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Abstract. The spectra of the Toeplitz operators on the weighted Hardy space
Hp(Wdθ/2π) are studied. For example, the theorems of Brown-Halmos type and Hartman-
Wintner type are proved. These generalize results in the previous paper which were proved
for p = 2.
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§1. Introduction

Let m = dθ/2π be the normalized Lebesgue measure on the unit circle T and let
W be a non-negative integrable function on T which does not vanish identically. Suppose
1 ≤ p ≤ ∞. Let Lp(W ) = Lp(Wdm) and Lp(W ) = Lp when W ≡ 1. Let Hp(W ) denote
the closure in Lp(W ) of the set P of all analytic polynomials when p 6= ∞. We will
write Hp(W ) = Hp when W ≡ 1, and then this is a usual Hardy space. H∞ denotes the
weak ∗ closure of P in L∞. P denotes the projection from the set C of all trigonometric
polynomials to P . For 1 < p < ∞, P can be extended to a bounded map of Lp(W )
onto Hp(W ) if and only if W satisfies the condition (Ap) (see [3, Theorem 6.2 of Chapter
VI]). This is the well known theorem of Hunt, Muckenhoupt and Wheeden, which is a
generalization of the theorem of Helson and Szegő (see [3, Theorem 3.2 of Chapter IV]).

Assuming that a weight W satisfies the condition (Ap) for 1 < p <∞, we define

a Toeplitz operator TW,pφ on Hp(W ) as follows. For φ in L∞, suppose that

TW,pφ f = P (φf) (f ∈ Hp(W )).

If W ≡ 1, we will write TW,pφ = T pφ .

In this paper, we study the spectrum σ(TW,pφ ) of a Toeplitz operator TW,pφ . For any

weights W in (Ap) and for any φ in L∞, the symbol φ for invertible TW,pφ was completely
described by H.Widom, A.Devinatz and R.Rochberg (see Theorem WDR in this section).
This is one of our main tools. In the previous paper [7, (1) of Theorem 1], for p = 2 we
gave a generalization of a theorem of Brown and Halmos [2, Propsition 7.19] to arbitrary
weight in (A2). In §2 we generalize this theorem for arbitrary p. I.Spitkovsky [10] showed
that the set of all weights W for which σ(TW,pφ ) = σ(T pφ) for all φ in L∞ does not depend
on p. In §2 we give another proof of this result. In fact we describe such a set of weights
by using [4, Theorem 2.12]. This also generalizes (1) of Theorem 2 of the previous paper
[7].

When φ is a continuous function and W ≡ 1, the spectrum of T pφ was completely

described (cf. [2, Corollary 7.28]). In §3 we prove σ(TW,pφ ) = σ(T pφ) for any continuous
function φ whenever W satisfies the condition (Ap). In the previous paper [7, (2) of
Theorem 1], for p = 2 we gave a generalization of a theorem of Hartman and Wintner (cf.
[2, Theorem 7.20]) to arbitrary weight in (A2). In §3 we improve this theorem for p = 2
and we generalize this theorem for arbitrary p and arbitrary weight in (Ap). For each inner
function q, sing q denotes the subset of ∂D on which q can not be analytically extended.
For two inner functions q1 and q2, M.Lee and D.Sarason [5] showed that σ(Tφ) = D̄ if
φ = q̄1q2 and sing q1 6= sing q2.

For α = α1 + iα2 ∈ 6C and β = β1 + iβ2 ∈ 6C, put 〈α, β〉 = α1β1 + α2β2 and
θ(α, β) = arccos(〈α, β〉/|α||β|) for α 6= 0 and β 6= 0. Set

`+
α = {z ∈ 6C ; 〈z, α〉 ≥ 1} and `−α = {z ∈ 6C ; 〈z, α〉 ≤ 1}

and let E ijαβ denote `iα ∩ `jβ where i = + or − and j = + or −. For each pair (α, β)

6C = E++
αβ ∪ E+−

αβ ∪ E−+
αβ ∪ E−−αβ
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and if ` = −i and m = −j, then

(E `mαβ )c = 6C\E `mαβ ⊃ E ijαβ.

For any bounded subset E in 6C, there exists a pair (α, β) such that E ijαβ ⊇ E for some
(i, j). When 0 ≤ t <

6−
π/2, put

ht(E) =
⋂{

(E `mαβ )c ; E ijαβ ⊇ E and ` = −i, m = −j, |θ(α, β)| = π − 2t
}

for a subset E in 6C. If t = 0, then h0(E) is the closed convex hull of E. If E is a
simple set such that E = [a, b] or E = {z ∈ 6C ; |z| ≤ 1}, then we can describe ht(E) for
0 ≤ t <

6−
π/2.

If a weight W satifies the condition (Ap) then logW belongs to BMO and so there
exist two real valued function u and v in L∞R such that logW = u + ṽ where ṽ denotes
the harmonic conjugate with ṽ(0) = 0. For W = eu+ṽ, put

tW = ‖v‖′ = inf{‖v − s̃− a‖∞ ; s ∈ L∞R , a ∈ R}.

In the previous paper [7, (1) of Theorem 1], we showed that σ(TW,2φ ) ⊆ ht(R(φ)) for
t = tW . This implies a theorem of Brown and Halmos (cf. [2, Corollary 7.19]) for W ≡ 1,
that is, σ(T 2

φ) ⊆ h0(R(φ)). In this paper, we generalize this result for TW,pφ , that is, if

t =
π

2

(
1− 2

max(p, q)

)
+

2

p
tW then σ(TW,pφ ) ⊆ ht(R(φ)) because t = tW for p = 2.

In this paper, we use the following theorems about the invertibility of Toeplitz
operators on Hp(W ) or Hp. The first one is due to H.Widom, A.Devinatz and R.Rochberg
(cf. [1, Theorem 5.3], [6]). The second one is due to N.Krupnik (cf. [1, Theorem 5.22]).

Theorem WDR. Suppose 1 < p < ∞ and W = |h|p satisfies the condition
(Ap), where h is an outer function in Hp. Then the following conditions on φ and W are
equivalent.

(1) TW,pφ is an invertible operator on Hp(W ).

(2) φ = k(h̄0/h0)(h/h̄), where k is an invertible function in H∞ and h0 is an
outer funcction in Hp with |h0|p satisfying the condition (Ap).

(3) φ = γ exp(U − iṼ ), where γ is constant with |γ| = 1, U is a bounded real

function in L1 and W exp
(
p

2
V
)

satisfies (Ap).

Theorem K. Suppose 1 < p <∞ and 1/p+ 1/q = 1, and φ is a function in L∞.
The following are equivalent.

(1) Both T pφ and T qφ are invertible on Hp and Hq, respectively.
(2) T `φ is invertible for all ` with min{p, q} ≤ ` ≤ max{p, q}.
(3) φ = keU+iV , where k is an invertible function in H∞, U and V are bounded

real functions and ‖V ‖∞ < π/max{p, q}.
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In this paper, W ∈ (Ap) means that W satisfies the condition (Ap).

§2. Arbitrary symbols

Corollary 1 was proved in the previous paper [7, Theorem 1]. Corollary 2 was
proved for p ≥ 2 in [7, Theorem 3]. Corollaries 1 and 2 are just the generalizations of
a theorem of Brown and Halmos (cf. [2, Proposition 7.19]). Theorem 2 for p = 2 was
proved in [7, (1) of Theorem 2]. I.Spitkovsky [10] showed that the set of all weights W
for which σ(TWφ ) = σ(Tφ) for any φ in L∞ does not depend on p. Hence Theorem 2 for
1 < p <∞ follows. We give another proof.

Theorem 1. Suppose W satisfies the condition (Ap) ∩ (Aq) where 1 < p < ∞
and 1/p+ 1/q = 1, and t =

π

2

(
1− 2

max(p, q)

)
+

2

p
tW . If φ is a function in L∞, then

R(φ) ⊆ σ(TW,pφ ) ⊆ ht(R(φ)).

Proof. By Theorem WDR, it is clear that R(φ) ⊆ σ(TW,pφ ). We will show that

σ(TW,pφ ) ⊆ ht(R(φ)). Suppose λ /∈ ht(R(φ)). Then by definition λ ∈ ∪{(E `mαβ )0 ; E ijαβ ⊇
R(φ) and ` = −i, m = −j, |θ(α, β)| = π − 2t}. Then (φ − λ)/|φ − λ| = eisλ where
0 ≤ sλ ≤ π − 2t − 2ε a.e. or −π + 2t + 2ε ≤ sλ ≤ 0 a.e. for some ε > 0 Hence
|sλ − π

2
+ t + ε| ≤ π

2
− t − ε a.e. or |sλ + π

2
− t − ε| ≤ π

2
− t − ε a.e. Let W = |h|p and

hp = exp(u+ ṽ + i(ũ− v)). Then

φ− λ
|φ− λ|

h̄

h
= exp i(sλ +

2

p
(v − ũ))

and

‖sλ +
2

p
(v − ũ)‖′

= ‖sλ +
2

p
v‖′ ≤ π

2
− t− ε+

2

p
‖v‖′

=
π

2
− π

2
(1− 2

max(p, q)
)− 2

p
tW − ε+

2

p
tW =

π

max(p, q)
− ε.

By Theorem K, T pφ−λ
|φ−λ|

h̄
h

is invertible and so by Theorem WDR TW,pφ−λ is invertible. Thus

λ /∈ σ(TW,pφ ).

Corollary 1. Suppose W = eu+ṽ is a Helson-Szegő weight and t = tW . If φ is a
function in L∞, then R(φ) ⊆ σ(TW,2φ ) ⊆ ht(R(φ)).
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Corollary 2. Suppose W ≡ 1, 1 < p <∞ and 1/p+1/q = 1 and t = |p−2|π/2p.
If φ is a function in L∞, then R(φ) ⊆ σ(T pφ) ⊆ ht(R(φ)).

Proof. Since W ≡ 1, t =
π

2

(
1− 2

max(p, q)

)
. If p ≥ 2, then t =

π

2

(
1− 2

p

)
=

π(p− 2)

2p
. If 1 < p < 2, then t =

π

2

(
1− 2

q

)
=
π(2− p)

2p
because q =

p

p− 1
.

Theorem 2. Suppose W satisfies the condition (Ap) for some p with 1 < p <∞.

Then, tW = 0 if and only if σ(TW,pφ ) = σ(T pφ) for any φ in L∞.

Proof. Suppose that σ(TW,pφ ) = σ(T pφ) for any φ in L∞. If φ = h̄0/h0 and h0 is

an outer function with |h0|p ∈ (Ap), then T pφ is invertible and so TW,pφ is invertible. Put

h0 = exp
1

p
(u0 + ṽ0 + i(ũ0 − v0)) where u0 ∈ L∞R and v0 ∈ L∞R . Then

φ =
h̄0

h0

= exp i
2

p
(v0 − ũ0).

Since TW,pφ is invertible, by Theorem WDR W |h0|p = W exp(ṽ0 + u0) belongs to (Ap).
Thus W (Ap) ⊆ (Ap) and so by [4, Theorem 2.12] tW = 0.

Conversely if tW = 0 then logW belongs to the closure of L∞ in BMO. Hence
W (Ap) = (Ap) by [4, Theorem 2.12]. Let W = |h|p and h an outer function in Hp. By

Theorem WDR in Introduction, TW,pφ is invertible if and only if TW,pφ/|φ| is invertible and φ

is invertible in L∞. If TW,pφ/|φ| is invertible then by Theorem WDR

φ

|φ| =
h

h̄

h̄0

h0

for some outer function h0 with |h0|p ∈ (Ap). Since W (Ap) = (Ap), |h0|p|h|−p ∈ (Ap)

and φ = h0h−1/h0h
−1. This implies that T pφ/|φ| is invertible. Thus σ(TW,pφ ) ⊇ σ(T pφ) for

any φ in L∞. If T pφ/|φ| is invertible then φ/|φ| = h̄1/h1 for some outer function h1 with
|h1|p ∈ (Ap). Since W (Ap) = (Ap), |h|p|h1|p ∈ (Ap) and so

φ

|φ| =
h

h̄
· h1h

h1h
.

Hence TW,pφ/|φ| is invertible. Thus σ(TW,pφ ) ⊆ σ(T pφ) for any φ in L∞. Therefore σ(TW,pφ ) =

σ(T pφ) for any φ in L∞.

§3. Special symbols

In this section, we study the spectrum of a Toeplitz operator whose symbol is
continuous, real-valued or the quotient of two inner functions. Theorem 3 generalizes
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(3) of Theorem 3 in the previous paper [7]. Theorem 4 generalizes (2) of Theorem 1 in
[7]. Theorem 5 generalizes and improves Corollary 1 in [7]. Corollary 3 improves (3) of
Theorem 1 in [7].

Theorem 3. Let 1 < p <∞. If φ is a continuous function on T then

σ(TW,pφ ) = R(φ) ∪ {λ ∈ 6C ; it(φ, λ) 6= 0}

for any W in (Ap), where it(φ, λ) is the winding number of the curve determined by φ
with respect to λ.

Proof. If λ /∈ R(φ) and it(φ, λ) = 0 then (φ − λ)/|φ − λ| = eisλ where sλ ∈ C
and so W exp

p

2
(−s̃λ) belongs to (Ap). By Theorem WDR this implies that λ /∈ σ(TW,pφ ).

Conversely if λ /∈ σ(TW,pφ ) then λ /∈ R(φ). Hence

φ− λ
|φ− λ| = z`eisλ

where ` is an integer and sλ ∈ C. Since TW,pφ−λ is invertible, by Theorem WDR there exists
an outer function h1 such that

φ− λ
|φ− λ| =

h

h̄

h̄1

h1

where |h1|p ∈ (Ap) and W = |h|p ∈ (Ap) and h is an outer function. Then |h|−q ∈ (Aq)
where 1/p + 1/q = 1 and so f = h−1h1 belongs to H t for some t > 1. Put g2 =
exp(−sλ + isλ) then g ∈ ⋂

1≤s<∞
Hs and so gf belongs to H1. Similary we can show that

(gf)−1 belongs to H1. Then if ` ≥ 0 then z`gf = gf and z`(gf)2 is nonnegative in H1/2.
Hence ` = 0 because H1/2 does not contain any nonconstant nonnegative functions. If
` ≤ 0 then z̄`(gf)−2 is nonnegative in H1/2 and so ` = 0. Thus (φ− λ)/|φ− λ| = eisλ and
so λ /∈ σ(T pφ) because eisλ = g/g and |g−1|p ∈ (Ap).

Theorem 4. Suppose W satisfies the condition (Ap) ∩ (Aq) where 1 < p < ∞
and 1/p + 1/q = 1, and t =

π

2

(
1− 2

max(p, q)

)
+

2

p
tW . If φ is real valued, a = ess inf φ

and b = ess supφ, then

R(φ) ⊆ σ(TW,pφ ) ⊆ 4(c, r) ∩4(c̄, r)

where c =
a+ b

2
− ia− b

2
cos 2t and r = − a− b

2 sin 2t
. If tW = 0 then [a, b] ⊆ σ(TW,pφ ).

Proof. By Theorem 1, σ(TW,pφ ) ⊆ ht(R(φ)) ⊆ ht([a, b]) for t =
π

2

(
1− 2

max(p, q)

)

+
2

p
tW . It is elementary to see that ht([a, b]) ⊆ 4(c, r) ∩ 4(c̄, r). Suppose tW = 0.
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Then t =
π

2

(
1− 2

max(p, q)

)
and by Theorem 2 σ(TW,pφ ) = σ(T pφ). We will show that

[a, b] ⊆ σ(T pφ). Suppose λ ∈ [a, b] and λ /∈ R(φ), then ψ = (φ− λ)/|φ− λ| = 2χE − 1 for
some measurable set E in ∂D. If λ /∈ σ(T pφ), then by Theorem WDR there exists an outer

function h1 in Hp with h−1
1 in Hq such that ψ = h̄1/h1. Since T qψ = T q

ψ̄
is also invertible,

there exists an outer function h2 in Hq with h−1
2 in Hp such that ψ = h̄2/h2. Hence

h̄1

h1

=
h1

h̄1

=
h̄2

h2

=
h2

h̄2

because ψ is a real valued function. Hence h2
1 = h̄2

1 ∈ Hp/2 and h2
2 = h̄2

2 ∈ Hq/2.
Therefore h1 or h2 is constant because max(p/2, q/2) ≥ 1 and the only real function in
H1 is constant. Thus ψ is constant and this contradicts that φ is not constant. Thus
[a, b] ⊆ σ(T pφ).

For a weight W in (Ap) and a measurable set E, put

γ+(E,W, p) = sup{t > 0 ; W exp(tχ̃E) satisfies (Ap)}

and
γ−(E,W, p) = inf{t < 0 ; W exp(tχ̃E) satisfies (Ap)}.

Theorem 5. Let W satisfy the condition (Ap) and 1 < p < ∞. Suppose φ =
aχE + bχEc where a, b are real numbers and E is measurable set in ∂D with 0 < dθ(E) <
2π. Then

σ(TW,pφ ) = {λ ∈ 6C ; π ≥ Arg
a− λ
b− λ ≥

2

p
γ+(E,W, p)

or − π ≤ Arg
a− λ
b− λ ≤

2

p
γ−(E,W, p)}

where −π ≤ Argz ≤ π. In particular, σ(TW,pφ ) ⊇ [a, b].
Proof. If λ 6= a, b, and λ is a real number then

φ− λ
|φ− λ| =

a− λ
|a− λ|χE +

b− λ
|b− λ|χEc .

There exist a(λ) and b(λ) such that −π ≤ a(λ), b(λ) ≤ π and

a− λ
|a− λ| = eia(λ),

b− λ
|b− λ| = eib(λ).

Hence
φ− λ
|φ− λ| = exp i{(a(λ)− b(λ))χE + b(λ)}
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where 0 ≤ a(λ) − b(λ) ≤ π or −π ≤ a(λ) − b(λ) ≤ 0. If λ /∈ σ(TW,pφ ), then by Theorem

WDR W exp
{
p

2
(a(λ)− b(λ))χ̃E

}
belongs to (Ap). Hence

σ(TW,pφ ) ⊆
{
λ ∈ 6C ; π ≥ a(λ)− b(λ) ≥ 2

p
γ+(E,W, p)

}

⋃{
λ ∈ 6C ;

2

p
γ−(E,W, p) ≥ a(λ)− b(λ) ≥ −π

}
.

If π ≥ a(λ)− b(λ) >
2

p
γ+(E,W, p) or −π ≤ a(λ)− b(λ) <

2

p
γ−(E,W, p), then

W exp
{
p

2
(a(λ)− b(λ))χ̃E

}
does not belong to (Ap) and so λ ∈ σ(TW,pφ ). Since σ(TW,pφ ) is

closed,

σ(TW,pφ ) =

{
λ ∈ 6C ; π ≥ a(λ)− b(λ) ≥ 2

p
γ+(E,W, p)

}

⋂{
λ ∈ 6C ;

2

p
γ−(E,W, p) ≥ a(λ)− b(λ) ≥ −π

}
.

Lemma 1. For a measurable set E in T with 0 < m(E) < 1, ‖πχE − v‖′ ≥ π/2
for any v in L∞R with ‖v‖∞ < π/2.

Proof. Suppose φ = aχE + bχEc where a and b are real numbers, a 6= b and
0 < m(E) < 1. For W = eu+ṽ where u, v ∈ L∞R and ‖v‖∞ < π/2, σ(TW,2φ ) ⊇ [a, b] if
and only if ‖πχE − v‖′ ≥ π/2. This is proved in [7, Corollary 1]. Now Theorem 5 shows
Lemma 1.

Corollary 3. Suppose W satisfies the condition (A2). If φ is real valued, a =
ess inf φ and b = ess supφ then [a, b] ⊆ σ(TW,2φ ).

Proof. Since W ∈ (A2), W = eu+ṽ where u, v ∈ L∞R and ‖v‖∞ < π/2. For

λ ∈ [a, b] ∩R(φ)c,
φ− λ
|φ− λ| = ei` and ` = π(1− χE) for some measurable set E in T with

0 < m(E) < 1. Then, in [7, (3) of Theorem 1], it is proved that λ ∈ σ(TW,2φ ) if and only
if ‖πχE − v‖′ ≥ π/2. Now Lemma 1 implies this corollary.

Lemma 2. If q1 and q2 are inner functions and q̄1q2 = f/|f | = |g|/g where both
f and g are in ∩p>1/2H

p, then singq1 6= singq2.
Proof. See the proof of [8, Corollary 5].

Theorem 6. Suppose W satisfies the condition (Ap) where 1 < p < ∞. If

φ = q̄1q2 where q1 and q2 are inner functions with singq1 6= singq2 then σ(TW,pφ ) = D̄.
Proof. Suppose W = |h|p for some outer function in Hp. If λ ∈ D then

q̄1q2 − λ = q̄1(q2 − λq1) = q̄1q3k
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where q3 is inner and k is invertible in H∞. By the proof of [8, Theorem 2(2)] q̄2q3 =
f

|f | =
|g|
g

where both f and g are in H1. By Lemma 2 singq2 = singq3 and so singq1 6=
singq3. If λ /∈ σ(TW,pq̄1q2) then 0 /∈ σ(TW,pq̄1q3) because k is invertible in H∞. By Theorem WDR

q̄1q3 =
h

h̄

h̄0

h0

where h0 is an outer function in Hp with |h0|p ∈ (Ap). Hence q̄1q3 = f/|f | = |g|/g where
f = (h/h0)2 and g = (h0/h)2. Since |h|p and |h0|p are in (Ap), both f and g belong to

H1/2. This contradicts Lemma 2. Hence λ ∈ σ(TW,pq̄1q2) and so σ(TW,pq̄q2 ) = D̄.
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