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Abstract

We study some geometrical properties associated to the contact of submanifolds with
hyperhorospheres in hyperbolic n-space as an application of the theory of Legendrian
singularities.

1 Introduction

In [10] we have studied geometric properties of hypersurfaces in hyperbolic space associated
to the contact with hyperhorospheres. We call this geometry the “horospherical geometry” of
hypersurfaces in hyperbolic space. The main tool for the study of hypersurfaces is the hyperbolic
Gauss mapping which has been originally introduced by Ch. Epstein in [4] for surfaces in the
Poincaré ball model. The target of the hyperbolic Gauss map is the boundary sphere of the
Poincaré ball in the original definition. In [10] we have studied hypersurfaces in the Minkowski
space model of hyperbolic space. In this case the corresponding hyperbolic Gauss map is a
mapping from the hypersurface to the spacelike sphere on the light-cone. However, we have
defined the hyperbolic Gauss indicatrix on the light-cone whose singular set is the same as
that of the hyperbolic Gauss map. We have shown that the hyperbolic Gauss indicatrix is the
wave front set of a certain Legendrian submanifold in the projective cotangent bundle of the
light-cone. Therefore we have been able to apply the theory of Legendrian singularities to this
situation.

In this paper we study the analogous geometric properties of higher codimensional subman-
ifolds in hyperbolic space. Instead of the hyperbolic Gauss indicatrix we introduce the notion
of horospherical hypersurfaces of submanifolds which is a generalization of the notion of hyper-
bolic Gauss indicatrices to the higher codimension case. The singularity of the horospherical
hypersurface of a submanifold describes the contact of the submanifold with hyperhorosphere.
We show that the horospherical hypersurface of a submanifold is the wave front set of a certain
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Legendrian submanifold of the projective cotangent bundle of the light-cone. Moreover we con-
sider the hyperbolic canal hypersurface of a submanifold which is the boundary of the tubular
neighbourhood of the submanifold. Since the hyperbolic canal hypersurface is a hypersurface
in hyperbolic space, we can apply the previous theory on the hyperbolic Gauss indicatrix of a
hypersurface. We show that the corresponding Legendrian submanifolds for the horospherical
hypersurface and the hyperbolic Gauss indicatrix of the hyperbolic canal surface of a subman-
ifold are Legendrian equivalent (cf., Theorem 4.3). As a consequence, we can apply the theory
of Legendrian singularities to study the contact of submanifolds with hyperhorospheres. In §2
we prepare some fundamental concepts on hyperbolic space as the Minkowski space model and
review the previous results on hypersurfaces in hyperbolic space. We consider general submani-
folds in hyperbolic space and study basic properties in §3. The main tools are the horospherical
hypersurface and the hyperbolic canal hypersurface of a manifold. We define the horospherical
height function (family) on a submanifold and show that the discriminant set is the horospher-
ical hypersurface (cf., Proposition 3.4). Moreover we show that the horospherical hypersurface
and the hyperbolic Gauss indicatrix of the hyperbolic canal hypersurface of a submanifold are
diffeomorphic (cf., Lemma 3.9). In §4 we show that the horospherical height function of a
submanifold is a Morse family (cf., Proposition 4.1). Therefore the horospherical hypersurface
of a submanifold is the wave front set of a certain Legendrian submanifold. The main results
in §4 is Theorem 4.3. In §5 we study the contact of submanifolds with hyperhorospheres as
applications of the previous results and the theory of Legendrian singularities.

We shall assume throughout the whole paper that all the maps and manifolds are C∞ unless
the contrary is explicitly stated.

2 Hypersurfaces in hyperbolic space

In this section we give a brief review on the horospherical differential geometry of hypersurfaces
in hyperbolic n-space which was established in [10]. We adopt the model of hyperbolic n-space
in Minkowski (n + 1)-space. Let R

n+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n) } be an
(n+1)-dimensional vector space. For any x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ R

n+1, the
pseudo scalar product of x and y is defined by

〈x,y〉 = −x0y0 +

n∑
i=1

xiyi.

We call (Rn+1, 〈, 〉) Minkowski (n + 1)-space. We denote R
n+1
1 instead of (Rn+1, 〈, 〉). We say

that a non-zero vector x ∈ R
n+1
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or

〈x,x〉 < 0 respectively. For a vector v ∈ R
n+1
1 and a real number c, we define the hyperplane

with pseudo normal v by

HP (v, c) = {x ∈ R
n+1
1 | 〈x, v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike respectively.

We now define hyperbolic n-space by

Hn
+(−1) = {x ∈ R

n+1
1 |〈x,x〉 = −1, x0 ≥ 1}
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and de Sitter n-space by
Sn

1 = {x ∈ R
n+1
1 |〈x,x〉 = 1 }.

For any a1,a2, . . . ,an ∈ R
n+1
1 , we define a vector a1 ∧ a2 ∧ · · · ∧ an by

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · · ...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣
,

where e0, e1, . . . , en is the canonical basis of R
n+1
1 and ai = (ai

0, a
i
1, . . . , a

i
n). We can easily check

that
〈a,a1 ∧ a2 ∧ · · · ∧ an〉 = det(a,a1, . . . ,an),

so that a1 ∧ a2 ∧ · · · ∧ an is pseudo orthogonal to any ai (i = 1, . . . , n). We also define a set

LC∗
+ = {x = (x0, . . . xn)|〈x,x〉 = 0, x0 > 0 }

and we call it the future lightcone at the origin. If x = (x0, x1, . . . , xn) is a non-zero lightlike
vector, then x0 �= 0. Therefore we have

x̃ =

(
1,
x1

x0

, . . . ,
xn

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | 〈x,x〉 = 0, x0 = 1 }.

Here, we call Sn−1
+ the spacelike (n− 1)-sphere.

Let x : U −→ Hn
+(−1) be an embedding, where U ⊂ R

n−1 is an open subset. We denote
that M = x(U) and identify M and U through the embedding x. Since 〈x,x〉 ≡ −1, we
have 〈xui

,x〉 ≡ 0 (i = 1, . . . , n − 1), where u = (u1, . . . un−1) ∈ U and we denote that
xui

= (∂x/∂ui). Define a vector

e(u) =
x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)

‖x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)‖
,

then we have 〈e,xui
〉 ≡ 〈e,x〉 ≡ 0 and 〈e, e〉 ≡ 1. Therefore the vector x±e is lightlike. Since

x(u) ∈ Hn
+(−1) and e(u) ∈ Sn

1 , we can show that x(u) ± e(u) ∈ LC∗
+. We define a map

L
± : U −→ LC∗

+

by L
±(u) = x(u) ± e(u) which is called the hyperbolic Gauss indicatrix (or the lightcone dual)

of x. In [10] we have shown that Dve ∈ TpM for any p = x(u0) ∈ M and v ∈ TpM. Here,
Dv denotes the covariant derivative with respect to the tangent vector v. Therefore, we have
DvL

± ∈ TpM. Under the identification of U and M, the derivative dx(u0) can be identified
to the identity mapping idTpM on the tangent space TpM, where p = x(u0). This means that
dL±(u0) = idTpM ± de(u0). Thus, dL±(u0) can be regarded as a linear transformation on the
tangent space TpM. We call the linear transformation S±

p = −dL±(u0) : TpM −→ TpM the
hyperbolic shape operator of M = x(U) at p = x(u0). We denote the eigenvalue of S±

p by κ̄±p
which is called a principal hyperbolic curvature of x(U) = M at p = x(u0). The hyperbolic
Gauss-Kronecker curvature of M = x(U) at p = x(u0) is defined to be

K±
h (u0) = detS±

p .
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Since xui
(i = 1, . . . n−1) are spacelike vectors, we induce the Riemannian metric (the hyperbolic

first fundamental form ) ds2 =
∑n−1

i=1 gijduiduj on M = x(U), where gij(u) = 〈xui
(u),xuj

(u)〉
for any u ∈ U. We also define the hyperbolic second fundamental invariant by h̄±ij(u) =
〈−L

±
ui

(u),xuj
(u)〉 for any u ∈ U. We have an explicit expression of the hyperbolic Gauss-

Kronecker curvature by Riemannian metric and the hyperbolic second fundamental invariant
as follows:

K±
h =

det
(
h̄±ij

)
det (gαβ)

.

We say that a point u ∈ U or p = x(u) is an umbilic point if S±
p = κ̄±(p)idTpM . We also say that

M is totally umbilic if all points of M are umbilic. A hypersurface given by the intersection of
Hn

+(−1) and a hyperplane in R
n+1
1 is a totally umbilic hypersurface in hyperbolic n-space. It

can be classified as follows: a totally umbilic hypersurface is respectively called a hypersphere,
a equidistant hypersurface or a hyperhorosphere if it is given be the intersection of Hn

+(−1)
and a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane. If the timelike
hyperplane contains the origin, the equidistant hypersurface is simply called a hyperplane. By
using the principal hyperbolic curvature, we have classified the totally umbilic hypersurfaces as
follows:

Proposition 2.1 Suppose that M = x(U) is totally umbilic, then κ̄±(p) is constant κ̄±. Under
this condition, we have the following classification:

1) Suppose that κ̄± �= 0.

a) If κ̄± �= −1 and |κ̄± + 1| < 1, then M is a part of an equidistant hypersurface.

b) If κ̄± �= −1 and |κ̄± + 1| > 1, then M is a part of a hypersphere.

c) If κ̄± = −1, then M is a part of a hyperplane.

2) If κ̄± = 0, then M is a part of a hyperhorosphere.

We say that a point p = x(u0) is a (positive or negative) horospherical parabolic point (or,
briefly a H±-parabolic point) of x : U −→ Hn

+(−1) if K±
h (u0) = 0. We also say that a point

p = x(u0) is a hyperhorospherical point if h̄±ij(u0) = 0 for each i, j = 1, . . . , n− 1

In [10] we have considered a family of functions on M as a fundamental tool for the study
of hyperbolic Gauss indicatrix. We define a family of functions

H : U × LC∗
+ −→ R

by H(u, v) = 〈x(u), v〉 + 1. We call H a horospherical height function on x : U −→ Hn
+(−1).

We have the following fundamental properties:

Proposition 2.2 ([10]) Let H : U × LC∗
+ −→ R be a horospherical height function on x :

U −→ Hn
+(−1). Then we have the following:

(1) H(u0,v0) = 0 if and only if there exist real numbers µ, ξ1, . . . , ξn−1 such that v0 =
x(u0) + µe(u0) + ξ1xu1(u0) + · · ·+ ξn−1xun−1(u0).

(2) H(u0,v0) = ∂H/∂ui(u0,v0) = 0 (i = 1, . . . , n − 1) if and only if v0 = x(u0) ± e(u0) =
L
±(u0).

Under the condition (2) (i.e.,v±
0 = L

±(u0)), we have the following:

(3) p = x(u0) is a H±-parabolic point if and only if det Hess(hv±0
)(u0) = 0.

(4) p = x(u0) is a hyperhorospherical point if and only if rank Hess(hv±0
)(u0) = 0.

Here, Hess(hv±0
)(u0) is the Hessian matrix of the horospherical height function hv±0

(u) =

H(u, v±
0 ) at u0.
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We have also naturally interpreted the hyperbolic Gauss indicatrix of a hypersurface as
a wave front set in the framework of contact geometry in [10]. We consider a point v =
(v0, v1, . . . , vn) ∈ LC∗

+, then we have the relation v0 =
√
v2
1 + · · ·+ v2

n. So we adopt the co-
ordinate system (v1, . . . , vn) of the manifold LC∗

+. Here, we consider the projective cotangent
bundle

π : PT ∗(LC∗
+) −→ LC∗

+

with the canonical contact structure. We now review geometric properties of this space.
Consider the tangent bundle τ : TPT ∗(LC∗

+) → PT ∗(LC∗
+) and the differential map dπ :

TPT ∗(LC∗
+) → TLC∗

+ of π. For any X ∈ TPT ∗(LC∗
+), there exists an element α ∈ T ∗(LC∗

+)
such that τ(X) = [α]. For an element V ∈ Tx(LC

∗
+), the property α(V ) = 0 does not depend on

the choice of representative of the class [α]. Thus we can define the canonical contact structure
on PT ∗(LC∗

+) by
K = {X ∈ TPT ∗(LC∗

+)|τ(X)(dπ(X)) = 0}.
In the coordinate system (v1, . . . , vn), we have the trivialisation PT ∗(LC∗

+) ∼= LC∗
+ ×

P (Rn−1)∗ and we call
((v1, . . . , vn), [ξ1 : · · · : ξn])

homogeneous coordinates, where [ξ1 : · · · : ξn] are homogeneous coordinates of the dual projec-
tive space P (Rn−1)∗. It is easy to show that X ∈ K(x,[ξ]) if and only if

∑n
i=1 µiξi = 0, where

dπ(X) =
∑n

i=1 µi(∂/∂vi). An immersion i : L → PT ∗(LC∗
+) is said to be a Legendrian immer-

sion if dimL = n and diq(TqL) ⊂ Ki(q) for any q ∈ L. We also call the map π ◦ i the Legendrian
map and the set W (i) = image π ◦ i the wave front of i. Moreover, i (or, the image of i) is
called the Legendrian lift of W (i). For extra results and notions on the theory of Legendrian
singularities, please refer to the appendix.

For any hypersurface x : U −→ Hn
+(−1), we denote x(u) = (x0(u), . . . , xn(u)) and L

±(u) =
(�±0 (u), . . . , �±n (u)) as coordinate representations. We now define a smooth mapping

L± : U −→ PT ∗(LC∗
+)

by
L±(u) = (L±(u), [−�±1 (u)x0(u) + �±0 (u)x1(u) : · · · : −�±n (u)x0 + �±0 (u)xn(u)]).

Then we have the following [10]:

Proposition 2.3 For any hypersurface x : U −→ Hn
+(−1), L± is a Legendrian immersion

whose generating family is the horospherical height function H : U × LC∗
+ −→ R of x.

Therefore, we have the Legendrian immersion L± whose wave front set is the hyperbolic
Gauss indicatrix L

±.

Actually we have shown in [10] that the horospherical height function H : U × LC∗
+ −→ R

is a Morse family.

3 General submanifolds in hyperbolic n-space

Let x : U → Hn
+(−1) be an embedding of codimension (r+1), where U ⊂ R

s (s+ r+1 = n) is
an open subset. We also write that M = x(U) and identify M and U through the embedding
x.
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For any p = x(u) ∈ M ⊂ Hn
+(−1), we have 〈x(u),x(u)〉 = −1, so that 〈xui

(u),x(u)〉 = 0,
where u = (u1, u2, . . . , us). Hence the tangent space of M at p = x(u) is

TpM = 〈xu1(u),xu2(u), . . . ,xus(u)〉�.
Let Np(M) be the normal space of M at p = x(u) in R

n+1
1 and we define Nh

p (M) = Np(M) ∩
TpH

n
+(−1). Since the normal bundle N(M) is trivial, we can arbitrary choose a unit normal

section n(u) ∈ Sr(Nh
p (M)). We can consider differential geometry of general submanifolds in

hyperbolic space which generalizes geometry of hypersurfaces in hyperbolic space in [10]. Since
〈n(u),n(u)〉 = 1 and 〈x(u),n(u)〉 = 0, nui

(u) (i = 1, . . . , s) are orthogonal to both of n(u) and
x(u). Therefore we have nui

(u) ∈ TpM ⊕Nh
p (M). We now consider the orthogonal projections

πT : TpM ⊕ Nh
p (M) −→ TpM and πN : TpM ⊕ Nh

p (M) −→ Nh
p (M). Let dnu : TuU −→

TpM ⊕ Nh
p (M) be the derivative of n. We define that dnT

u = πT ◦ dnu and dnN
u = πN ◦ dnu.

We call the linear transformation Ap0(n) = −dnT
u0

: Tp0M −→ Tp0M the n-shape operator of
M = x(U) at p0 = x(u0). Under the identification of U and M, the derivative dxu can be
identified with the identity mapping idTpM . We also call the linear transformation Sp0(n) =
−(idTp0M + dnT

u0
) : Tp0M −→ Tp0M the horospherical (or, hyperbolic ) n-shape operator of

M = x(U) at p0 = x(u0). We also call the linear mapping dnN
u the normal connection with

respect to n of M = x(U) at p0 = x(u0). We denote the eigenvalue of Ap0(n) by κp0(n) and the
eigenvalue of Sp0(n) by κ̄p0(n). By the relation of Ap0(n) and Sp0(n) we have a relation that
κ̄p0(n) = κp0(n)−1. We call κ̄p0(n) the principal horospherical curvature at p0 with respect to
n.We now define the notion of curvature as follows. The horospherical (or hyperbolic) curvature
with respect to n at p0 = x(u0) is defined to be

Kh(n)(u0) = Kh(n)p0 = detSp0(n).

We say that a point p0 = x(u0) is n-umbilic point if Sp0(n) = κ̄p0(n)idTp0M . Since the eigen-
vectors of Sp0(n) and Ap0(n) are the same, the above condition is equivalent to the condition
Ap0(n) = κp0(n)idTp0M . We say that M = x(U) is totally n-umbilic if all points on M are
n-umbilic. We say that the unit normal vector field n is parallel at p0 if dnN

u0
= 0. We simply

say that n is parallel if it is parallel at all points of M. Then we have the following result:

Proposition 3.1 Suppose that M = x(U) is totally n-umbilic and n is a parallel unit normal
vector field on M. Then κ̄p(n) is constant κ̄. Under this condition, we have the following four
cases:

(1) Suppose that κ̄ �= 0.

(a) If κ̄ �= −1 and |κ̄+ 1| < 1, then M is contained in a equidistant hypersurface.

(b) If κ̄ �= −1 and |κ̄+ 1| > 1, then M is contained in a hypersphere.

(c) If κ̄ = −1, then M is contained in a hyperplane.

(2) If κ̄ = 0, then M is contained in a hyperhorosphere.

Proof. By definition, we have −πT ◦ nui
= κxui

for i = 1, . . . , s. Therefore, we have −πT ◦
nuiuj

= κuj
xui

+ κxuiuj
. Since nuiuj

= nujui
and κxuiuj

= κxujui
, we have κuj

xui
= κui

xuj
. By

definition {xu1 , . . . ,xus} is linearly independent, so that κ̄ = κ− 1 is constant.

Since n is a parallel unit normal vector field alongM, we have πT ◦nui
= nui

for i = 1, . . . , s.
We now assume that κ̄ �= 0. If κ̄ �= −1 then κ �= 0, so that we have −nui

= κxui
. Therefore,

there exists a constant vector a such that x = a + (1/κ)n. Since 〈x − a,x − a〉 = (1/κ)2, we
have 〈a,x〉 = −1. This means that M = x(U) ⊂ HP (a,−1) ∩ Hn

+(−1). If |κ̄ + 1| < 1, then
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a is spacelike. If |κ̄ + 1| > 1, then a is timelike. Then the assertion (1) (a), (b) follow. If
κ̄ = −1, then nui

= 0, so that n is a constant vector a. Since a is a spacelike vector and we
have 〈x,a〉 = 0, M = x(U) ⊂ HP (a, 0) ∩Hn

+(−1). The assertion (1), (c) follows.

Finally we assume that κ̄ = 0. In this case, we have x + n is a constant vector a, so
that we have 〈x,a〉 = −1. Since a is a lightlike vector, this means that M is contained in a
hyperhorosphere. �

We now give the following generalized hyperbolic Weingarten formula. Since xui
(i =

1, . . . s) are spacelike vectors, we induce the Riemannian metric (the hyperbolic first fundamental
form ) ds2 =

∑s
i=1 gijduiduj on M = x(U), where gij(u) = 〈xui

(u),xuj
(u)〉 for any u ∈ U.

We also define the horospherical (or, hyperbolic) second fundamental invariant with respect
to the unit normal vector field n by h̄ij(n)(u) = 〈−(x + n)ui

(u),xuj
(u)〉 for any u ∈ U.

If we define the second fundamental invariant with respect to the normal vector field n by
hij(n)(u) = −〈nui

(u),xuj
(u)〉, then we have the following relation:

h̄ij(n)(u) = −gij(u) + hij(n)(u), (i, j = 1, . . . , s).

Proposition 3.2 Under the above notations, we have the following horospherical (or, hyper-
bolic) Weingarten formula with respect to n:

πT ◦ (x + n)ui
= −

s∑
j=1

h̄j
i (n)xuj

,

where
(
h̄j

i (n)
)

=
(
h̄ik(n)

) (
gkj

)
and

(
gkj

)
= (gkj)

−1.

Proof. There exist real numbers Γj
i such that

πT ◦ (x + n)ui
=

s∑
j=1

Γj
ixuj

.

Since 〈πN ◦ (x + n)ui
,xuj

〉 = 0, we have

−h̄iβ(n) =

s∑
α=1

Γα
i 〈xuα,xuβ

〉 =

s∑
α=1

Γα
i gαβ.

Hence, we have

−h̄j
i (n) = −

s∑
β=1

h̄iβ(n)gβj =

s∑
β=1

s∑
α=1

Γα
i gαβg

βj = Γj
i .

This completes the proof. �

As a corollary of the above proposition, we have an explicit expression of the horospherical
curvature by Riemannian metric and the horospherical second fundamental invariant.

Corollary 3.3 Under the same notations as in the above proposition, the horospherical curva-
ture with respect to n is given by

Kh(n) =
det

(
h̄ij(n)

)
det (gαβ)

.
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Proof. By the horospherical Weingarten formula, the representation matrix of the horospherical
shape operator with respect to the basis {xu1 , . . . ,xus} is

(
h̄j

i (n)
)

=
(
h̄iβ

) (
gβj

)
. It follows from

this fact that

Kh(n) = detSp(n) = det
(
h̄j

i (n)
)

= det
(
h̄iβ(n)

) (
gβj

)
=

det
(
h̄ij(n)

)
det (gαβ)

.

�

Since 〈−(x + n)(u),xuj
(u)〉 = 0, we have h̄ij(n)(u) = 〈x(u) + n(u),xuiuj

(u)〉. Therefore
the horospherical second fundamental invariant at a point p0 = x(u0) depends only on x(u0)+
n(u0) and xuiuj

(u0). By the above corollary, the horospherical curvature also depends only on
x(u0) + n(u0) and xuiuj

(u0). It is independent on the choice of the normal vector field n. We
write Kh(n0)(u0) as the horospherical curvature at p0 = x(u0) with respect to n0 = n(u0).
We might also say that a point p0 = x(u0) is n0-umbilic because the horospherical n-shape
operator is independent on the choice of the normal vector filed n (it depends on the normal
vector n0 = n(u0)).

We say that a point p0 = x(u0) is a horospherical parabolic point with respect to n0 (or,
briefly a H(n0)-parabolic point) of x : U −→ Hn

+(−1) if Kh(n0)(u0) = 0. We also say that a
point p0 = x(u0) is a horospherical point with respect to n0 (or, briefly an e(u0, µ0)-horospherical
point) if it is an n0-umbilic point and Kh(n0)(u0) = 0.

We now arbitrary choose unit orthonormal sections nj(u) ∈ Sr(Nh
p (M)) (j = 1, . . . , r+1).

Therefore we have
Np(M) = 〈x(u),n1(u), . . . ,nr+1(u)〉�.

Since {x,xu1 , . . . ,xus,n1, . . . ,nr+1} is a pseudo orthonormal frame of TR
n+1
1 along M, we have

(nj)ui
=

s∑
i=1

λixui
+

r+1∑
k=1

µknk+µr+2x for some λi , µk ∈ R, i = 1, 2, . . . , s, j = 1, . . . , r+2, where

we denote (nj)ui
= (∂nj/∂ui)(u). It follows form the fact 〈nj ,nj〉 = 1 that 〈(nj)ui

,nj〉 = 0.
Thus we have µj = 0. By the relation 〈x,nj〉 = 0, we have 〈x, (nj)ui

〉 = −〈xui
,nj〉 = 0. Hence

µr+2 = 0. Therefore, we have a relation

(nj)ui
(u) ∈ 〈xu1(u), . . . ,xus(u),n1(u) . . . ,nj−1(u),nj+1(u), . . . ,nr+1(u)〉�,

The boundary of the tubular neighbourhood of M with sufficiently small radius is called
the hyperbolic canal hypersurface of M. In general it is the image of an embedding from the
unit normal bundle of M in Hn

+(−1). Since we consider the local parameterization x : U −→
Hn

+(−1), we can explicitly write the embedding as follows: We define a mapping x̄ : U×Sr −→
Hn

+(−1) by

x̄(u, µ) = cosh θx(u) + sinh θ
r+1∑
j=1

µjnj(u),

where µ = (µ1, . . . , µr+1) ∈ R
r+1 with

r+1∑
j=1

µ2
j = 1, u = (u1, . . . , us) and θ is a fixed real

number. For sufficiently small |θ| > 0 we can show that x̄ is an embedding. We write CM =
x̄(U×Sr) and call it the hyperbolic canal hypersurface ofM = x(U). Throughout the remainder
in this paper we write that e(u, µ) =

∑r+1
j=1 µjnj(u) by using the fixed pseudo-orthonormal

frame {x(u),n1(u), . . . ,nr+1(u)} of Np(M) and µ = (µ1, . . . , µr+1) with
∑r+1

j=1 µ
2
j = 1. We now
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consider the horospherical height function on a general submanifold in Hn
+(−1) as follows: For

any embedding x : U −→ Hn
+(−1) (U ⊂ R

s), define a function

H : U × LC∗
+ −→ R

by H(u, v) = 〈x(u), v〉 + 1, where v = (v0, v1, . . . vn) ∈ LC∗
+. We call H a horospherical height

function on M . We denote that hv0(u) = H(x(u), v0), for any v0 ∈ LC∗
+, then the following

proposition holds:

Proposition 3.4 We have the following assertions:

(1) hv(u) = 0 if and only if there exist real numbers λ1, . . . , λs, µ1, . . . , µr+1 such that v =
x +

∑s
i=1 λixi +

∑r+1
j=1 µjnj.

(2) hv(u) = (∂hv/∂ui)(u) = 0 (i = 1, . . . , s) if and only if v = x(u) + e(u, µ).

Proof. (1) Since {x,xu1, . . . ,xus,n1, . . . ,nr+1} is a basis of the vector space TpR
n+1
1 where p =

x(u), there exist real numbers λ, λ1, . . . , λs, µ1, . . . , µr+1 such that v = λx+
∑s

i=1 λixi+
r+1∑
j=1

µjnj .

Therefore H(u, v) = 0 if and only if −1 = 〈x,v〉 = λ〈x,x〉 = −λ.
(2) Since (∂H/∂ui)(u, v) = 〈xui

,v〉, we have 0 = 〈xui
,v〉 = λi〈xui

,xui
〉. Since v ∈ LC∗

+,

the condition H(u, v) = (∂H/∂ui)(u, v) = 0 holds if and only if v = x +
∑r+1

j=1 µjnj with∑r+1
j=1 µ

2
j = 1. This completes the proof. �

It follows that

Σ∗(H) =

{
(u, v) ∈ U × LC∗

+ | v = x(u) + e(u, µ), µ = (µ1, . . . , µr+1) with

r+1∑
j=1

µ2
j = 1

}

The set Σ∗(H) is defined in the appendix and the discriminant set of H is

DH = { x(u) + e(u, µ) | (u, µ) ∈ U × Sr }.

We define a mapping

HSx : U × Sr −→ LC∗
+

by HSx(u, µ) = x(u) + e(u, µ). We call HSx the horospherical hypersurface of M. Of course,
HSx depends on the choice of the pseudo-orthonormal frame {x,n1, . . . ,nr+1} of N(M).
Let {x,n′

1, . . . ,n
′
r+1} be another pseudo-orthonormal frame of N(M). Then we have ni =∑r+1

j=1 λijn
′
j , where λij = 〈ni(u),n

′
j(u)〉. We now define a diffeomorphism Φ : U×Sr −→ U×Sr

by

Φ(u, µ) = (u, (
r+1∑
j=1

λ1
j(u)µj, . . . ,

r+1∑
j=1

λr+1
j (u)µj)),

where µ = (µ1, . . . , µr+1). We also define that e′(u, µ) =
∑r+1

i=1 µin
′
i(u). It follows from the

above definition that e(u, µ) = e′ ◦ Φ(u, µ). Therefore we have

HSx(u, µ) = HS ′
x ◦ Φ(u, µ),
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where HS ′
x(u, µ) = x(u) + e′(u, µ). This means that HS ′

x defines the same hypersurface as
HSx(U × Sr) with a different parameterization.

Since we are interested in the singularity of HSx(U × Sr), we arbitrary fix a pseudo-
orthonormal frame

{x(u),n1(u), . . . ,nr+1(u)}
of N(M) throughout the remainder of this paper. We can show the following assertion:

Proposition 3.5 Let x : U −→ Hn
+(−1) be a submanifold. Then there exists a smooth map-

ping µ : U −→ Sr such that HSx(u, µ(u)) is a constant vector if and only if M = x(U) is
contained in a hyperhorosphere. By Proposition 3.1, the above condition is equivalent to the
condition that M is totally e(u, µ(u))-umbilic, the normal vector field e(u, µ(u)) is parallel and
Kh(e(u, µ(u))(u) = 0.

Proof. Suppose that v0 = x(u) + e(u, µ(u)) is a constant lightlike vector. Since e(u, µ(u))
is a normal vector of M for any u ∈ U, we have 〈v0,x(u)〉 = −1 for any u ∈ U. This means
that M ⊂ HSn−1(v0,−1). On the other hand if M ⊂ HSn−1(v0,−1) for some lightlike vector
v0, then 〈v0,x(u)〉 = −1 for any u ∈ U. It follows that we have 〈v0 − x(u),x(u)〉 = 0 for any
u ∈ U. Moreover, we have 〈v0,xui

〉 = 0. Therefore, v0 − x(u) is a normal vector of M. We
define a smooth mapping µ : U −→ Sr by µ(u) =

∑r+1
i=1 〈v0 − x(u),ni(u)〉ni(u). Then we have

v0 − x(u) = e(u, µ(u)). This completes the proof. �

Since the image of the horospherical hypersurface HSx of M is the discriminant set of the
horospherical height function H on M, the singular set of HSx corresponds to the nondegen-
erate set of the Hessian matrix of the horospherical height function. Therefore we have the
following proposition.

Proposition 3.6 The singular set of HSx is given by

Σ(HSx) = {(u, µ) ∈ U × Sr | Kh(e(u, µ))(u) = 0 }.
Proof. By a straight forward calculation, the Hessian matrix of the horospherical height
function hv at p = x(u) is given by (〈xuiuj

(u), v〉), where v is a unit normal vector of M at
p. Since (u, v) ∈ Σ∗(H), we have v = x(u) + e(u, µ) for some µ ∈ Sr. By the remark after
Corollary 3.3, Kh(e(u, µ))(u) = det(〈xuiuj

(u),x(u) + e(u, µ)〉). This completes the proof. �

By the proof of the above proposition, we have the following proposition.

Proposition 3.7 For any submanifold x : U −→ Hn
+(−1) and a lightlike vector v0 = x(u0) +

e(u0, µ0), we have the following assertions:

(1) p0 = x(u0) is an H(e(u0, µ0))-parabolic point if and only if det Hess(hv0)(u0) = 0,

(2) p0 = x(u0) is an e(u0, µ0)-horospherical point if and only if Hess(hv0)(u0) = 0.

Here Hess(hv0)(u0) = 0 is the Hessian matrix of hv0(u) at u0.

On the other hand we now consider the hyperbolic canal hypersurface of M. Since CM
is a hypersurface in Hn

+(−1), we can apply previous calculations on the horospherical height
function of a hypersurface (cf., §2). We consider the horospherical height function on the
hyperbolic canal hypersurface CM :

H̄ : CM × LC∗
+ −→ R; H̄((u, µ), v) = 〈x̄((u, µ), v)〉 + 1.
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Denote that h̄v(u) = H̄((u, µ), v) for any v ∈ LC∗
+ and N(u, µ) = sinh θx(u) + cosh θe(u, µ),

then we have the following proposition.

Proposition 3.8 We have the following assertions:

(1) h̄v(u, µ) = 0 if and only if there exist real numbers λ1, . . . , λn−1,ρ such that v = x̄ +
n−r−1∑

i=1

λix̄ui
(u, µ) +

r∑
j=1

λn−r−1+jx̄µj
(u, µ) + ρN(u, µ) and

r+1∑
j=1

λ2
i + ρ2 = 1.

(2) h̄v(u, µ) = (∂h̄v/∂ui)(u, µ) = (∂h̄v/∂µj)(u, µj) = 0 (i = 1, . . . , n− r− 1; j = 1, . . . , r) if
and only if v = x̄(u, µ)± N(u, µ) = (sinh θ ± cosh θ)(x(u) ± e(u, µ)).

Proof. Since x̄(u, µ) = cosh θx(u) + sinh θe(u, µ), we have

x̄ui
(u, µ) = cosh θxui

(u) + sinh θeui
(u, µ) (i = 1, . . . , s),

x̄µj
(u, µ) = sinh θeµj

(u, µ) (j = 1, . . . , r),

where eµj
= ∂e/∂µj . Without the loss of generality we consider the case that µr+1 > 0, so

that µr+1 =
√

1 − ∑r
j=1 µ

2
j . Since e =

∑r+1
i=1 µini, we have eµj

= nj − µj

µr+1
nr+1. By definition,

〈N , x̄〉 = 0. It follows that

〈N , x̄ui
〉 = 〈sinh θx + cosh θe, cosh θxui

+ sinh θeui
〉 = 〈cosh θe, cosh θxui

〉 = 0.

On the other hand, we have

〈N , x̄µj
〉 = 〈sinh θx + cosh θe, sinh θ

∂e

∂µj
〉

= 〈sinh θx + cosh θ
r+1∑
j=1

µjnj, sinh θ(nj − µj

µr+1

nr+1)〉

= cosh θ sinh θ〈
r∑

j=1

µjnj + µr+1nr+1,nj − µj

µr+1
nr+1〉

= cosh θ sinh θ(µj − µj) = 0.

This means that N(u, µ) = sinh θx(u)+cosh θe(u, µ) is a unit normal vector of CM at x̄(u, µ) =
p̄. Therefore

{x̄, x̄u1 , . . . , x̄us, x̄µ1 , . . . , x̄µr ,N}
is a basis of Tp̄R

n+1
1 . Hence there exist real numbers λ, λi, ρ (i = 1, . . . , n− 1) such that

v = (λx̄ +

s∑
i=1

λix̄ui
+

r∑
j=1

λs+jx̄µj
+ ρN)(u, µ).

(1) The condition h̄v(u, µ) = 0 is equivalent to the condition that −1 = 〈x,v〉 = λ〈x̄, x̄〉 =
−λ. Hence, we have the assertion (1).

(2) The condition h̄v(u, µ) = (∂h̄v/∂ui)(u, µ) = (∂h̄v/∂µj)(u, µj) = 0 (i = 1, . . . , s; j =
1, . . . , r) is equivalent to the conditions that λ = 1, 〈x̄ui

(u, µ), v〉 = 〈x̄µj
(u, µ), v〉 = 0 and

v ∈ LC∗
+. Therefor we have the condition that λ = 1, λi = 0, λ = ±ρ and v = (x̄±N )(u, µ) ∈
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LC∗
+ By definition, we have (x̄±N)(u, µ) = (sinh θ± cosh θ)(x± e)(u, µ). This completes the

proof of the assertion (2). �

Since the unit normal vector field of the hyperbolic canal hypersurface CM is given by N ,
the hyperbolic Gauss indicatrix of the hyperbolic canal hypersurface CM is a mapping

LCM : U × Sr −→ LC∗
+

given by

LCM(u, µ) = x̄(u, µ) + N(u, µ) = (sinh θ + cosh θ)(x(u) + e(u, µ)).

We now define a diffeomorphism

Mc : LC∗
+ −→ LC∗

+

by Mc(v) = cv for a fixed positive real number c. Then we have the following lemma:

Lemma 3.9 Under the above notations, we have

Mc ◦HSx(u, µ) = LCM(u, µ),

where c = cosh θ + sinh θ.

By Lemma 3.3, the horospherical hypersurface of M is diffeomorphic to the hyperbolic
indicatrix of the hyperbolic canal surface CM of M.

4 Horospherical hypersurfaces as wave fronts

In this section we naturally interpret the horospherical hypersurfaces of M in the future light-
cone LC∗

+ as a wavefront set in the framework of contact geometry. We also refer to the
appendix for basic notions and results on the theory of Legendrian singularities. For an s-
dimensional embedding x : U −→ Hn

+(−1), we have defined the horospherical height function
H in §3 and shown that the discriminant set is the horospherical hypersurface of x(U) = M in
LC∗

+. Moreover, we have the following proposition:

Proposition 4.1 The horospherical height function H : U × LC∗
+ −→ R is a Morse family.

Proof. For any v = (v0, v1, . . . , vn) ∈ LC∗
+, we have v0 =

√
v2
1 + · · ·+ v2

n, so that

H(u, v) = 〈x(u), v〉 + 1 = −x0(u)
√
v2
1 + · · ·+ v2

n + x1(u)v1 + · · · + xn(u)vn,

where x(u) = (x0(u), . . . , xn(u)). We now prove that the mapping

∆∗H =
(
H,

∂H

∂u1
, . . . ,

∂H

∂us

)
is non-singular at any point. The Jacobian matrix of ∆∗H is given as follows:
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〈xu1 ,v〉 · · · 〈xus,v〉 −x0

v1

v0
+ x1 · · · −x0

vn

v0
+ xn

〈xu1u1,v〉 · · · 〈xu1us,v〉 −x0u1

v1

v0

+ x1u1 · · · −x0u1

vn

v0

+ xnu1

...
...

...
...

...
...

〈xusu1 ,v〉 · · · 〈xusus,v〉 −x0us

v1

v0
+ x1us · · · −x0us

vn

v0
+ xnus

 ,

where xui
= ∂x/∂ui and xujuk

= ∂2x/∂uj∂uk(u). We now show that the rank of the matrix

X =


−x0

v1

v0
+ x1 · · · −x0

vn

v0
+ xn

−x0u1

v1

v0
+ x1u1 · · · −x0u1

vn

v0
+ xnu1

...
...

...

−x0us

v1

v0

+ x1us · · · −x0us

vn

v0

+ xnus


is s + 1 at (u, v) ∈ Σ∗(H). Since (u, v) ∈ Σ∗(H), we have v = x(u) +

∑r+1
j=1 µjnj(u) with∑r+1

j=1 µ
2
j = 1. Without the loss of generality, we assume that µr+1 �= 0. We denote that

ni(u) = (mi
0(u), . . . , m

i
n(u)) for i = 1, . . . , r+1. Then it is enough to show that the rank of the

matrix

A =



−x0
v1

v0

+ x1 · · · −x0
vn

v0

+ xn

−x0u1

v1

v0
+ x1u1 · · · −x0u1

vn

v0
+ xnu1

...
...

...

−x0us

v1

v0
+ x1us · · · −x0us

vn

v0
+ xnus

−m1
0

v1

v0
+m1

1 · · · −m1
0

vn

v0
+m1

n

...
...

...

−mr
0

v1

v0
+mr

1 · · · −mr
0

vn

v0
+mr

n


is n at (u, v) ∈ Σ∗(H). We denote that ai = t(xi, xiu1, . . . , xius , m

1
i , . . . , m

r
i ) for i = 0, . . . , n.

Then we have
A =

(−a0
v1

v0

+ a1, . . . ,−a0
vn

v0

+ an

)
and

detA =
v0

v0

det(a1, . . . ,an) − v1

v0

det(a0,a2, . . . ,an) − · · · − vn

v0

det(a1, . . . ,an−1,a0).

On the other hand, we have

a = x ∧ x1 ∧ · · · ∧ xs ∧ n1 ∧ · · · ∧ nr

=
(−det(a1, . . . ,an),−det(a0,a2, . . . ,an), . . . , (−1)ndet(a0, . . . ,an−1)

)
.
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Therefore we have

detA =
〈(

v0
v0
, . . . , vn

v0

)
,a

〉
= 1
v0
〈x + e(u, µ), ‖a‖nr+1〉

= 1
v0
‖a‖µr+1 �= 0

for (u, v) ∈ Σ∗(H). This complete the proof of proposition. �

By the above proposition, we can define the Legendrian lift of the horospherical hypersurface
as follows: We denote that x(u) = (x0(u), . . . , xn(u)) and HSx(u, µ) = (�̄0(u, µ), . . . �̄n(u, µ))
as coordinate representations. Define a map

Lx : U × Sr −→ PT ∗(LC∗
+)

by

Lx(u, µ) = (HSx(u, µ), [�̄(u, µ)]).

where

[�̄(u, µ)] =
[−�̄1(u, µ)x0(u) + �̄0(u, µ)x1(u) : · · · : −�̄n(u, µ)x0(u) + �̄0(u, µ)xn(u)

]
.

By definition, we have the following corollary of the above proposition:

Corollary 4.2 For an s-dimensional embedding x : U −→ Hn
+(−1), Lx : U × Sr −→

PT ∗(LC∗
+) is a Legendrian immersion such that the horospherical height function H : U ×

LC∗
+ −→ R of x(U) = M is a generating family of Lx.

On the other hand, we define a contact diffeomorphism

M̃c : PT ∗(LC∗
+) −→ PT ∗(LC∗

+)

by M̃c(v, [ξ]) = (cv, [ξ]) for a fixed positive number c, which is the unique contact lift of the
diffeomorphism Mc : LC∗

+ −→ LC∗
+. By definition we have the following theorem:

Theorem 4.3 For an s-dimensional embedding x : U −→ Hn
+(−1), we have

M̃c ◦ Lx(u, µ) = LCM(u, µ),

where c = cosh θ+ sinh θ and LCM is the Legendrian lift of the Gaussian indicatrix LCM of the
hyperbolic canal hypersurface CM.

In other words, the Legendrian lift of the Gaussian indicatrix Lx of the hyperbolic canal hyper-
surface CM is Legendrian equivalent to the Legendrian lift Lx of the horospherical hypersurface
HSx of M = x(U).

Corollary 4.4 Under the same assumption of the above theorem, the horospherical height func-
tion germ H of x at (u0,v0) and and the horospherical height function germ H̄ at (u0, µ0, v̄0)
are stably P -K-equivalent, where v0 = x(u0) + e(u0, µ0) and v̄0 = x̄(u0, µ0) + N(u0, µ0).
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5 Contact with hyperhorospheres

In this section we consider the contact of submanifolds with hyperhorospheres. Before we
start to consider the contact between hypersurfaces and hyperhorospheres, we briefly review
the theory of contact due to Montaldi [17]. Let Xi, Yi (i = 1, 2) be submanifolds of R

n with
dimX1 = dimX2 and dimY1 = dimY2. We say that the contact of X1 and Y1 at y1 is same type
as the contact of X2 and Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2)
such that Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write K(X1, Y1; y1) = K(X2, Y2; y2). It
is clear that in the definition R

n could be replaced by any manifold. In his paper [17], Montaldi
gives a characterization of the notion of contact by using the terminology of singularity theory.

Theorem 5.1 Let Xi, Yi (i = 1, 2) be submanifolds of R
n with dimX1 = dimX2 and dimY1 =

dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→ (Rp, 0) be
submersion germs with (Yi, yi) = (f−1

i (0), yi). Then K(X1, Y1; y1) = K(X2, Y2; y2) if and only
if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Define a function H : Hn
+(−1)×LC∗

+ −→ R by H(v1,v2) = 〈v1,v2〉+ 1. For any v0 ∈ LC∗
+, we

define that hv0(u) = H(u,v0) and we have a hyperhorosphere h−1
v0

(0) = HP (v0,−1)∩Hn
+(−1) =

HSn−1(v0,−1). Let x : U −→ Hn
+(−1) be an embedding of codimension (r+1). For any u0 ∈ U

and µ0 ∈ Sr, we consider a lightlike vector v0 = x(u0) + e(u0, µ0) ∈ LC∗
+, then we have

hv0 ◦ x(u0) = H ◦ (x × idLC∗
+
)(u0,v0) = H(u0,v0) = 0

by Proposition 3.1, (1). It also follows from Proposition 3.1, (2) that we have

∂hv0 ◦ x

∂ui

(u0) =
∂H

∂ui

(u0,x(u0) + e(u0, µ0)) = 0,

for i = 1, . . . , n − r − 1. This means that the hyperhorospheres h−1
v0

(0) = HSn−1(v0,−1) is
tangent to M = x(U) at p = x(u0). In this case, we call HSn−1(v0,−1) the tangent hyper-
horosphere of M = x(U) at p0 = x(u0) (or, u0) with respect to x(u0) + e(u0, µ0), which we
write HS(x, (u0, µ0)). In the case when s = n− 1 (i.e., the hypersurface case), we have exactly
two normal direction at each point. Therefore, there are two tangent hyperhorospheres of a
hypersurface at each point. For the higher codimensional case, we have the hyperbolic canal
hypersurface x̄ : U × Sr −→ Hn

+(−1) of x(U) = M. We denote HS(x̄, (u0, µ0)) as the tangent
hyperhorosphere of CM = x̄(U × Sr) at (u0, µ0) with respect to x̄(u0) + N(u0, µ0).

We now consider the contact of M with tangent hyperhorospheres at p0 ∈ M as an
application of Legendrian singularity theory. Let fi : (Ni, xi) −→ (Pi, yi) (i = 1, 2) be
C∞ map germs. We say that f1, f2 are A-equivalent if there exist diffeomorphism germs
φ : (N1, x1) −→ (N2, x2) and ψ : (P1, y1) −→ (P2, y2) such that ψ ◦ f1 = f2 ◦ φ. Let
HSxi

: (U × Sr, (ui, µi)) −→ (LC∗
+,vi) (i = 1, 2) be horospherical hypersurface germs of sub-

manifold germs xi : (U, ui) −→ (Hn
+(−1),xi(ui)). If both the regular sets of HSxi

are dense in
(U ×Sr, (ui, µi)), it follows from Proposition A.2 that HSx1 and HSx2 are A-equivalent if and
only if the corresponding Legendrian immersion germs Lx1 : (U × Sr, (u1, µ1)) −→ (LC∗

+,v1)
and Lx2 : (U × Sr, (u2, µ2)) −→ (LC∗

+,v2) are Legendrian equivalent. This condition is also
equivalent to the condition that two generating families H1 and H2 are P -K-equivalent by The-
orem A.3. Here, Hi : (U ×LC∗

+, (ui,vi)) −→ R is the horospherical height function germ of xi.
By Lemma 3.9, the above condition is equivalent to that LCM1,LCM2 are A-equivalent, where
CMi = x̄i(U × Sr) (i = 1, 2) is the hyperbolic canal hypersurfaces of xi.
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On the other hand, we define that hi,vi
(u) = Hi(u, vi), then we have hi,vi

(u) = hvi
◦ xi(u).

By Theorem 5.1, K(x1(U), HS(x1, (u1, µ1)), v1) = K(x2(U), HS(x2, (u2, µ2)), v2) if and only
if h1,v1 and h1,v2 are K-equivalent. Therefore, we can apply the arguments in the appendix to
our situation.

Theorem 5.2 Let xi : (U, ui) −→ (Hn
+(−1),xi(ui)) (i = 1, 2) be hypersurfaces germs such that

Σ(HSxi
) (i = 1, 2) have no interior points as subspaces of U × Sr. Then we have the following

assertions:

(A) The following conditions are equivalent:

(1) Horospherical hypersurface germs HSx1 and HSx2 are A-equivalent.

(2) Lx1 and Lx2 are Legendrian equivalent.

(3) H1 and H2 are P -K-equivalent.

(4) Hyperbolic Gauss indicatrix germs LCM1 and LCM2 are A-equivalent.

(5) LCM1 and LCM2 are Legendrian equivalent.

(6) H̄1 and H̄2 are P -K-equivalent.

(B) If one of the above conditions hold for xi (i = 1, 2),

K(x1(U), HS(x1, (u1, µ1)), v1) = K(x2(U), HS(x2, (u2, µ2)), v2).

In this case, (x−1
1 (HS(x1, (u1, µ1))), u1) and (x−1

2 (HS(x2, (u2, µ2))), u2) are diffeomorphic as
set germs.

Proof. (A) By the assumption, the corresponding Legendrian lifts Lxi
satisfy the hypothesis

of Proposition A.2. It follows from Proposition A.2 and Theorem A.3 that the conditions (1),
(2) and (3) are equivalent. By Theorem 4.3, the condition (2) is equivalent to the condition
(5). It also follows from Proposition A.2 and Theorem A.3 that the conditions (4), (5) and (6)
are equivalent.

(B) Suppose that H1 and H2 are P -K-equivalent. Then h1,v1 and h1,v2 are K-equivalent. By
Theorem 5.1, we have

K(x1(U), HS(x1, (u1, µ1)), v1) = K(x2(U), HS(x2, (u2, µ2)), v2).

On the other hand, we have (x−1
i (HS(xi, (ui, µi))), ui) = h−1

i,vi
(0). It follows that

(x−1
1 (HS(x1, (u1, µ1))), u1) and (x−1

2 (HS(x2, (u2, µ2))), u2)

are diffeomorphic as set germs because the K-equivalence preserves the zero level sets. �

For a submanifold germ x : (U, u0) −→ (Hn
+(−1),x(u0)), we call (x−1(HS(x, (u0, µ0))), u0)

the tangent hyperhorospherical indicatrix germ of x with respect to e(u0, µ0). By Theorem 5.2,
the diffeomorphism type of the tangent hyperhorospherical indicatrix germ is an invariant of
the A-classification among the horospherical hypersurface germs for generic submanifolds.

In the case when the corresponding Legendrian immersion Lx is Legendrian stable, we
have more detailed assertions. We now denote Q(x, (u0, µ0)) the local ring of the function germ
hv0 : (U, u0) −→ R, where v0 = x(u0) + e(u0, µ0). We remark that we can explicitly write the
local ring as follows:

Q(x, u0;µ0) =
C∞

u0
(U)

〈〈x(u),x(u0) + e(u0, µ0)〉 + 1〉C∞
u0

(U)
,
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where C∞
u0

(U) is the local ring of function germs at u0 with the unique maximal ideal Mu0(U).
We also denoteQ(x̄, (u0, µ0)) as the local ring of the function germ h̄v̄0 : (U×Sr, (u0, µ0)) −→ R,
where v̄0 = x̄(u0, µ0) + N(u0, µ0).

Theorem 5.3 Let xi : (U, ui) −→ (Hn
+(−1),xi(ui)) (i = 1, 2) be hypersurfaces germs such that

the corresponding Legendrian immersion germs Lxi
: (U ×Sr, (ui, µi)) −→ (PT ∗(LC∗

+), zi) are
Legendrian stable. Then the following conditions are equivalent:

(1) Horospherical hypersurface germs HSx1
and HSx2

are A-equivalent.

(2) Lx1 and Lx2 are Legendrian equivalent.

(3) H1 and H2 are P -K-equivalent.

(4) h1,v1 and h1,v2 are K-equivalent.

(5) K(x1(U), HS(x1, u1), v1) = K(x2(U), HS(x2, u2), v2).

(6) Q(x1, u1;µ) and Q(x2, u2;µ2) are isomorphic as R-algebras.

(7) Hyperbolic Gauss indicatrix germs LCM1 and LCM2 are A-equivalent.

(8) LCM1 and LCM2 are Legendrian equivalent.

(9) H̄1 and H̄2 are P -K-equivalent.

(10) h̄1,v1 and h̄1,v2 are K-equivalent.

(11) K(x̄1(U × Sr), HS(x̄1, (u1, µ1), v1) = K(x̄2(U × Sr), HS(x̄2, (u2, µ2)), v2).

(12) Q(x̄1, (u1, µ1)) and Q(x̄2, (u2, µ2)) are isomorphic as R-algebras.

Proof. We remark that if Lxi
is Legendrian stable then the singular set Σ(HSxi

) of the
corresponding horospherical hypersurface has no interior points as a subspace of U × Sr. By
Theorem 5.2, the conditions (1), (2), (3), (7), (8) and (9) are equivalent. It follows from
Propositions A.3 and A.4 that the conditions (2),(4) and (6) are equivalent. Since Lxi

and
LCMi

are Legendrian equivalent, LCMi
is also Legendrian stable. Therefore the conditions (8),

(10) and (12) are also equivalent. By Theorem 5.1, the conditions (4) and (5) (respectively,
(10) and (11)) are equivalent. �

In the next section, we will prove that the assumption of the theorem is generic in the case
when n ≤ 6. For general dimension, we need the topological theory (cf., Proposition A.5).

Theorem 5.4 Let xi : (U, ui) −→ (Hn
+(−1),xi(ui)) (i = 1, 2) be submanifold germs such that

the map germ given by πHi
: (H−1

i (vi), (ui,vi)) −→ (LC∗
+,vi) at any point ui ∈ U is an MT-

stable map germ, where Hi is the horospherical height function of xi and vi = xi(ui)+e(ui, µi).
If Q(x1, (u1, µ1)) and Q(x2, (u2, µ2)) are isomorphic as R-algebras, then HSx1 and HSx2 are
stratified equivalent as set germs.

By the above results, we can borrow some basic invariants from the singularity theory on
function germs. We need K-invariants for function germs. The local ring of a function germ is a
complete K-invariant for generic function germs. It is, however, not a numerical invariant. The
K-codimension (or, Tyurina number) of a function germ is a numerical K-invariant of function
germs [13]. We denote that

H-ord(x, (u0, µ0)) = dim
C∞

u0
(U)

〈〈x(u), v0〉 + 1, 〈xui
(u), v0〉〉C∞

u0

,

where v0 = x(u0) + e(u0, µ0). Usually H-ord(x, (u0, µ0)) is called the K-codimension of hv0 .
However, we call it the order of contact with the tangent hyperhorosphere at x(u0) with respect
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to e(u0, µ0). We also have the notion of corank of function germs.

H-corank(x, (u0, µ0)) = s− rank Hess(hv0(u0)).

By Proposition 3.7, x(u0) is a H(e(u0, µ0))-parabolic point if and only if

H-corank(x, (u0, µ0)) ≥ 1.

Moreover x(u0) is a e(u0, µ0)-horospherical point if and only if H-corank(x, (u0, µ0)) = s.

On the other hand, a function germ f : (Rn−1,a) −→ R has the Ak-type singularity if
f is K-equivalent to the germ ±u2

1 ± · · · ± u2
n−2 + uk+1

n−1. If H-corank(x, (u0, µ0)) = 1, the
horospherical height function hv0 has the Ak-type singularity at u0 in generic. In this case we
have H-ord(x, (u0, µ0)) = k. This number is equal to the order of contact in the classical sense
(cf., [2]). This is the reason why we call H-ord(x, (u0, µ0)) the order of contact with the tangent
hyperhorosphere with the polar vector v0 = x(u0) + e(u0, µ0) at x(u0).

6 Generic properties

In this section we consider generic properties of submanifolds in Hn
+(−1). The main tool is

a kind of transversality theorems. We consider the space of embeddings Emb (U,Hn
+(−1))

with Whitney C∞-topology for an open subset U ⊂ R
s. We also consider the function H :

Hn
+(−1)×LC∗

+ −→ R which is given in §5. We claim that Hu is a submersion for any u ∈ LC∗
+,

where Hu(v) = H(u, v). For any x ∈ Emb (U,Hn
+(−1)), we have H = H ◦ (x× idLC∗

+
). We also

have the �-jet extension
j�
1H : U × LC∗

+ −→ J �(U,R)

defined by j�
1H(u, v) = j�hv(u). We consider the trivialisation J �(U,R) ≡ U ×R× J �(s, 1). For

any submanifold Q ⊂ J �(s, 1), we denote that Q̃ = U × {0} × Q. Then we have the following
proposition as a corollary of Lemma 6 in Wassermann [21]. (See also Montaldi [18]).

Proposition 6.1 Let Q be a submanifold of J �(s, 1). Then the set

TQ = {x ∈ Emb (U,Hn
+(−1)) | j�

1H is transversal to Q̃ }
is a residual subset of Emb (U,Hn

+(−1)). If Q is a closed subset, then TQ is open.

On the other hand, we already have the canonical stratification A�
0(U,R) of J �(Rs,R)\W �(Rs,R)

(cf., the appendix). By the above proposition and arguments in the appendix, we have the fol-
lowing theorem.

Theorem 6.2 There exists an open dense subset O ⊂ Emb (U,Hn
+(−1)) such that for any

x ∈ O, the germ of the corresponding horospherical hypersurface HSx at each point is the
critical part of an MT-stable map germ.

In the case when n ≤ 6, for any x ∈ O, the germ of the Legendrian lift Lx of the hyperbolic
horospherical hypersurface HSx at each point is Legendrian stable.

We remark that we can also prove the multi-jet version of Proposition 6.1. As an application
of such a multi-jet transversality theorem, we can show that the horospherical hypersurface
HSx is the critical part of a (global) MT-stable map for a generic submanifold x : U −→
Hn

+(−1) (cf., Appendix). However, the arguments are rather tedious and we only consider local
phenomenon in this paper, so that we omit it.
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Appendix Generating families

In which we give a brief survey on the theory of Legendrian singularities mainly developed by
Arnol’d and Zakalyukin [1, 24, 25]. Let F : (Rk × R

n, 0) −→ (R, 0) be a function germ. We
say that F is a Morse family if the mapping

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R

n, 0) −→ (R × R
k, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × R
n, 0). In this case we have a

smooth (n−1)-dimensional submanifold Σ∗(F ) = ∆∗F−1(0) and a map germ ΦF : (Σ∗(F ), 0) −→
PT ∗

R
n defined by

ΦF (q, x) =

(
x, [

∂F

∂x1
(q, x) : · · · :

∂F

∂xn
(q, x)]

)
is a Legendrian immersion. Then we have the following fundamental theorem of the theory of
Legendrian singularities.

Proposition A.1 All Legendrian submanifold germs in PT ∗
R

n are constructed by the above
method.

We call F a generating family of ΦF . Therefore the wave front is

W (ΦF )=

{
x ∈ R

n |there exists q ∈ R
k such that F (q, x) =

∂F

∂q1
(q, x) = · · · =

∂F

∂qk
(q, x) = 0

}
.

We sometime denote DF = W (ΦF ) and call it the discriminant set of F.

We now introduce an equivalence relation among Legendrian immersion germs. Let i :
(L, p) ⊂ (PT ∗

R
n, p) and i′ : (L′, p′) ⊂ (PT ∗

R
n, p′) be Legendrian immersion germs. Then

we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT ∗

R
n, p) −→ (PT ∗

R
n, p′) such that H preserves fibres of π and that H(L) = L′. A

Legendrian immersion germ into PT ∗
R

n at a point is said to be Legendrian stable if for every
map with the given germ there is a neighbourhood in the space of Legendrian immersions (in
the Whitney C∞ topology) and a neighbourhood of the original point such that each Legendrian
immersion belonging to the first neighbourhood has in the second neighbourhood a point at
which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗
R

n, p) is uniquely determined on the regular part
of the wave front W (i), we have the following simple but significant property of Legendrian
immersion germs:

Proposition A.2 Let i : (L, p) ⊂ (PT ∗
R

n, p) and i′ : (L′, p′) ⊂ (PT ∗
R

n, p′) be Legendrian
immersion germs such that regular sets of π ◦ i, π ◦ i′ are dense respectively. Then i, i′ are
Legendrian equivalent if and only if wave front sets W (i),W (i′) are diffeomorphic as set germs.

This result has been firstly pointed out by Zakalyukin [25]. The assumption in the above
proposition is a generic condition for i, i′. Specially, if i, i′ are Legendrian stable, then these
satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote En the local ring of function germs (Rn, 0) −→ R with the unique maximal ideal
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Mn = {h ∈ En | h(0) = 0 }. Let F,G : (Rk×R
n, 0) −→ (R, 0) be function germs. We say that F

andG are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk×R
n, 0) −→ (Rk×R

n, 0)
of the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk×R

n, 0) such that Ψ∗(〈F 〉Ek+n
) = 〈G〉Ek+n

.
Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by Ψ∗(h) = h ◦ Ψ .

Let F : (Rk × R
3, 0) −→ (R, 0) a function germ. We say that F is a K-versal deformation

of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

〉
�

,

where

Te(K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek

.

(See [13].)

The main result in the theory of Legendrian singularities is the following:

Theorem A.3 Let Fi : (Rki × R
n, 0) −→ (R, 0) be Morse families (i = 1, 2). Then

(1) ΦF1 and ΦF2 are Legendrian equivalent if and only if F1, F2 are stably P -K-equivalent.

(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | R
k ×{0}. By the

uniqueness result of the K-versal deformation of a function germ, Proposition 5.2 and Theorem
5.3, we have the following classification result of Legendrian stable germs: For any map germ
f : (Rn, 0) −→ (Rp, 0), we define the local ring of f by Q(f) = En/f

∗(Mp)En.

Proposition A.4 Let Fi : (Rk × R
n, 0) −→ (R, 0) be Morse families (i = 1, 2) such that ΦFi

are Legendrian stable. Then the following conditions are equivalent.

(1) (W (ΦF1), 0) and (W (ΦF2), 0) are diffeomorphic as germs.

(2) ΦF1 and ΦF2 are Legendrian equivalent.

(3) Q(f1) and Q(f2) are isomorphic as R-algebras, where fi = Fi|Rk × {0}.
We have another characterization of K-versal deformations of function germs. Let J �(Rk,R)

be the �-jet bundle of n-variable functions which has the canonical decomposition: J �(Rk,R) ≡
R

k × R × J �(k, 1). For any Morse family F : (Rk × R
n, 0) −→ (R, 0), we define a map germ

j�
1F : (Rk × R

n, 0) −→ J �(Rk,R)

by j�
1F (q, x) = j�Fx(q), where Fx(q) = F (q, x). We denote K�(z) the K-orbit through z =

j�f(0) ∈ J �(k, 1). (cf., [13]). If f(q) = F (q,0) is �-determined relative to K, then F is a
K-versal deformation of f if and only if j�

1F is transversal to R
k × {0} × K�(z) (cf., [13])

We now consider the stratification of the �-jet space J �(Rk,R) such that the discriminant set
of K-versal deformations has the corresponding canonical stratification. By Theorem 5.3, such
a stratification should be K-invariant, where we have the K-action on J �(k, 1) (cf., [13, 14]). By
this reason, we use Mather’s canonical stratification here [6, 15]. Let A�(k, 1) be the canonical
stratification of J �(k, 1) \W �(k, 1), where

W �(k, 1) = {j�f(0) | dim�Ek/((TeK)(f) + M�
k) ≥ � }.

We now define the stratification A�
0(R

k,R) of J �(Rk,R) \W �(Rk,R) by

R
k × (R \ {0}) × (J �(k, 1) \W �(k, 1)), R

k × {0} × A�(k, 1),
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where W �(Rk,R) ≡ R
k ×R×W �(k, 1). In [23], Y.-H. Wan has shown that if j�

1F (0) /∈ W �(k, 1)
and j�

1F is transversal to A�
0(R

k,R) then πF : (F−1(0), 0) −→ (Rn, 0) is a MT-stable map
germ. (See also [8]). Here, we call a map germ MT-stable if it is transversal to the canonical
stratification of a jet space which is introduced in [6].

Proposition A.5 Let F,G : (Rk × R
n, 0) −→ (R, 0) be Morse families such that πF and πG

are MT-stable map germs. If Q(f) and Q(g) are isomorphic as R-algebras, then πF and πG are
topological equivalent. Moreover, in this case, DF and DG are stratified equivalent.
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