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Abstract

We study the motion of a polygonal ring consists of identical vortex points
that are equally spaced at a line of latitude on a sphere with vortex points fixed
at the both poles. First, we calculate explicitly all the eigenvalues and the
eigenvectors corresponding to them for the linearized problem, from which we
consider the stability of the polygonal vortex ring in the presence of the pole
vortices. Next, when the number of the vortex points is even in particular,
the equations of the vortex points are reduced to those for a pair of two
vortex points by assuming a special symmetry. Studying the reduced system
mathematically and numerically, we describe an universal transition of global
periodic motion of the perturbed polygonal ring. Moreover, we also discuss
the stability of the periodic motion.

1 Introduction

We consider the motion of incompressible and inviscid fluids on a sphere. It helps
us understand basic dynamical process observed in many atmospheric phenomena
on Earth. In particular, local regions where the vorticity is extremely dense are of
importance, since they dominate global structures of the flows. Simple examples of
such singular vorticity regions are a vortex point in which the vorticity concentrates
discretely and a vortex sheet which is defined as a surface of discontinuity of the
velocity field.

The author has investigated evolution of a vortex sheet on the sphere with vortex
points that are fixed at the both poles[16]. Mathematical analysis and numerical
computation indicate that the linear stability of the vortex sheet changes due to the
pole vortices and consequently it evolves into a structure composed of many rolling-
up spirals. Figure 1 shows some snapshots of the vortex sheet after a long time
evolution for various strengths of the pole vortices, when the stationary vortex sheet
at the line of latitude θ0 = π

3 is slightly perturbed at an initial moment. The centers
of the rolling-up spirals are arranged along a line of latitude, while the size and the
number of the spirals are different depending on the strengths of the pole vortices.
An original motivation of the present study is to understand long time evolution
of the structure of the rolling-up spirals. However, since the outer turns of the
spirals interact strongly as soon as they approach each other, it is too complicated
to deal with the evolution as it stands. Therefore, as a simplified mathematical
model, assuming that the circulation contained in the spiral concentrates in the
center point, we consider the evolution of N -vortex points that are equally spaced
at the line of latitude on the sphere, which we refer to as a N -ring. In the present
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paper, we focus especially on global dynamics of the N -ring when it is perturbed
slightly.

Now, let (Θm,Ψm) denote the position of the mth vortex point in the spherical
coordinates. The strengths of the north and the south pole vortices are expressed
by Γ1 and Γ2, respectively. Furthermore, we assume that the strengths of the vortex
points are identical with each other, that is Γ = 2π

N . Then, the motion of the N -
vortex points is Hamiltonian dynamical system[8, 12], whose Hamiltonian is given
by

H = −Γ2

8π

N∑
m=1

N∑
j �=m

log(1 − cos γmj)

−Γ1Γ
4π

N∑
m=1

log(1 − cosΘm) − Γ2Γ
4π

N∑
m=1

log(1 + cosΘm), (1)

in which γmj represents the central angle between the mth and the jth vortex
points, and

cos γmj = cosΘm cosΘj + sinΘm sin Θj cos(Ψm − Ψj).

With certain canonical variables[12], the equations of the N -vortex points on the
sphere with the pole vortices are derived from the Hamiltonian as follows:

Θ̇m = − Γ
4π

N∑
j �=m

sinΘj sin(Ψm − Ψj)
1 − cos γmj

, (2)

sin ΘmΨ̇m = − Γ
4π

N∑
j �=m

cosΘm sin Θj cos(Ψm − Ψj) − sin Θm cosΘj

1 − cos γmj

+
Γ1

4π
sin Θm

1 − cosΘm
− Γ2

4π
sin Θm

1 + cosΘm
, m = 1, 2, · · · , N. (3)

Let us briefly survey some of the recent research in terms of the N -vortex points
on the sphere. As for a complete review of general N -vortex problems, we would
like the readers to refer to the book by Newton[12]. The motion of three vortex
points on the sphere without pole vortices is integrable and its geometric struc-
ture of streamline is well-studied[4, 5, 6, 15]. Pekarsky and Marsden[13] studied a
nonlinear stability for the 3-ring of vortex points with arbitrary strengths. While
the motion of the N -vortex points for N > 3 is nonintegrable in general, there are
some papers studying the relative equilibria by using the SO(3)-symmetry of the
Hamiltonian[7, 10]. Lim, Montaldi and Roberts[11] gave a clear classification of the
relative equilibria of arbitrary number of identical vortex points, in which the N -
ring is included. Laurent-Poltz considered a system composed of 2N -vortex points
whose strengths alternate between +1 and −1. He gave some relative fixed config-
urations and examined their stability by using the energy momentum method. As
for the N -ring of identical vortex points, linear and nonlinear stability analysis have
been done by Boatto and Cabral[1] in connection with the stability of the polygonal
vortex ring on the plane[2] and of vortex patches on the sphere[3]. Specifically, they
derived a sufficient condition that the Hessian of the Hamiltonian at the N -ring
is positive or negative definite, and consequently they gave the complete stability
analysis for the polygonal configuration for 3 ≤ N ≤ 7.

The paper consists of five sections. In §2, we carry out the linear stability
analysis for the N -ring again, although the stability condition has already been
given in the preceding paper[1]. This is because we give not only the stability
condition of the N -ring on the sphere in the presence of the pole vortices, but also
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(b)t=23 (d)t=35

(c)t=25(a)t=17.0

Figure 1: Structures of the vortex sheet after a long time evolution for the various
strengths of the north pole vortex Γ1 and the south pole vortex Γ2. The vortex
sheet is initially located at the line of latitude θ0 = π

3 on the sphere. (a) Four
spirals at t = 17 for Γ1 = 0 and Γ2 = 0, (b) Five spirals at t = 23 for Γ1 = 1.5π
and Γ2 = −3.5π, (c) Five spirals at t = 25 for Γ1 = π and Γ2 = π, and (d) Seven
spirals at t = 35 for Γ1 = 2.5π and Γ2 = −4.5π.
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all the eigenvalues and the eigenvectors corresponding to them explicitly, which
play an indispensable role to describe long time evolution of the perturbed N -ring
in the following sections. In §3, when the number of vortex points is even, we reduce
the equations of the N -vortex points (2) and (3) to those for a pair of two vortex
points on the assumption that the N -ring has an alternately pairing symmetry.
The reduced system is closely related to the eigenspace corresponding to one of the
eigenvalues. A mathematical analysis of the 4-ring at the equator is accomplished
in §4. We classify dynamics of the reduced system into five types and then describe
a transition of global periodic behavior of the perturbed 4-ring and its stability.
In addition, we show numerically that the same transition of global dynamics is
observed universally regardless of the number of vortex points and the position of
the N -ring. Finally, we organize the results concisely in the last section.

2 Eigenvalue problem for the N-ring

First of all, we review some known facts in terms of the cyclic matrix that is defined
as follows:

Definition 1 A matrix X is called cyclic, if it is represented by

X =




x0 x1 x2 · · · xN−1

xN−1 x0 x1 · · · xN−2

xN−2 xN−1 x0 · · · xN−3

...
...

...
. . .

...
x1 x2 x3 · · · x0


 .

It is easy to see the following property holds.

Lemma 2 If X and Y are cyclic, then cX (c ∈ R), X+Y and XY are also cyclic.

It is also shown that the determinant of the cyclic matrix is expressed by the com-
ponents in the first row.

Lemma 3 If X is cyclic, then its determinant is given by

det(X) =
N−1∏
p=0

(x0 + ωpx1 + ω2
px2 + · · · + ωN−1

p xN−1), ωp = e
2πip

N , (4)

where i is the complex unit.

Second, we give the linearized equations for the N -ring at the line of latitude
θ0, which is represented by

Θm = θ0, Ψm =
2πm
N

, m = 1, 2, · · · , N. (5)

It follows from the (2), (3), and (5) that we have

Θ̇m = 0, Ψ̇m = V0(N),

where

V0(N) =
Γ1 − Γ2

4π sin2 θ0
+

(Γ1 + Γ2 + 2π) cos θ0
4π sin2 θ0

− 1
2N

cos θ0
sin2 θ0

.
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Hence, the N -ring is a steady solution in the spherical coordinates rotating with the
constant speed V0(N) in the longitudinal direction. Now, we add a small disturbance
to the steady state, namely for ε� 1,

Θm(t) = θ0 + εθm(t), Ψm(t) =
2πm
N

+ V0(N)t+ εϕm(t). (6)

Then, substituting (6) into the equations (2) and (3), we obtain the linearized
equations of O(ε) as follows:

θ̇m =
1

2N sin θ0

N∑
j �=m

ϕm − ϕj

1 − cos 2π
N (m− j)

, (7)

ϕ̇m =
1

2N sin3 θ0

N∑
j �=m

θm − θj

1 − cos 2π
N (m− j)

+BNθm, (8)

in which

BN =
1 + cos2 θ0
2N sin3 θ0

− (Γ1 − Γ2) cos θ0
2π sin3 θ0

− (Γ1 + Γ2 + 2π)(1 + cos2 θ0)
4π sin3 θ0

. (9)

Let �φ denote the 2N -vector t(θ1, θ2, · · · , θN , ϕ1, ϕ2, · · · , ϕN ). Then, the linearized
equations (7) and (8) are rewritten in the following matrix form:

d�φ

dt
=
(
O A
B O

)
�φ ≡ L�φ, A = αK, B = βK +BNE,

where
α =

1
2N sin θ0

, β =
1

2N sin3 θ0
,

and the symmetric matrix K is represented by

K =




∑N
j �=1

1
1−cos 2π

N (1−j)
−1

1−cos 2π
N

· · · −1
1−cos 2π

N (1−N)
−1

1−cos 2π
N

∑N
j �=2

1
1−cos 2π

N (2−j)
· · · −1

1−cos 2π
N (2−N)

...
...

. . .
...

−1
1−cos 2π

N (N−1)
−1

1−cos 2π
N (N−2)

· · · ∑N
j �=N

1
1−cos 2π

N (N−j)


 .

As a matter of fact, the matrix K is cyclic. Indeed, when we define km by

k0 =
N−1∑
j=1

1
1 − cos 2πj

N

, km =
−1

1 − cos 2πm
N

, m = 1, 2, · · · , N − 1,

the first row ofK is expressed by (k0, k1, · · · , kN−1) and besides km has the following
symmetry

km = kN−m, m = 1, 2, · · · , N − 1, (10)

which indicates that the matrix K is cyclic.
Third, we calculate the eigenvalue λ of the linearized matrix L. The character-

istic equation becomes

det(L− λE2N ) = det
( −λEN A

B −λEN

)
= det(λ2EN −AB) = 0,

in which EN is the N ×N unit matrix. Since K is cyclic and P ≡ λ2EN − AB is
represented by λ2EN −αK (βK +BNEN ), P is also cyclic due to Lemma 2. Hence,
it follows from Lemma 3 that the characteristic equation of P is equivalent to

p0 + ωpp1 + ω2
pp2 + · · · + ωN−1

p pN−1 = 0, p = 0, 1, · · · , N − 1, (11)
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in which pm represents the mth component of the first row of the matrix P .
Since both A = αK and B = βK+BNEN are cyclic, the first row of the matrix

A and the mth column of the matrix B are represented by

�a1 = (αk0, αk1, · · · , αkN−1),
�bm = t(βkm−1, βkm−2, · · · , βk1, βk0 +BN , βkN−1, · · · , βkm),

respectively. Thus, since P = λ2EN − AB, we have pm = λ2δm0 − �a1
�bm+1, in

which δm0 is Kronecker’s delta. Hence, noting that ω−m
p = ωN−m

p , we solve the
characteristic equations (11) for p = 0, 1, · · · , N − 1:

λ2 = �a1
�b1 + ωp�a1

�b2 + · · · + ωN−1
p �a1

�bN

= �a1

(
�b1 + ωp

�b2 + · · · + ωN−1
p

�bN

)
= (βk0 +BN + ωpβk1 + · · · + ωN−1

p βkN−1) �a1
t(1, ωp, · · · , ωN−1

p )

= (βk0 +BN + ωpβk1 + · · · + ωN−1
p βkN−1)(αk0 + ωpαk1 + · · · + ωN−1

p αkN−1)
= ξpηp, (12)

where ξp and ηp are defined by

ξp = α(k0 + ωpk1 + · · · + ωN−1
p kN−1),

ηp = β(k0 + ωpk1 + · · · + ωN−1
p kN−1) +BN .

In addition, since we have

k0 + ωpk1 + · · · + ωN−1
p kN−1 =

N−1∑
j=1

1 − ωj
p

1 − cos 2πj
N

= p(N − p), (13)

the eigenvalues are given explicitly as follows.

Theorem 4 For p = 0, 1, · · · , N − 1, the eigenvalues λ±p of the matrix L are repre-
sented by

λ±p = ±
√
αβ (pN − p2)2 + αBN (pN − p2). (14)

Now, let M be defined by N = 2M for evenN and by N = 2M+1 for oddN . Then,
Theorem 4 directly reveals that the eigenvalues satisfy the following symmetry.

Corollary 5 λ±0 = 0 and λ±p = λ±N−p for p = 1, 2, · · · ,M .

Therefore, when N is even, the eigenvalues λ±M are simple, while the others are
double. On the other hand, all the eigenvalues are double for odd N .

It also follows from Theorem 4 that the stability condition for the eigenvalues
are obtained.

Theorem 6 For p = 1, 2, · · · ,M , the eigenvalues λ±p are neutrally stable if

pN − p2

N
+

1 + cos2 θ0
N

< κ1(1 + cos2 θ0) + κ2 cos θ0, (15)

where the parameters κ1 and κ2 are defined by the strengths of the pole vortices as
follows:

κ1 =
Γ1 + Γ2 + 2π

2π
, κ2 =

Γ1 − Γ2

π
.
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Proof: It follows from Theorem 4 and (9) that we have

The eigenvalues λ±p are neutrally stable

⇐⇒ (
λ±p
)2 = αβ(pN − p2)2 + αBN (pN − p2) < 0

⇐⇒ β(pN − p2) +BN < 0

⇐⇒ pN − p2

2N sin3 θ0
+

1 + cos2 θ0
2N sin3 θ0

− (Γ1 − Γ2) cos θ0
2π sin3 θ0

− (Γ1 + Γ2 + 2π)(1 + cos2 θ0)
4π sin3 θ0

< 0

⇐⇒ (15). �

Since the left-hand side of (15) is monotone increasing for 1 ≤ p ≤ M , if the
eigenvalues λ±M are neutrally stable, then all the eigenvalues become neutrally stable
automatically. Accordingly, the stability condition (15) for λ±M is equivalent to that
for the N -ring in the presence of the pole vortices.

Corollary 7 The N -ring at the line of latitude θ0 on the sphere with pole vortices
is stable if and only if

N
4 + 1+cos2 θ0

N < κ1(1 + cos2 θ0) + κ2 cos θ0 for N : even,
N2−1
4N + 1+cos2 θ0

N < κ1(1 + cos2 θ0) + κ2 cos θ0 for N : odd.
(16)

When there is no pole vortex, i.e. κ1 = 1 and κ2 = 0, then the condition (16) agrees
with the stability condition given by Boatto et.al[1] and Polvani et al.[14].

Finally, we obtain all the eigenvectors corresponding to the eigenvalues λ±p for
p = 1, 2, · · · ,M .

Theorem 8 There are two linearly independent eigenvectors �φ±p and �ψ±
p corre-

sponding to the eigenvalues λ±p , which are given by

�φ±p = t(
√
ξp,
√
ξpωp, · · · ,

√
ξpω

N−1
p ,±√

ηp,±√
ηpωp, · · · ,±√

ηp ω
N−1
p ),

�ψ±
p = t(

√
ξp,
√
ξpω̄p, · · · ,

√
ξpω̄

N−1
p ,±√

ηp,±√
ηpω̄p, · · · ,±√

ηp ω̄
N−1
p ),

where ω̄p denotes the complex conjugate of ωp.

Proof: Since the eigenvalues λ±p are expressed by ±√ξpηp from (12), the mth
component of the vector L�φ±p for m = 1, 2, · · · , N becomes(

L�φ±p
)

m
= ±√

ηp

(
A t(1, ωp, · · · , ωN−1

p )
)
m

= ±√
ηp ω

m−1
p α(k0 + ωpk1 + · · · + ωN−1

p kN−1)

= ±√
ηp ω

m−1
p ξp = ±√ξpηp ω

m−1
p

√
ξp = λ±p

(
�φ±p
)

m
.

For m = N + 1, · · · , 2N , we have(
L�φ+

p

)
m

=
√
ξp
(
B t(1, ωp, · · · , ωN−1

p )
)
m

=
√
ξp ω

m−1
p (β(k0 + ωpk1 + · · · + ωN−1

p kN−1) +BN )

=
√
ξp ω

m−1
p ηp = ±√ξpηp ± ωm−1

p

√
ηp = λ±p

(
�φ±p
)

m
.

On the other hand, since ξp and ηp are real due to (13), we note that ξp = α(k0 +
ω̄pk1 + · · ·+ ω̄N−1

p kN−1) and ηp = β(k0 + ω̄pk1 + · · ·+ ω̄N−1
p kN−1)+BN , from which

we show similarly that �ψ±
p are also the eigenvectors corresponding to λ±p . �
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This theorem indicates that the two eigenvectors of λ±0 are equivalently given by
�φ±0 = �ψ±

0 = t(0, · · · , 0,±√
BN , · · ·±

√
BN ), which represent the rotational vectors in

the longitudinal direction. On the other hand, the two eigenvectors corresponding
to simple λ±M for N = 2M are also identically described by

�φ±M = �ψ±
M = t(

N︷ ︸︸ ︷√
ξp,−

√
ξp, · · · ,

√
ξp,−

√
ξp,

N︷ ︸︸ ︷
±√

ηp,∓√
ηp, · · · ,±√

ηp,∓√
ηp).

(17)
We note that the eigenvectors have an alternately pairing symmetry, i.e. θ̇2m−1 =
θ̇1, θ̇2m = θ̇2, ϕ̇2m−1 = ϕ̇1 and ϕ̇2m = ϕ̇2 for m = 1, 2, · · · ,M .

3 Reduction of the equations for even vortex points

When the number of vortex points is even, i.e. N = 2M , we reduce the equations
(2) and (3) for the N -vortex points (Θm,Ψm) to those for a pair of vortex points
(Θ1,Ψ1) and (Θ2,Ψ2) by assuming the following alternate symmetry:

Θ2m−1 = Θ1, Ψ2m−1 = Ψ1 + 2π
M (m− 1),

Θ2m = Θ2, Ψ2m = Ψ2 + 2π
M (m− 1), m = 1, 2, · · · ,M.

(18)

First, remembering that Γ = π
M , we reduce the Hamiltonian (1) to

H = − π

8M

M∑
j=2

log
(

1 − cos2 Θ1 − sin2 Θ1 cos
2π(1 − j)

M

)

− π

8M

M∑
j=2

log
(

1 − cos2 Θ2 − sin2 Θ2 cos
2π(1 − j)

M

)

− π

8M

M∑
j=1

log
(

1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos
(

Ψ1 − Ψ2 +
2π(1 − j)

M

))

− π

8M

M∑
j=1

log
(

1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos
(

Ψ2 − Ψ1 +
2π(1 − j)

M

))

−Γ1

4
log(1 − cosΘ1) − Γ2

4
log(1 + cosΘ1)

−Γ1

4
log(1 − cosΘ2) − Γ2

4
log(1 + cosΘ2). (19)

Next, substituting (18) into the equations (2) and (3), we obtain the equations for
(Θ1,Ψ1) and (Θ2,Ψ2).

Θ̇1 = − 1
8M

M∑
j=1

sin Θ2 sin
(
Ψ1 − Ψ2 + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos

(
Ψ1 − Ψ2 + 2π(1−j)

M

)

+
1

8M

M∑
j=1

sin Θ2 sin
(
Ψ2 − Ψ1 + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos

(
Ψ2 − Ψ1 + 2π(1−j)

M

) , (20)

Θ̇2 = − 1
8M

M∑
j=1

sin Θ1 sin
(
Ψ2 − Ψ1 + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos

(
Ψ2 − Ψ1 + 2π(1−j)

M

)
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+
1

8M

M∑
j=1

sin Θ1 sin
(
Ψ1 − Ψ2 + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sinΘ1 sin Θ2 cos

(
Ψ1 − Ψ2 + 2π(1−j)

M

) , (21)

Ψ̇1 = − 1
8M sin Θ1

M∑
j=1

cosΘ1 sin Θ2 cos
(
Ψ1 − Ψ2 + 2π(1−j)

M

)
− sin Θ1 cosΘ2

1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos
(
Ψ1 − Ψ2 + 2π(1−j)

M

)

− 1
8M sin Θ1

M∑
j=1

cosΘ1 sin Θ2 cos
(
Ψ2 − Ψ1 + 2π(1−j)

M

)
− sin Θ1 cosΘ2

1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos
(
Ψ2 − Ψ1 + 2π(1−j)

M

)
+
(

1
4
− 1

4M
+

Γ1 + Γ2

4π

)
cosΘ1

sin2 Θ1

+
Γ1 − Γ2

4π
1

sin2 Θ1

, (22)

Ψ̇2 = − 1
8M sin Θ2

M∑
j=1

cosΘ2 sin Θ1 cos
(
Ψ2 − Ψ1 + 2π(1−j)

M

)
− sin Θ2 cosΘ1

1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos
(
Ψ2 − Ψ1 + 2π(1−j)

M

)

− 1
8M sin Θ2

M∑
j=1

cosΘ2 sin Θ1 cos
(
Ψ1 − Ψ2 + 2π(1−j)

M

)
− sin Θ2 cosΘ1

1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos
(
Ψ1 − Ψ2 + 2π(1−j)

M

)
+
(

1
4
− 1

4M
+

Γ1 + Γ2

4π

)
cosΘ2

sin2 Θ2

+
Γ1 − Γ2

4π
1

sin2 Θ2

. (23)

It follows from (20) and (21) that cosΘ1+cosΘ2 is constant. Since we are interested
in the motion of the perturbed N -ring at the line of latitude θ0, the invariant is
given by

cosΘ1 + cosΘ2 = 2 cos θ0. (24)

Furthermore, the equations (22) and (23) are reduced to that for Φ = Ψ1 − Ψ2.

Φ̇ = − cosΘ1 − cosΘ2

8M sin Θ1 sin Θ2

M∑
j=1

sinΘ1 sin Θ2 + (1 + cosΘ1 cosΘ2) cos
(
Φ + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos

(
Φ + 2π(1−j)

M

)

− cosΘ1 − cosΘ2

8M sin Θ1 sin Θ2

M∑
j=1

sinΘ1 sin Θ2 + (1 + cosΘ1 cosΘ2) cos
(
−Φ + 2π(1−j)

M

)
1 − cosΘ1 cosΘ2 − sin Θ1 sin Θ2 cos

(
−Φ + 2π(1−j)

M

)
+
(

1
4
− 1

4M
+

Γ1 + Γ2

4π

)(
cosΘ1

sin2 Θ1

− cosΘ2

sin2 Θ2

)

+
Γ1 − Γ2

4π

(
1

sin2 Θ1

− 1
sin2 Θ2

)
. (25)

Consequently, we have only to plot the contour map of the Hamiltonian (19) in the
domain (Φ,Θ1) to obtain global dynamics of the reduced system.

Last, let us remark momentarily the meaning of the reduction in terms of the
theory of dynamical systems. It follows from the symmetry (18) that the velocity
field satisfies

Θ̇2m−1 = Θ̇1, Θ̇2m = Θ̇2, Ψ̇2m−1 = Ψ̇1, Ψ̇2m = Ψ̇2 for m = 1, · · · ,M. (26)

On the other hand, Theorem 8 shows that the eigenvectors (17) corresponding to
λ±M have the same relation, which indicates that the reduced system of the N -
ring is equivalent to the planar phase space spanned by �φ±M . Therefore, if all the
eigenvalues λ±p for p = 1, 2, · · · ,M − 1 except the simple λ+

M are neutrally stable,
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that is to say the stability condition (15) for λ±M−1

N

4
+

cos2 θ0
N

< κ1(1 + cos2 θ0) + κ2 cos θ0 (27)

holds, then the perturbed N -ring is subject to the reduced system. On the contrary,
if some eigenvalues become unstable, the orbit starting from the neighborhood of
the N -ring follows the reduced system only for an initial moment and eventually
deviates from the system due to the existence of the unstable manifold transverse
to the planar phase space of the reduced system.

4 Global dynamics of the reduced system

4.1 The 4-ring at the equator

We consider the motion of the reduced system when the 4-ring is placed at the
equator, i.e. N = 4 and θ0 = π

2 . It follows from (24) that we have Θ1 + Θ2 = π
2 .

The Hamiltonian (19) and the equations (20) and (25) are reduced to

H = −π
8

log(1 − cos2 Θ1 + sin2 Θ1) − π

8
log(1 + cos2 Θ1 − sin2 Θ1 cos(Φ − π))

−π
8

log(1 + cos2 Θ1 − sin2 Θ1 cosΦ) − Γ1 + Γ2

4
log(1 − cos2 Θ1), (28)

Θ̇1 = −1
4

sin3 Θ1 sin Φ cosΦ
(1 + cos2 Θ1)2 − sin4 Θ1 cos2 Φ

≡ F1(Θ1,Φ), (29)

Φ̇ = −cosΘ1

4

(
1 + cosΦ

1 + cos2 Θ1 − sin2 Θ1 cosΦ
− 1 − cosΦ

1 + cos2 Θ1 + sin2 Θ1 cosΦ

)

+
(

1
4

+
Γ1 + Γ1

2π

)
cosΘ1

sin2 Θ1

(30)

≡ F2(Θ1,Φ).

First, we obtain the fixed points of the reduced equations.

Proposition 9 The fixed points of the equations (29) and (30) are given as follows:

(1) sinΦ = 0 and tan2 Θ1 = 4κ1 − 3; (collinear fixed points),

(2) cosΦ = 0 and tan2 Θ1 = 8κ1−6
5−4κ1

; (staggered fixed points),

(3) cosΦ = 0 and Θ1 = π
2 ; (4-ring fixed points).

Proof: It follows from Θ̇1 = 0 that we obtain either sin Φ = 0 or cosΦ = 0.
Substituting cosΦ = 1 to (30), we have

(4κ1 − 3)
cosΘ1

sin2 Θ1

− 1
cosΘ1

= 0.

Hence, we have tan2 Θ1 = 4κ1−3. On the other hand, when cosΦ = 0, the equation
(30) becomes (

κ1 − 3
4

)
cosΘ1

sin2 Θ1

− cosΘ1

2
1

1 + cos2 Θ1
= 0,

which yields cosΘ1 = 0 or tan2 Θ1 = 8κ1−6
5−4κ1

. �

The following proposition gives existence and linear stability of the fixed points.
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Proposition 10 The collinear fixed points exist for κ1 >
3
4 and they are hyperbolic.

The staggered fixed points exist for 3
4 < κ1 <

5
4 and they are elliptic. The 4-ring

fixed points exist for all κ1 and they are hyperbolic for κ1 <
5
4 and elliptic κ1 >

5
4 .

Let us remember the stability of the 4-ring in Corollary 7; When N = 4 and θ0 = π
2 ,

it follows from (16) that the 4-ring is stable if κ1 >
5
4 , and unstable if κ1 <

5
4 , which

agrees with the stability result in Proposition 10.

Proof: Since tan2 Θ1 is positive, the collinear fixed points and the staggered fixed
points exist if κ1 >

3
4 and 3

4 < κ1 <
5
4 , respectively.

As for the linear stability of the fixed points, it is suffice to compute the eigen-
values of the following linearized matrix of (29) and (30),(

∂F1
∂Θ1

∂F1
∂Φ

∂F2
∂Θ1

∂F2
∂Φ

)
,

in which

∂F1

∂Θ1
= − sinΦ cosΦ

4
∂

∂Θ1

(
sin3 Θ1

(1 + cos2 Θ1)2 − sin4 Θ1 cos2 Φ

)
,

∂F1

∂Φ
= − sin3 Θ1

4
(cos2 Φ − sin2 Φ)(1 + cos2 Θ1) − sin4 Θ1 cos2 Φ

((1 + cos2 Θ1)2 − sin4 Θ1 cos2 Φ)2
,

∂F2

∂Θ1
= −

(
κ1 − 3

4

)
1 + cos2 Θ1

sin3 Θ1

+
sin Θ1

2

(
1 + cos2 Θ1 + sin2 Θ1 cosΦ

(1 + cos2 Θ1)2 − sin4 Θ1 cos2 Φ

)

−cos2 Θ1

2

(
sin Θ1(1 + cosΦ)2

(1 + cos2 Θ1 − sin2 Θ1 cosΦ)2
+

sin Θ1(1 − cosΦ)2

(1 + cos2 Θ1 + sin2 Θ1 cosΦ)2

)
,

∂F2

∂Φ
= −cosΘ1

2

( − sin Φ(1 + cos2 Θ1)
(1 + cos2 Θ1 − sin2 Θ1 cosΦ)2

+
sin Φ(1 + cos2 Θ1)

(1 + cos2 Θ1 + sin2 Θ1 cosΦ)2

)
.

For the collinear fixed points, since sin Φ = 0 and tan2 Θ1 = 4κ1 − 3, we have

∂F1

∂Θ1
=
∂F2

∂Φ
= 0,

∂F1

∂Φ
= −4κ1 − 3

16

√
4κ1 − 3
4κ1 − 2

,
∂F2

∂Θ1
= −(2κ1 − 1)

√
4κ1 − 2
4κ1 − 3

.

Hence, since κ1 >
3
4 , the eigenvalue σ satisfies

σ2 =
1
16

(2κ1 − 1)(4κ1 − 3) > 0,

which shows that the collinear fixed points are hyperbolic.
For the staggered fixed points, since cosΦ = 0 and tan2 Θ1 = 8κ1−3

5−4κ1
, we have

∂F1

∂Θ1
=
∂F2

∂Φ
= 0,

∂F1

∂Φ
=

(4κ1 − 3)(4κ1 − 1)
32

√
8κ1 − 6
4κ1 − 1

,

∂F2

∂Θ1
= −1

2

√
4κ1 − 1
8κ1 − 6

+
(4κ1 − 3)(4κ1 − 1)

16

√
8κ1 − 6
4κ1 − 1

.

Therefore, the eigenvalue σ is represented by

σ2 =
1

256
(4κ1 − 1)2(4κ1 − 3)(4κ1 − 5) < 0,

which indicates that the staggered fixed points are elliptic due to 3
4 < κ1 <

5
4 .
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For the 4-ring fixed points, since cosΦ = 0 and Θ1 = π
2 , the eigenvalue σ is

given by

σ2 =
1
16

(5 − 4κ1).

Hence, the 4-ring fixed points are elliptic for κ1 >
5
4 and hyperbolic for κ1 <

5
4 . �

In what follows, we plot the contour maps of the Hamiltonian (28) in the domain
(Φ,Θ1) ∈ [0, 2π] × [0, π] to see global dynamics of the reduced system. Since the
number of the fixed points and their stability change at κ1 = 3

4 and κ1 = 5
4 , we plot

the contour maps between them, i.e. κ1 = 1.4, 1.1, 0.9, and 0.6 in Figure 2. When
κ1 = 1.4, there exist the hyperbolic collinear fixed points and the elliptic 4-ring
fixed points given in Proposition 9 and Proposition 10. The collinear fixed points
are connected by heteroclinic orbits. When we perturb the elliptic 4-ring fixed point
slightly, the solution rotates around the fixed point. For κ1 = 1.1, the 4-ring fixed
points become unstable and the elliptic staggered fixed points develop. While the
heteroclinic orbits connecting the hyperbolic collinear fixed points still remain, new
homoclinic orbits of the 4-ring fixed point surrounding the staggered fixed point
emerge. Then, the perturbed 4-ring returns to its original position periodically,
although the 4-ring fixed point is unstable.

The global dynamics of the perturbed 4-ring changes when κ1 = 0.9, although
the number of the fixed points and their stability are unchanged. We observe new
heteroclinic orbits that link the hyperbolic 4-ring fixed points together, and hete-
roclinic orbits between the hyperbolic collinear fixed points enclosing the staggered
fixed point. Thus, there are two possible periodic orbits starting from the neighbor-
hood of the 4-ring fixed point; The vortex point returns periodically to its initial
position after passing near the next 4-ring fixed point, or it keeps moving in the
longitudinal direction. When κ1 = 0.6, the collinear and the staggered fixed points
disappear, and only the hyperbolic 4-ring fixed points and the heteroclinic orbits
between them survive. Hence, the global motion of the perturbed 4-ring fixed point
is the same as in the previous case.

Figure 3 shows the periodic orbits of the pair of the two vortex points (Θ1,Ψ1)
and (Θ2,Ψ2) on the sphere for various κ1, each of which corresponds to a contour
line of the perturbed 4-ring in Figure 2. The rest of the vortex points evolve
likewise on the back of the sphere according to the symmetry (18). Since we have
Θ1 + Θ2 = π

2 , Θ1 and Θ2 are symmetric with respect to π
2 . First, when κ1 = 1.4,

each of the vortex points rotates around the 4-ring fixed point, which we call a
linearly periodic orbit. Next, although the 4-ring fixed point is linearly unstable
when κ1 = 1.1, the orbit of the perturbed 4-ring still goes around the 4-ring fixed
point periodically. We refer to the orbit as a nonlinearly periodic orbit in order
to distinguish it from the linearly periodic orbit. Last, for κ1 = 0.9, two types
of periodic orbits are possible; The first one is a swing-by orbit, in which the two
vortex points return to the initial locations after switching their relative position.
The second one is a revolving orbit, in which the one vortex point moves eastwards
bouncing on the equator and the other moves similarly in the opposite direction.

The reason why the global dynamics changes between κ1 = 1.1 and κ1 = 0.9
is that the separatrices exchange their connection. Namely, while the separatrices
consist of the heteroclinic orbits between the collinear fixed points and the homo-
clinic orbits of the 4-ring fixed point for κ1 = 1.1, we observe the other heteroclinic
orbits between the collinear fixed points and the heteroclinic orbits between the
4-ring fixed points for κ1 = 0.9. It means that the heteroclinic orbits and the ho-
moclinic orbits for κ1 = 1.1 must agree with each other at some marginal value
of κ1 ∈ [0.9, 1.1]. When the interchange of the separatrices occurs, the value of
the Hamiltonian (28) at the collinear fixed points equals to that of the 4-ring fixed

12



(a)

(b)

(c)

(d)

Figure 2: Contour maps of the Hamiltonian for the 4-ring at the equator plotted in
the domain (Φ,Θ1) ∈ [0, 2π] × [0, π]. (a) κ1 = 1.4, (b) κ1 = 1.1, (c) κ1 = 0.9, and
(d) κ1 = 0.6.
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(a) linearly periodic orbit

(b) nonlinearly periodic orbit

(c) swing-by orbit

(d) revolving orbit

Figure 3: Four orbits of the perturbed 4-ring fixed points at the equator observed
typically in the reduced system. The pair of the two vortex points (Θ1,Ψ1) and
(Θ2,Ψ2) are plotted. The other two vortex points evolve likewise on the back
of the sphere due to the symmetry (18). (a) Linearly periodic orbit (κ1 = 1.4),
(b) nonlinearly periodic orbit (κ1 = 1.1), (c) swing-by orbit (κ1 = 0.9), and (d)
revolving orbit (κ1 = 0.9).
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Figure 4: Contour map of the Hamiltonian for the 4-ring at the equator for κ1 = 1,
across which the separatrices interchange the connection.

points. Hence, we have

1
8

log
(

4κ1 − 3
4κ1 − 1

)
− 1

8
log(2κ1 − 1) +

1
2
(κ1 − 1) log

(
4κ1 − 3
4κ1 − 1

)
= 0,

which yields κ1 = 1. Figure 4 shows the contour plot of the Hamiltonian for κ1 =
1, which indicates that the perturbed 4-ring evolves along either the nonlinearly
periodic orbit or the swing-by orbit.

Thus, organizing the observation and the propositions above, we describe the
dynamics of the reduced system.

Theorem 11 The dynamics of the reduced 4-ring at the equator is classified into
the following five types.

Type κ1 fixed points perturbed 4-ring
I 5

4 < κ1 hyperbolic collinear linearly periodic
elliptic 4-ring

II 1 < κ1 <
5
4 hyperbolic collinear nonlinearly periodic

hyperbolic 4-ring
elliptic staggered

III κ1 = 1 hyperbolic collinear nonlinearly periodic
hyperbolic 4-ring swing-by
elliptic staggered

IV 3
4 < κ1 < 1 hyperbolic collinear swing-by

hyperbolic 4-ring revolving
elliptic staggered

V κ1 <
3
4 hyperbolic 4-ring swing-by

revolving

As we have discussed in the previous section, if the eigenvalues λ±1 for the 4-ring
are neutrally stable, i.e. κ1 > 1 from (27), then the linearly periodic orbits and the
nonlinearly periodic orbits are stable in the sense that the perturbed 4-ring evolves
in the neighborhood of the periodic orbits for all the time. On the contrary, if
λ+

1 becomes unstable, the perturbed 4-ring evolves unstably after behaving like a
swing-by orbit or a revolving orbit for a short time, because it eventually leaves the
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reduced system along the unstable manifold corresponding to λ+
1 . Let us briefly

remark that in the present example, the transition of the global dynamics and the
stability of the λ±1 change at the same value κ1 = 1 by a coincidence. However,
they occur independently in general, as we see in the next subsection.

4.2 The 4-ring at the line of latitude θ0 = π
4

We consider the global motion of the perturbed 4-ring at the line of latitude θ0 = π
4 .

In general, it is difficult to obtain the fixed points of (20), (21), (22), and (23)
mathematically for θ0 	= π

2 and so we compute them numerically.
In order to describe the global dynamics, let us remember the stability condition

(15) for θ0 = π
4 and N = 4; The eigenvalues λ±2 are neutrally stable if κ > 11

8 =
1.375, and the eigenvalues λ±1 are neutrally stable if κ > 9

8 = 1.125, in which
κ ≡ κ1(1 + cos2 θ0) + κ2 cos θ0 = 3

2κ1 +
√

2
2 κ2 is the parameter that determines the

stability of the eigenvalues appearing in Theorem 6. We also note that the variable
Θ1 moves in the range of

2 cos θ0 − 1 ≤ cosΘ1 ≤ 1, (31)

due to (24).
Figure 5 shows the contour maps of the Hamiltonian for κ = 1.5, 1.3, 1.15, 1,

when the strength of the north pole vortex equals to that of the south pole vortex,
i.e. κ2 = 0. Each of the contour maps is topologically the same as that in Figure 2.
Consequently, as the parameter κ decreases, we observe the same transition of global
dynamics from the type I to V described in Theorem 11. The interchange of the
separatrices and the transition from the type IV to V occur at κ = 1.1935 and
κ = 1.125, respectively.

Since we have cosΘ1+cosΘ2 =
√

2 in this case, the contour line of the perturbed
4-ring disagrees with the actual orbit of the vortex point on the sphere. We plot the
periodic orbits of the perturbed 4-ring in Figure 6, when they are viewed from the
north. Figure 6 (a) shows that the orbit for κ = 1.5 is linearly periodic, which rotates
around the 4-ring fixed point. When κ = 1.3, it becomes nonlinearly periodic. On
the other hand, for κ = 1.15, the global motion of the perturbed 4-ring changes due
to the interchange of the separatrices. Figure 6 (c) and (d) show the swing-by orbit
and the revolving orbit, respectively.

Since the interchange of the separatrices happens while λ±1 are still neutrally
stable in this case, not only the linearly and nonlinearly periodic orbits but also
the swing-by and the revolving orbits are stable. That is to say, the perturbed
4-ring follows a linearly periodic orbit for κ > 1.375, a nonlinearly periodic orbit
for 1.1935 < κ < 1.375, and either a swing-by orbit or a revolving orbit for 1.125 <
κ < 1.1935.

Finally, we show the contour maps of the Hamiltonian when we change κ1 with
keeping κ2 = π in Figure 7. It indicates that the same transition of the global
dynamics is observed as well for the other κ2. The type III is observed when
κ = 1.1674 and the transition from the type IV to V happens at κ = 1.082. They
are different from the case of κ2 = 0.

4.3 The N-rings for N = 6 and 8

We plot the contour maps of the Hamiltonian for the 6-ring and the 8-ring at
the equator θ0 = π

2 in Figure 8 and 9, respectively. Each figure shows that the
same transition of global dynamics of the perturbed N -ring occurs through the
interchange of the separatrices. It implies that the transition of the global dynamics
is observed universally regardless of the number of vortex points.
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(a)

(b)

(c)

(d)

Figure 5: Contour maps of the Hamiltonian for the 4-ring at the line of latitude
θ0 = π

4 in the domain (Φ,Θ1) ∈ [0, 2π] × [0,Θc], in which Θc satisfies cosΘc =
2 cos θ0 − 1. The parameter κ2 is fixed to zero and we change κ1. (a) κ = 1.5, (b)
κ = 1.3, (c) κ = 1.15, and (d) κ = 1.0, where κ = 3

2κ1 +
√

2
2 κ2. The interchange of

the separatrices from (b) to (c) occurs at κ = 1.1935.
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(a) periodic orbit

(b) nonlinearly periodic orbit

(c) swing-by orbit

(d) revolving orbit

Figure 6: Four periodic orbits of the perturbed 4-ring fixed point at the line of
latitude θ0 = π

4 observed typically in the reduced system, which are viewed from
the north. We plot the orbits of all the vortex points on the sphere. (a) Linearly
periodic orbit (κ = 1.5), (b) nonlinearly periodic orbit (κ1 = 1.3), (c) swing-by
orbit (κ = 1.1), and (d) revolving orbit (κ1 = 1.1).
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(a)

(b)

(c)

(d)

Figure 7: Contour maps of the Hamiltonian for the 4-ring at the line of latitude
θ0 = π

4 in the same domain of (Φ,Θ1) as in Figure 5. The parameter κ2 is fixed to
π and we change κ1. (a) κ = 1.5, (b) κ = 1.3, (c) κ = 1.15, and (d) κ = 1. The
separatrices exchange their connection at κ = 1.1674.
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(a)

(b)

(c)

(d)

Figure 8: Contour maps of the Hamiltonian for the 6-ring at the equator θ0 = π
2

for various κ = κ1. Note that the staggered fixed points are not displayed in the
figure. (a) κ = 1.7, (b) κ = 1.4, (c) κ = 1, and (d) κ = 0.7.
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(a)

(b)

(c)

(d)

Figure 9: Contour maps of the Hamiltonian for the 8-ring at the equator θ0 = π
2

for various κ = κ1. The staggered fixed points are not displayed in the figure. (a)
κ = 2.2, (b) κ = 1.8, (c) κ = 1.4, and (d) κ = 0.7.
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5 Conclusion

We have investigated the linear stability and the global dynamics of the N -ring in
which the identical vortex points are equally placed along the line of latitude θ0 on
the sphere with the pole vortices, when the number of vortex points is even, i.e.
N = 2M .

First, we give explicitly all the eigenvalues and the eigenvectors of the linearized
equations for the N -ring in Theorem 4 and Theorem 8. There exist M + 1 eigen-
values, denoted by λ±p for p = 0, 1, · · · ,M . The eigenvalues λ±0 are zero and their
eigenvectors are equivalent to the rotational vectors in the longitudinal directions.
The eigenvalues λ±p for p = 1, · · · ,M − 1 are double and each of them has two lin-
early independent eigenvectors that are complex conjugate with each other. Only
the eigenvalues λ±M are simple and the eigenvectors have the alternate symmetry
that pairs the adjoining two vortex points together.

The stability of the eigenvalues is determined by the number of vortex points,
the strengths of the pole vortices and the position of the N -ring. The exact stabil-
ity condition is given in Theorem 6, which shows that the eigenvalues satisfy the
following order, (

λ±1
)2
<
(
λ±2
)2
< · · · < (λ±M)2 . (32)

Accordingly, if
(
λ±m−1

)2
< 0 < (λ±m)2 holds for some m, then λ+

j is unstable and
λ−j is stable for all j ≥ m, while λ±j become neutrally stable for j < m. It indicates
that the stability of the N -ring is determined by that of the largest eigenvalues λ±M .
The condition is provided in Corollary 7.

Next, we reduce the equations of the N -vortex points to those for the pair of two
vortex points by assuming the alternately pairing symmetry and then we consider
the global dynamics of the reduced system; As a result, we observe the following
transition of global dynamics with the decrease of the parameter that determines
the linear stability of the eigenvalues.

Type I: There are hyperbolic collinear fixed points connected by heteroclinic or-
bits, and elliptic N -ring fixed points. Then, since the N -ring fixed point is neutrally
stable, the perturbed N -ring follows a linearly periodic orbit rotating around the
N -ring fixed point.

Type II: While the hyperbolic collinear fixed points and the heteroclinic orbits
between them remain, the N -ring fixed points become unstable and elliptic stag-
gered fixed points appear. Homoclinic orbits of the N -ring fixed point surrounding
the staggered fixed point emerge. Then, although the N -ring fixed point is lin-
early unstable, the motion of the perturbed N -ring becomes periodic, which we call
nonlinearly periodic.

Type III: While the number and the stability of the fixed points are unchanged,
heteroclinic orbits between the hyperbolic collinear fixed points and the hyperbolic
N -ring fixed points emerge. The motion of the perturbed N -ring becomes either
the nonlinearly periodic solution, or the swing-by solution in which the pair of
the vortex points returns to the original configuration after switching their relative
position.

Type IV: There are heteroclinic orbits between the hyperbolic collinear fixed
points enclosing the elliptic staggered fixed point, and heteroclinic orbits between
the hyperbolic N -ring fixed points. When we perturb the N -ring, it moves along
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either the swing-by orbit, or the revolving orbit in which the pairing two vortex
points rotate in the mutually opposite longitudinal directions.

Type V: The hyperbolic fixed points and the elliptic staggered fixed points disap-
pear. The heteroclinic orbits between the N -ring fixed points are left. The dynamics
of the perturbed N -ring is the same as in the type IV.

The interchange of the separatrices occurs at the type III, which results in the
qualitative change of the global periodic motion of the perturbed N -ring from the
nonlinearly periodic orbit to either the swing-by orbit or the revolving orbit. Be-
cause of the order relation for the eigenvalues (32), the stability of the periodic
orbits is determined by the second largest eigenvalues λ±M−1. This is because when
λ+

M−1 is unstable, the slightly perturbed N -ring deviate from the reduced system
due to the unstable manifold transverse to the system.

As for the case when the number of the vortex points is odd, linear stability
analysis just shows that all the eigenvalues are double and they have linearly inde-
pendent eigenvectors. It is difficult to derive a simple reduced system as we have
done for the even vortex points. It is a future problem to investigate the global
dynamics of the unstable N -ring consists of odd vortex points.

Finally, we apply the present results to describe the motion of the vortex sheets
with rolling-up spirals shown in Figure 1. The linear stability analysis indicates that
the vortex sheet with four spirals in Figure 1(a) are unstable, while those with odd
spirals in (b), (c), and (d) are neutrally stable. Indeed, according to the paper[16],
the vortex sheets with odd spirals rotate stably at the same line of latitude for all
the time, while the centers of the four spirals begin changing their relative positions
in the latitudinal direction. Moreover, as for the unstable four spirals, since the
second largest eigenvalues are neutrally stable, we expect that the spirals evolve
like a nonlinearly periodic orbit in theory. However, in reality, since the size of the
four rolling-up spirals are different, it is hard to claim it exactly from the simplified
N -ring model with the same strengths.
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