥∥∥∥
2

L2(Γ̂(t))

‖v‖2
W 1

2 (Ω) + ‖f − f̄‖2

)
. (6.6)

From (6.4) we can conclude (1.10).
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Univ., 734 (1990), 123–142.

[16] L. R. Volevic, Solvability of boundary value problem for general elliptic
systems, Amer. Math. Soc. Transl.,(2) 67 (1968), 182–225.

23


