Brown-Halmos Type Theorems Of Weighted Toeplitz Operators II
 By

Takahiko Nakazi*

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

2000 Mathematics Subject Classification : 47 B 35
Key words and phrases : Toeplitz operator, weighted Hardy space, spectrum

Abstract. The spectra of the Toeplitz operators on the weighted Hardy space $H^{p}(W d \theta / 2 \pi)$ are studied. For example, the theorems of Brown-Halmos type and HartmanWintner type are proved. These generalize results in the previous paper which were proved for $p=2$.

§1. Introduction

Let $m=d \theta / 2 \pi$ be the normalized Lebesgue measure on the unit circle T and let W be a non-negative integrable function on T which does not vanish identically. Suppose $1 \leq p \leq \infty$. Let $L^{p}(W)=L^{p}(W d m)$ and $L^{p}(W)=L^{p}$ when $W \equiv 1$. Let $H^{p}(W)$ denote the closure in $L^{p}(W)$ of the set \mathcal{P} of all analytic polynomials when $p \neq \infty$. We will write $H^{p}(W)=H^{p}$ when $W \equiv 1$, and then this is a usual Hardy space. H^{∞} denotes the weak $*$ closure of \mathcal{P} in L^{∞}. P denotes the projection from the set \mathcal{C} of all trigonometric polynomials to \mathcal{P}. For $1<p<\infty, P$ can be extended to a bounded map of $L^{p}(W)$ onto $H^{p}(W)$ if and only if W satisfies the condition $\left(A_{p}\right)$ (see [3, Theorem 6.2 of Chapter VI]). This is the well known theorem of Hunt, Muckenhoupt and Wheeden, which is a generalization of the theorem of Helson and Szegő (see [3, Theorem 3.2 of Chapter IV]).

Assuming that a weight W satisfies the condition $\left(A_{p}\right)$ for $1<p<\infty$, we define a Toeplitz operator $T_{\phi}^{W, p}$ on $H^{p}(W)$ as follows. For ϕ in L^{∞}, suppose that

$$
T_{\phi}^{W, p} f=P(\phi f) \quad\left(f \in H^{p}(W)\right) .
$$

If $W \equiv 1$, we will write $T_{\phi}^{W, p}=T_{\phi}^{p}$.
In this paper, we study the spectrum $\sigma\left(T_{\phi}^{W, p}\right)$ of a Toeplitz operator $T_{\phi}^{W, p}$. For any weights W in $\left(A_{p}\right)$ and for any ϕ in L^{∞}, the symbol ϕ for invertible $T_{\phi}^{W, p}$ was completely described by H.Widom, A.Devinatz and R.Rochberg (see Theorem WDR in this section). This is one of our main tools. In the previous paper [7, (1) of Theorem 1], for $p=2$ we gave a generalization of a theorem of Brown and Halmos [2, Propsition 7.19] to arbitrary weight in $\left(A_{2}\right)$. In $\S 2$ we generalize this theorem for arbitrary p. I.Spitkovsky [10] showed that the set of all weights W for which $\sigma\left(T_{\phi}^{W, p}\right)=\sigma\left(T_{\phi}^{p}\right)$ for all ϕ in L^{∞} does not depend on p. In $\S 2$ we give another proof of this result. In fact we describe such a set of weights by using [4, Theorem 2.12]. This also generalizes (1) of Theorem 2 of the previous paper [7].

When ϕ is a continuous function and $W \equiv 1$, the spectrum of T_{ϕ}^{p} was completely described (cf. [2, Corollary 7.28]). In $\S 3$ we prove $\sigma\left(T_{\phi}^{W, p}\right)=\sigma\left(T_{\phi}^{p}\right)$ for any continuous function ϕ whenever W satisfies the condition $\left(A_{p}\right)$. In the previous paper [7, (2) of Theorem 1], for $p=2$ we gave a generalization of a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]) to arbitrary weight in $\left(A_{2}\right)$. In $\S 3$ we improve this theorem for $p=2$ and we generalize this theorem for arbitrary p and arbitrary weight in $\left(A_{p}\right)$. For each inner function q, sing q denotes the subset of ∂D on which q can not be analytically extended. For two inner functions q_{1} and q_{2}, M.Lee and D.Sarason [5] showed that $\sigma\left(T_{\phi}\right)=\bar{D}$ if $\phi=\bar{q}_{1} q_{2}$ and $\operatorname{sing} q_{1} \neq \operatorname{sing} q_{2}$.

For $\alpha=\alpha_{1}+i \alpha_{2} \in \mathbb{C}$ and $\beta=\beta_{1}+i \beta_{2} \in \mathbb{C}$, put $\langle\alpha, \beta\rangle=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}$ and $\theta(\alpha, \beta)=\arccos (\langle\alpha, \beta\rangle /|\alpha||\beta|)$ for $\alpha \neq 0$ and $\beta \neq 0$. Set

$$
\ell_{\alpha}^{+}=\{z \in \mathbb{C} ;\langle z, \alpha\rangle \geq 1\} \text { and } \ell_{\alpha}^{-}=\{z \in \mathbb{C} ;\langle z, \alpha\rangle \leq 1\}
$$

and let $\mathcal{E}_{\alpha \beta}^{i j}$ denote $\ell_{\alpha}^{i} \cap \ell_{\beta}^{j}$ where $i=+$ or - and $j=+$ or - . For each pair (α, β)

$$
\mathbb{C}=\mathcal{E}_{\alpha \beta}^{++} \cup \mathcal{E}_{\alpha \beta}^{+-} \cup \mathcal{E}_{\alpha \beta}^{-+} \cup \mathcal{E}_{\alpha \beta}^{--}
$$

and if $\ell=-i$ and $m=-j$, then

$$
\overline{\left(\mathcal{E}_{\alpha \beta}^{\ell m}\right)^{c}}=\overline{C \backslash \mathcal{E}_{\alpha \beta}^{\ell m}} \supset \mathcal{E}_{\alpha \beta}^{i j} .
$$

For any bounded subset E in \mathbb{C}, there exists a pair (α, β) such that $\mathcal{E}_{\alpha \beta}^{i j} \supseteq E$ for some (i, j). When $0 \leq t \underset{\nrightarrow}{ } \pi / 2$, put

$$
h^{t}(E)=\bigcap\left\{\overline{\left.\mathcal{E}_{\alpha \beta}^{\ell m}\right)^{c}} ; \mathcal{E}_{\alpha \beta}^{i j} \supseteq E \text { and } \ell=-i, m=-j,|\theta(\alpha, \beta)|=\pi-2 t\right\}
$$

for a subset E in \mathbb{C}. If $t=0$, then $h^{0}(E)$ is the closed convex hull of E. If E is a simple set such that $E=[a, b]$ or $E=\{z \in \mathbb{C} ;|z| \leq 1\}$, then we can describe $h^{t}(E)$ for $0 \leq t \underset{\nrightarrow}{ } \pi / 2$.

If a weight W satifies the condition $\left(A_{p}\right)$ then $\log W$ belongs to BMO and so there exist two real valued function u and v in L_{R}^{∞} such that $\log W=u+\tilde{v}$ where \tilde{v} denotes the harmonic conjugate with $\tilde{v}(0)=0$. For $W=e^{u+\tilde{v}}$, put

$$
t_{W}=\|v\|^{\prime}=\inf \left\{\|v-\tilde{s}-a\|_{\infty} ; s \in L_{R}^{\infty}, a \in R\right\}
$$

In the previous paper [7, (1) of Theorem 1], we showed that $\sigma\left(T_{\phi}^{W, 2}\right) \subseteq h^{t}(R(\phi))$ for $t=t_{W}$. This implies a theorem of Brown and Halmos (cf. [2, Corollary 7.19]) for $W \equiv 1$, that is, $\sigma\left(T_{\phi}^{2}\right) \subseteq h^{0}(R(\phi))$. In this paper, we generalize this result for $T_{\phi}^{W, p}$, that is, if $t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)+\frac{2}{p} t_{W}$ then $\sigma\left(T_{\phi}^{W, p}\right) \subseteq h^{t}(R(\phi))$ because $t=t_{W}$ for $p=2$.

In this paper, we use the following theorems about the invertibility of Toeplitz operators on $H^{p}(W)$ or H^{p}. The first one is due to H.Widom, A.Devinatz and R.Rochberg (cf. [1, Theorem 5.3], [6]). The second one is due to N.Krupnik (cf. [1, Theorem 5.22]).

Theorem WDR. Suppose $1<p<\infty$ and $W=|h|^{p}$ satisfies the condition $\left(A_{p}\right)$, where h is an outer function in H^{p}. Then the following conditions on ϕ and W are equivalent.
(1) $T_{\phi}^{W, p}$ is an invertible operator on $H^{p}(W)$.
(2) $\phi=k\left(\bar{h}_{0} / h_{0}\right)(h / \bar{h})$, where k is an invertible function in H^{∞} and h_{0} is an outer funcction in H^{p} with $\left|h_{0}\right|^{p}$ satisfying the condition $\left(A_{p}\right)$.
(3) $\phi=\gamma \exp (U-i \tilde{V})$, where γ is constant with $|\gamma|=1, U$ is a bounded real function in L^{1} and $W \exp \left(\frac{p}{2} V\right)$ satisfies $\left(A_{p}\right)$.

Theorem K. Suppose $1<p<\infty$ and $1 / p+1 / q=1$, and ϕ is a function in L^{∞}. The following are equivalent.
(1) Both T_{ϕ}^{p} and T_{ϕ}^{q} are invertible on H^{p} and H^{q}, respectively.
(2) T_{ϕ}^{ℓ} is invertible for all ℓ with $\min \{p, q\} \leq \ell \leq \max \{p, q\}$.
(3) $\phi=k e^{U+i V}$, where k is an invertible function in H^{∞}, U and V are bounded real functions and $\|V\|_{\infty}<\pi / \max \{p, q\}$.

In this paper, $W \in\left(A_{p}\right)$ means that W satisfies the condition $\left(A_{p}\right)$.

§2. Arbitrary symbols

Corollary 1 was proved in the previous paper [7, Theorem 1]. Corollary 2 was proved for $p \geq 2$ in [7, Theorem 3]. Corollaries 1 and 2 are just the generalizations of a theorem of Brown and Halmos (cf. [2, Proposition 7.19]). Theorem 2 for $p=2$ was proved in [7, (1) of Theorem 2]. I.Spitkovsky [10] showed that the set of all weights W for which $\sigma\left(T_{\phi}^{W}\right)=\sigma\left(T_{\phi}\right)$ for any ϕ in L^{∞} does not depend on p. Hence Theorem 2 for $1<p<\infty$ follows. We give another proof.

Theorem 1. Suppose W satisfies the condition $\left(A_{p}\right) \cap\left(A_{q}\right)$ where $1<p<\infty$ and $1 / p+1 / q=1$, and $t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)+\frac{2}{p} t_{W}$. If ϕ is a function in L^{∞}, then

$$
\mathcal{R}(\phi) \subseteq \sigma\left(T_{\phi}^{W, p}\right) \subseteq h^{t}(\mathcal{R}(\phi))
$$

Proof. By Theorem WDR, it is clear that $\mathcal{R}(\phi) \subseteq \sigma\left(T_{\phi}^{W, p}\right)$. We will show that $\sigma\left(T_{\phi}^{W, p}\right) \subseteq h^{t}(\mathcal{R}(\phi))$. Suppose $\lambda \notin h^{t}(\mathcal{R}(\phi))$. Then by definition $\lambda \in \cup\left\{\left(\mathcal{E}_{\alpha \beta}^{\ell m}\right)^{0} ; \mathcal{E}_{\alpha \beta}^{i j} \supseteq\right.$ $\mathcal{R}(\phi)$ and $\ell=-i, m=-j,|\theta(\alpha, \beta)|=\pi-2 t\}$. Then $(\phi-\lambda) /|\phi-\lambda|=e^{i s_{\lambda}}$ where $0 \leq s_{\lambda} \leq \pi-2 t-2 \varepsilon$ a.e. or $-\pi+2 t+2 \varepsilon \leq s_{\lambda} \leq 0$ a.e. for some $\varepsilon>0$ Hence $\left|s_{\lambda}-\frac{\pi}{2}+t+\varepsilon\right| \leq \frac{\pi}{2}-t-\varepsilon$ a.e. or $\left|s_{\lambda}+\frac{\pi}{2}-t-\varepsilon\right| \leq \frac{\pi}{2}-t-\varepsilon$ a.e. Let $W=|h|^{p}$ and $h^{p}=\exp (u+\tilde{v}+i(\tilde{u}-v))$. Then

$$
\frac{\phi-\lambda}{|\phi-\lambda|} \frac{\bar{h}}{h}=\exp i\left(s_{\lambda}+\frac{2}{p}(v-\tilde{u})\right)
$$

and

$$
\begin{aligned}
\| s_{\lambda} & +\frac{2}{p}(v-\tilde{u}) \|^{\prime} \\
& =\left\|s_{\lambda}+\frac{2}{p} v\right\|^{\prime} \leq \frac{\pi}{2}-t-\varepsilon+\frac{2}{p}\|v\|^{\prime} \\
& =\frac{\pi}{2}-\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)-\frac{2}{p} t_{W}-\varepsilon+\frac{2}{p} t_{W}=\frac{\pi}{\max (p, q)}-\varepsilon
\end{aligned}
$$

By Theorem $K, T_{\frac{\phi-\lambda}{|\phi-\lambda|} \frac{\bar{\hbar}}{h}}^{p}$ is invertible and so by Theorem WDR $T_{\phi-\lambda}^{W, p}$ is invertible. Thus $\lambda \notin \sigma\left(T_{\phi}^{W, p}\right)$.

Corollary 1. Suppose $W=e^{u+\tilde{v}}$ is a Helson-Szegő weight and $t=t_{W}$. If ϕ is a function in L^{∞}, then $\mathcal{R}(\phi) \subseteq \sigma\left(T_{\phi}^{W, 2}\right) \subseteq h^{t}(\mathcal{R}(\phi))$.

Corollary 2. Suppose $W \equiv 1,1<p<\infty$ and $1 / p+1 / q=1$ and $t=|p-2| \pi / 2 p$. If ϕ is a function in L^{∞}, then $\mathcal{R}(\phi) \subseteq \sigma\left(T_{\phi}^{p}\right) \subseteq h^{t}(\mathcal{R}(\phi))$.

Proof. Since $W \equiv 1, t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)$. If $p \geq 2$, then $t=\frac{\pi}{2}\left(1-\frac{2}{p}\right)=$ $\frac{\pi(p-2)}{2 p}$. If $1<p<2$, then $t=\frac{\pi}{2}\left(1-\frac{2}{q}\right)=\frac{\pi(2-p)}{2 p}$ because $q=\frac{p}{p-1}$.

Theorem 2. Suppose W satisfies the condition $\left(A_{p}\right)$ for some p with $1<p<\infty$. Then, $t_{W}=0$ if and only if $\sigma\left(T_{\phi}^{W, p}\right)=\sigma\left(T_{\phi}^{p}\right)$ for any ϕ in L^{∞}.

Proof. Suppose that $\sigma\left(T_{\phi}^{W, p}\right)=\sigma\left(T_{\phi}^{p}\right)$ for any ϕ in L^{∞}. If $\phi=\bar{h}_{0} / h_{0}$ and h_{0} is an outer function with $\left|h_{0}\right|^{p} \in\left(A_{p}\right)$, then T_{ϕ}^{p} is invertible and so $T_{\phi}^{W, p}$ is invertible. Put $h_{0}=\exp \frac{1}{p}\left(u_{0}+\tilde{v}_{0}+i\left(\tilde{u}_{0}-v_{0}\right)\right)$ where $u_{0} \in L_{R}^{\infty}$ and $v_{0} \in L_{R}^{\infty}$. Then

$$
\phi=\frac{\bar{h}_{0}}{h_{0}}=\exp i \frac{2}{p}\left(v_{0}-\tilde{u}_{0}\right) .
$$

Since $T_{\phi}^{W, p}$ is invertible, by Theorem WDR $W\left|h_{0}\right|^{p}=W \exp \left(\tilde{v}_{0}+u_{0}\right)$ belongs to $\left(A_{p}\right)$. Thus $W\left(A_{p}\right) \subseteq\left(A_{p}\right)$ and so by [4, Theorem 2.12] $t_{W}=0$.

Conversely if $t_{W}=0$ then $\log W$ belongs to the closure of L^{∞} in BMO. Hence $W\left(A_{p}\right)=\left(A_{p}\right)$ by [4, Theorem 2.12]. Let $W=|h|^{p}$ and h an outer function in H^{p}. By Theorem WDR in Introduction, $T_{\phi}^{W, p}$ is invertible if and only if $T_{\phi /|\phi|}^{W, p}$ is invertible and ϕ is invertible in L^{∞}. If $T_{\phi /|\phi|}^{W, p}$ is invertible then by Theorem WDR

$$
\frac{\phi}{|\phi|}=\frac{h}{\bar{h}} \frac{\bar{h}_{0}}{h_{0}}
$$

for some outer function h_{0} with $\left|h_{0}\right|^{p} \in\left(A_{p}\right)$. Since $W\left(A_{p}\right)=\left(A_{p}\right),\left|h_{0}\right|^{p}|h|^{-p} \in\left(A_{p}\right)$ and $\phi=\overline{h_{0} h^{-1}} / h_{0} h^{-1}$. This implies that $T_{\phi /|\phi|}^{p}$ is invertible. Thus $\sigma\left(T_{\phi}^{W, p}\right) \supseteq \sigma\left(T_{\phi}^{p}\right)$ for any ϕ in L^{∞}. If $T_{\phi /|\phi|}^{p}$ is invertible then $\phi /|\phi|=\bar{h}_{1} / h_{1}$ for some outer function h_{1} with $\left|h_{1}\right|^{p} \in\left(A_{p}\right)$. Since $W\left(A_{p}\right)=\left(A_{p}\right),|h|^{p}\left|h_{1}\right|^{p} \in\left(A_{p}\right)$ and so

$$
\frac{\phi}{|\phi|}=\frac{h}{\bar{h}} \cdot \frac{\overline{h_{1} h}}{h_{1} h} .
$$

Hence $T_{\phi| | \phi \mid}^{W, p}$ is invertible. Thus $\sigma\left(T_{\phi}^{W, p}\right) \subseteq \sigma\left(T_{\phi}^{p}\right)$ for any ϕ in L^{∞}. Therefore $\sigma\left(T_{\phi}^{W, p}\right)=$ $\sigma\left(T_{\phi}^{p}\right)$ for any ϕ in L^{∞}.

§3. Special symbols

In this section, we study the spectrum of a Toeplitz operator whose symbol is continuous, real-valued or the quotient of two inner functions. Theorem 3 generalizes
(3) of Theorem 3 in the previous paper [7]. Theorem 4 generalizes (2) of Theorem 1 in [7]. Theorem 5 generalizes and improves Corollary 1 in [7]. Corollary 3 improves (3) of Theorem 1 in [7].

Theorem 3. Let $1<p<\infty$. If ϕ is a continuous function on T then

$$
\sigma\left(T_{\phi}^{W, p}\right)=\mathcal{R}(\phi) \cup\left\{\lambda \in \mathbb{C} ; i_{t}(\phi, \lambda) \neq 0\right\}
$$

for any W in $\left(A_{p}\right)$, where $i_{t}(\phi, \lambda)$ is the winding number of the curve determined by ϕ with respect to λ.

Proof. If $\lambda \notin \mathcal{R}(\phi)$ and $i_{t}(\phi, \lambda)=0$ then $(\phi-\lambda) /|\phi-\lambda|=e^{i s_{\lambda}}$ where $s_{\lambda} \in C$ and so $W \exp \frac{p}{2}\left(-\tilde{s}_{\lambda}\right)$ belongs to $\left(A_{p}\right)$. By Theorem WDR this implies that $\lambda \notin \sigma\left(T_{\phi}^{W, p}\right)$. Conversely if $\lambda \notin \sigma\left(T_{\phi}^{W, p}\right)$ then $\lambda \notin \mathcal{R}(\phi)$. Hence

$$
\frac{\phi-\lambda}{|\phi-\lambda|}=z^{\ell} e^{i s_{\lambda}}
$$

where ℓ is an integer and $s_{\lambda} \in C$. Since $T_{\phi-\lambda}^{W, p}$ is invertible, by Theorem WDR there exists an outer function h_{1} such that

$$
\frac{\phi-\lambda}{|\phi-\lambda|}=\frac{h \bar{h}_{1}}{\bar{h}} \frac{h_{1}}{}
$$

where $\left|h_{1}\right|^{p} \in\left(A_{p}\right)$ and $W=|h|^{p} \in\left(A_{p}\right)$ and h is an outer function. Then $|h|^{-q} \in\left(A_{q}\right)$ where $1 / p+1 / q=1$ and so $f=h^{-1} h_{1}$ belongs to H^{t} for some $t>1$. Put $g^{2}=$ $\exp \left(-s_{\lambda}+i s_{\lambda}\right)$ then $g \in \bigcap_{1 \leq s<\infty} H^{s}$ and so $g f$ belongs to H^{1}. Similary we can show that $(g f)^{-1}$ belongs to H^{1}. Then if $\ell \geq 0$ then $z^{\ell} g f=\overline{g f}$ and $z^{\ell}(g f)^{2}$ is nonnegative in $H^{1 / 2}$. Hence $\ell=0$ because $H^{1 / 2}$ does not contain any nonconstant nonnegative functions. If $\ell \leq 0$ then $\bar{z}^{\ell}(g f)^{-2}$ is nonnegative in $H^{1 / 2}$ and so $\ell=0$. Thus $(\phi-\lambda) /|\phi-\lambda|=e^{i s_{\lambda}}$ and so $\lambda \notin \sigma\left(T_{\phi}^{p}\right)$ because $e^{i s_{\lambda}}=g / \bar{g}$ and $\left|g^{-1}\right|^{p} \in\left(A_{p}\right)$.

Theorem 4. Suppose W satisfies the condition $\left(A_{p}\right) \cap\left(A_{q}\right)$ where $1<p<\infty$ and $1 / p+1 / q=1$, and $t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)+\frac{2}{p} t_{W}$. If ϕ is real valued, $a=\operatorname{ess} \inf \phi$ and $b=\operatorname{ess} \sup \phi$, then

$$
\mathcal{R}(\phi) \subseteq \sigma\left(T_{\phi}^{W, p}\right) \subseteq \triangle(c, r) \cap \triangle(\bar{c}, r)
$$

where $c=\frac{a+b}{2}-i \frac{a-b}{2} \cos 2 t$ and $r=-\frac{a-b}{2 \sin 2 t}$. If $t_{W}=0$ then $[a, b] \subseteq \sigma\left(T_{\phi}^{W, p}\right)$.
Proof. By Theorem $1, \sigma\left(T_{\phi}^{W, p}\right) \subseteq h^{t}(\mathcal{R}(\phi)) \subseteq h^{t}([a, b])$ for $t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)$ $+\frac{2}{p} t_{W}$. It is elementary to see that $h^{t}([a, b]) \subseteq \triangle(c, r) \cap \triangle(\bar{c}, r)$. Suppose $t_{W}=0$.

Then $t=\frac{\pi}{2}\left(1-\frac{2}{\max (p, q)}\right)$ and by Theorem $2 \sigma\left(T_{\phi}^{W, p}\right)=\sigma\left(T_{\phi}^{p}\right)$. We will show that $[a, b] \subseteq \sigma\left(T_{\phi}^{p}\right)$. Suppose $\lambda \in[a, b]$ and $\lambda \notin \mathcal{R}(\phi)$, then $\psi=(\phi-\lambda) /|\phi-\lambda|=2 \chi_{E}-1$ for some measurable set E in ∂D. If $\lambda \notin \sigma\left(T_{\phi}^{p}\right)$, then by Theorem WDR there exists an outer function h_{1} in H^{p} with h_{1}^{-1} in H^{q} such that $\psi=\bar{h}_{1} / h_{1}$. Since $T_{\psi}^{q}=T_{\bar{\psi}}^{q}$ is also invertible, there exists an outer function h_{2} in H^{q} with h_{2}^{-1} in H^{p} such that $\psi=\bar{h}_{2} / h_{2}$. Hence

$$
\frac{\bar{h}_{1}}{h_{1}}=\frac{h_{1}}{\bar{h}_{1}}=\frac{\bar{h}_{2}}{h_{2}}=\frac{h_{2}}{\bar{h}_{2}}
$$

because ψ is a real valued function. Hence $h_{1}^{2}=\bar{h}_{1}^{2} \in H^{p / 2}$ and $h_{2}^{2}=\bar{h}_{2}^{2} \in H^{q / 2}$. Therefore h_{1} or h_{2} is constant because $\max (p / 2, q / 2) \geq 1$ and the only real function in H^{1} is constant. Thus ψ is constant and this contradicts that ϕ is not constant. Thus $[a, b] \subseteq \sigma\left(T_{\phi}^{p}\right)$.

For a weight W in $\left(A_{p}\right)$ and a measurable set E, put

$$
\gamma_{+}(E, W, p)=\sup \left\{t>0 ; W \exp \left(t \tilde{\chi}_{E}\right) \text { satisfies }\left(A_{p}\right)\right\}
$$

and

$$
\gamma_{-}(E, W, p)=\inf \left\{t<0 ; W \exp \left(t \tilde{\chi}_{E}\right) \text { satisfies }\left(A_{p}\right)\right\} .
$$

Theorem 5. Let W satisfy the condition $\left(A_{p}\right)$ and $1<p<\infty$. Suppose $\phi=$ $a \chi_{E}+b \chi_{E^{c}}$ where a, b are real numbers and E is measurable set in ∂D with $0<d \theta(E)<$ 2π. Then

$$
\begin{aligned}
\sigma\left(T_{\phi}^{W, p}\right) & =\left\{\lambda \in \mathbb{C} ; \pi \geq \operatorname{Arg} \frac{a-\lambda}{b-\lambda} \geq \frac{2}{p} \gamma_{+}(E, W, p)\right. \\
\text { or }-\pi & \left.\leq \operatorname{Arg} \frac{a-\lambda}{b-\lambda} \leq \frac{2}{p} \gamma_{-}(E, W, p)\right\}
\end{aligned}
$$

where $-\pi \leq \operatorname{Arg} z \leq \pi$. In particular, $\sigma\left(T_{\phi}^{W, p}\right) \supseteq[a, b]$.
Proof. If $\lambda \neq a, b$, and λ is a real number then

$$
\frac{\phi-\lambda}{|\phi-\lambda|}=\frac{a-\lambda}{|a-\lambda|} \chi_{E}+\frac{b-\lambda}{|b-\lambda|} \chi_{E^{c}} .
$$

There exist $a(\lambda)$ and $b(\lambda)$ such that $-\pi \leq a(\lambda), b(\lambda) \leq \pi$ and

$$
\frac{a-\lambda}{|a-\lambda|}=e^{i a(\lambda)}, \frac{b-\lambda}{|b-\lambda|}=e^{i b(\lambda)}
$$

Hence

$$
\frac{\phi-\lambda}{|\phi-\lambda|}=\exp i\left\{(a(\lambda)-b(\lambda)) \chi_{E}+b(\lambda)\right\}
$$

where $0 \leq a(\lambda)-b(\lambda) \leq \pi$ or $-\pi \leq a(\lambda)-b(\lambda) \leq 0$. If $\lambda \notin \sigma\left(T_{\phi}^{W, p}\right)$, then by Theorem WDR $W \exp \left\{\frac{p}{2}(a(\lambda)-b(\lambda)) \tilde{\chi}_{E}\right\}$ belongs to $\left(A_{p}\right)$. Hence

$$
\begin{gathered}
\sigma\left(T_{\phi}^{W, p}\right) \subseteq\left\{\lambda \in \mathbb{C} ; \pi \geq a(\lambda)-b(\lambda) \geq \frac{2}{p} \gamma_{+}(E, W, p)\right\} \\
\bigcup\left\{\lambda \in \mathbb{C} ; \frac{2}{p} \gamma_{-}(E, W, p) \geq a(\lambda)-b(\lambda) \geq-\pi\right\}
\end{gathered}
$$

If $\pi \geq a(\lambda)-b(\lambda)>\frac{2}{p} \gamma_{+}(E, W, p)$ or $-\pi \leq a(\lambda)-b(\lambda)<\frac{2}{p} \gamma_{-}(E, W, p)$, then $W \exp \left\{\frac{p}{2}(a(\lambda)-b(\lambda)) \tilde{\chi}_{E}\right\}$ does not belong to $\left(A_{p}\right)$ and so $\lambda \in \sigma\left(T_{\phi}^{W, p}\right)$. Since $\sigma\left(T_{\phi}^{W, p}\right)$ is closed,

$$
\begin{gathered}
\sigma\left(T_{\phi}^{W, p}\right)=\left\{\lambda \in \mathbb{C} ; \pi \geq a(\lambda)-b(\lambda) \geq \frac{2}{p} \gamma_{+}(E, W, p)\right\} \\
\cap\left\{\lambda \in \mathbb{C} ; \frac{2}{p} \gamma_{-}(E, W, p) \geq a(\lambda)-b(\lambda) \geq-\pi\right\}
\end{gathered}
$$

Lemma 1. For a measurable set E in T with $0<m(E)<1,\left\|\pi \chi_{E}-v\right\|^{\prime} \geq \pi / 2$ for any v in L_{R}^{∞} with $\|v\|_{\infty}<\pi / 2$.

Proof. Suppose $\phi=a \chi_{E}+b \chi_{E^{c}}$ where a and b are real numbers, $a \neq b$ and $0<m(E)<1$. For $W=e^{u+\tilde{v}}$ where $u, v \in L_{R}^{\infty}$ and $\|v\|_{\infty}<\pi / 2, \sigma\left(T_{\phi}^{W, 2}\right) \supseteq[a, b]$ if and only if $\left\|\pi \chi_{E}-v\right\|^{\prime} \geq \pi / 2$. This is proved in [7, Corollary 1]. Now Theorem 5 shows Lemma 1.

Corollary 3. Suppose W satisfies the condition $\left(A_{2}\right)$. If ϕ is real valued, $a=$ essinf ϕ and $b=\operatorname{ess} \sup \phi$ then $[a, b] \subseteq \sigma\left(T_{\phi}^{W, 2}\right)$.

Proof. Since $W \in\left(A_{2}\right), W=e^{u+\tilde{v}}$ where $u, v \in L_{R}^{\infty}$ and $\|v\|_{\infty}<\pi / 2$. For $\lambda \in[a, b] \cap \mathcal{R}(\phi)^{c}, \frac{\phi-\lambda}{|\phi-\lambda|}=e^{i \ell}$ and $\ell=\pi\left(1-\chi_{E}\right)$ for some measurable set E in T with $0<m(E)<1$. Then, in [7, (3) of Theorem 1], it is proved that $\lambda \in \sigma\left(T_{\phi}^{W, 2}\right)$ if and only if $\left\|\pi \chi_{E}-v\right\|^{\prime} \geq \pi / 2$. Now Lemma 1 implies this corollary.

Lemma 2. If q_{1} and q_{2} are inner functions and $\bar{q}_{1} q_{2}=f /|f|=|g| / g$ where both f and g are in $\cap_{p>1 / 2} H^{p}$, then $\sin g q_{1} \neq \operatorname{sing} q_{2}$.

Proof. See the proof of [8, Corollary 5].
Theorem 6. Suppose W satisfies the condition $\left(A_{p}\right)$ where $1<p<\infty$. If $\phi=\bar{q}_{1} q_{2}$ where q_{1} and q_{2} are inner functions with $\sin g q_{1} \neq \sin g q_{2}$ then $\sigma\left(T_{\phi}^{W, p}\right)=\bar{D}$.

Proof. Suppose $W=|h|^{p}$ for some outer function in H^{p}. If $\lambda \in D$ then

$$
\bar{q}_{1} q_{2}-\lambda=\bar{q}_{1}\left(q_{2}-\lambda q_{1}\right)=\bar{q}_{1} q_{3} k
$$

where q_{3} is inner and k is invertible in H^{∞}. By the proof of [8, Theorem 2(2)] $\bar{q}_{2} q_{3}=$ $\frac{f}{|f|}=\frac{|g|}{g}$ where both f and g are in H^{1}. By Lemma $2 \operatorname{sing} q_{2}=\operatorname{sing} q_{3}$ and $\operatorname{so} \sin g q_{1} \neq$ $\operatorname{sing} q_{3}$. If $\lambda \notin \sigma\left(T_{\bar{q}_{1} q_{2}}^{W, p}\right)$ then $0 \notin \sigma\left(T_{\bar{q}_{1} q_{3}}^{W, p}\right)$ because k is invertible in H^{∞}. By Theorem WDR

$$
\bar{q}_{1} q_{3}=\frac{h}{\bar{h}} \frac{\bar{h}_{0}}{h_{0}}
$$

where h_{0} is an outer function in H^{p} with $\left|h_{0}\right|^{p} \in\left(A_{p}\right)$. Hence $\bar{q}_{1} q_{3}=f /|f|=|g| / g$ where $f=\left(h / h_{0}\right)^{2}$ and $g=\left(h_{0} / h\right)^{2}$. Since $|h|^{p}$ and $\left|h_{0}\right|^{p}$ are in $\left(A_{p}\right)$, both f and g belong to $H^{1 / 2}$. This contradicts Lemma 2. Hence $\lambda \in \sigma\left(T_{\bar{q}_{1} q_{2}}^{W, p}\right)$ and so $\sigma\left(T_{\bar{q} q_{2}}^{W, p}\right)=\bar{D}$.

Acknowledgement
I should like to thank Professor Kazuya Tachizawa for helpful comments on the paper of R.Johnson and C.J.Neugebauer.

References

1. A.Böttcher and B.Silbermann, Analysis Of Toeplitz Operators, Springer-Verlag
2. R.G.Douglas, Banach Algebra Techniques In Operator Theory (Academic Press, New York, 1972)
3. J.B.Garnett, Bounded analytic functions. Academic Press, New York, 1981.
4. R.Johnson and C.J.Neugebauer, Homeomorphisms preserving A_{p}, Revista Math. Iberoamericana 3(1987), 249-273.
5. M.Lee and D.E.Sarason, The spectra of some Toeplitz operators, J.Math.Anal.Appl. 33(1971), 529-543.
6. T.Nakazi, Toeplitz operators and weighted norm inequalities, Acta Sci. Math. (Szeged) 58(1993), 443-452.
7. T.Nakazi, Brown-Halmos type theorems of weighted Toeplitz operators, Canad.Math. Bull. 41(1998), 196-206.
8. T.Nakazi, The spectra of Toeplitz operators with unimodular symbols, Proc. Edinburgh Math.Soc. 41(1998), 133-139.
9. R.Rochberg, Toeplitz operators on weighted H^{p} spaces, Indiana Univ.Math.J. 26(1977), 291-298.
10. I.Spitkovsky, Multipliers that do not influence factorability, Math.Notes 27(1980), 145-149.
11. H.Widom, Toeplitz operators on H_{p}, Pacific J.Math. 19(1966), 573-582.

Takahiko Nakazi
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp

