Brown-Halmos Type Theorems Of Weighted Toeplitz Operators II

By

Takahiko Nakazi*

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

2000 Mathematics Subject Classification : 47 B 35 $\,$

Key words and phrases : Toeplitz operator, weighted Hardy space, spectrum

Abstract. The spectra of the Toeplitz operators on the weighted Hardy space $H^p(Wd\theta/2\pi)$ are studied. For example, the theorems of Brown-Halmos type and Hartman-Wintner type are proved. These generalize results in the previous paper which were proved for p = 2.

§1. Introduction

Let $m = d\theta/2\pi$ be the normalized Lebesgue measure on the unit circle T and let W be a non-negative integrable function on T which does not vanish identically. Suppose $1 \leq p \leq \infty$. Let $L^p(W) = L^p(Wdm)$ and $L^p(W) = L^p$ when $W \equiv 1$. Let $H^p(W)$ denote the closure in $L^p(W)$ of the set \mathcal{P} of all analytic polynomials when $p \neq \infty$. We will write $H^p(W) = H^p$ when $W \equiv 1$, and then this is a usual Hardy space. H^{∞} denotes the weak * closure of \mathcal{P} in L^{∞} . P denotes the projection from the set \mathcal{C} of all trigonometric polynomials to \mathcal{P} . For 1 , <math>P can be extended to a bounded map of $L^p(W)$ onto $H^p(W)$ if and only if W satisfies the condition (A_p) (see [3, Theorem 6.2 of Chapter VI]). This is the well known theorem of Hunt, Muckenhoupt and Wheeden, which is a generalization of the theorem of Helson and Szegő (see [3, Theorem 3.2 of Chapter IV]).

Assuming that a weight W satisfies the condition (A_p) for 1 , we define $a Toeplitz operator <math>T_{\phi}^{W,p}$ on $H^p(W)$ as follows. For ϕ in L^{∞} , suppose that

$$T_{\phi}^{W,p}f = P(\phi f) \quad (f \in H^p(W)).$$

If $W \equiv 1$, we will write $T_{\phi}^{W,p} = T_{\phi}^{p}$.

In this paper, we study the spectrum $\sigma(T_{\phi}^{W,p})$ of a Toeplitz operator $T_{\phi}^{W,p}$. For any weights W in (A_p) and for any ϕ in L^{∞} , the symbol ϕ for invertible $T_{\phi}^{W,p}$ was completely described by H.Widom, A.Devinatz and R.Rochberg (see Theorem WDR in this section). This is one of our main tools. In the previous paper [7, (1) of Theorem 1], for p = 2 we gave a generalization of a theorem of Brown and Halmos [2, Propsition 7.19] to arbitrary weight in (A_2) . In §2 we generalize this theorem for arbitrary p. I.Spitkovsky [10] showed that the set of all weights W for which $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^{p})$ for all ϕ in L^{∞} does not depend on p. In §2 we give another proof of this result. In fact we describe such a set of weights by using [4, Theorem 2.12]. This also generalizes (1) of Theorem 2 of the previous paper [7].

When ϕ is a continuous function and $W \equiv 1$, the spectrum of T_{ϕ}^{p} was completely described (cf. [2, Corollary 7.28]). In §3 we prove $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^{p})$ for any continuous function ϕ whenever W satisfies the condition (A_{p}) . In the previous paper [7, (2) of Theorem 1], for p = 2 we gave a generalization of a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]) to arbitrary weight in (A_2) . In §3 we improve this theorem for p = 2and we generalize this theorem for arbitrary p and arbitrary weight in (A_p) . For each inner function q, sing q denotes the subset of ∂D on which q can not be analytically extended. For two inner functions q_1 and q_2 , M.Lee and D.Sarason [5] showed that $\sigma(T_{\phi}) = \overline{D}$ if $\phi = \overline{q}_1 q_2$ and sing $q_1 \neq \text{sing } q_2$.

For $\alpha = \alpha_1 + i\alpha_2 \in \mathcal{C}$ and $\beta = \beta_1 + i\beta_2 \in \mathcal{C}$, put $\langle \alpha, \beta \rangle = \alpha_1\beta_1 + \alpha_2\beta_2$ and $\theta(\alpha, \beta) = \arccos(\langle \alpha, \beta \rangle / |\alpha| |\beta|)$ for $\alpha \neq 0$ and $\beta \neq 0$. Set

$$\ell_{\alpha}^{+} = \{ z \in \mathscr{C} \ ; \ \langle z, \alpha \rangle \geq 1 \} \text{ and } \ell_{\alpha}^{-} = \{ z \in \mathscr{L} \ ; \ \langle z, \alpha \rangle \leq 1 \}$$

and let $\mathcal{E}_{\alpha\beta}^{ij}$ denote $\ell_{\alpha}^{i} \cap \ell_{\beta}^{j}$ where i = + or - and j = + or -. For each pair (α, β)

$$\mathscr{L} = \mathcal{E}_{\alpha\beta}^{++} \cup \mathcal{E}_{\alpha\beta}^{+-} \cup \mathcal{E}_{\alpha\beta}^{-+} \cup \mathcal{E}_{\alpha\beta}^{--}$$

and if $\ell = -i$ and m = -j, then

$$\overline{(\mathcal{E}_{\alpha\beta}^{\ell m})^c} = \overline{\mathscr{C} \backslash \mathcal{E}_{\alpha\beta}^{\ell m}} \supset \mathcal{E}_{\alpha\beta}^{ij}$$

For any bounded subset E in \mathcal{L} , there exists a pair (α, β) such that $\mathcal{E}_{\alpha\beta}^{ij} \supseteq E$ for some (i, j). When $0 \le t < \pi/2$, put

$$h^{t}(E) = \bigcap \left\{ (\overline{\mathcal{E}_{\alpha\beta}^{\ell m}})^{c} ; \ \mathcal{E}_{\alpha\beta}^{ij} \supseteq E \text{ and } \ell = -i, \ m = -j, |\theta(\alpha, \beta)| = \pi - 2t \right\}$$

for a subset E in \mathcal{O} . If t = 0, then $h^0(E)$ is the closed convex hull of E. If E is a simple set such that E = [a, b] or $E = \{z \in \mathcal{O} ; |z| \le 1\}$, then we can describe $h^t(E)$ for $0 \le t \le \pi/2$.

If a weight W satisfies the condition (A_p) then $\log W$ belongs to BMO and so there exist two real valued function u and v in L_R^{∞} such that $\log W = u + \tilde{v}$ where \tilde{v} denotes the harmonic conjugate with $\tilde{v}(0) = 0$. For $W = e^{u+\tilde{v}}$, put

$$t_W = \|v\|' = \inf\{\|v - \tilde{s} - a\|_{\infty} ; s \in L^{\infty}_R, a \in R\}.$$

In the previous paper [7, (1) of Theorem 1], we showed that $\sigma(T_{\phi}^{W,2}) \subseteq h^t(R(\phi))$ for $t = t_W$. This implies a theorem of Brown and Halmos (cf. [2, Corollary 7.19]) for $W \equiv 1$, that is, $\sigma(T_{\phi}^2) \subseteq h^0(R(\phi))$. In this paper, we generalize this result for $T_{\phi}^{W,p}$, that is, if $t = \frac{\pi}{2} \left(1 - \frac{2}{\max(p,q)} \right) + \frac{2}{p} t_W$ then $\sigma(T_{\phi}^{W,p}) \subseteq h^t(R(\phi))$ because $t = t_W$ for p = 2.

In this paper, we use the following theorems about the invertibility of Toeplitz operators on $H^p(W)$ or H^p . The first one is due to H.Widom, A.Devinatz and R.Rochberg (cf. [1, Theorem 5.3], [6]). The second one is due to N.Krupnik (cf. [1, Theorem 5.22]).

Theorem WDR. Suppose $1 and <math>W = |h|^p$ satisfies the condition (A_p) , where h is an outer function in H^p . Then the following conditions on ϕ and W are equivalent.

(1) $T_{\phi}^{W,p}$ is an invertible operator on $H^{p}(W)$.

(2) $\phi = k(\bar{h}_0/h_0)(h/\bar{h})$, where k is an invertible function in H^{∞} and h_0 is an outer function in H^p with $|h_0|^p$ satisfying the condition (A_p) .

(3) $\phi = \gamma \exp(U - i\tilde{V})$, where γ is constant with $|\gamma| = 1$, U is a bounded real function in L^1 and $W \exp\left(\frac{p}{2}V\right)$ satisfies (A_p) .

Theorem K. Suppose 1 and <math>1/p + 1/q = 1, and ϕ is a function in L^{∞} . The following are equivalent.

(1) Both T^p_{ϕ} and T^q_{ϕ} are invertible on H^p and H^q , respectively.

(2) T_{ϕ}^{ℓ} is invertible for all ℓ with $\min\{p,q\} \leq \ell \leq \max\{p,q\}$.

(3) $\phi = ke^{U+iV}$, where k is an invertible function in H^{∞} , U and V are bounded real functions and $||V||_{\infty} < \pi/\max\{p,q\}$.

In this paper, $W \in (A_p)$ means that W satisfies the condition (A_p) .

§2. Arbitrary symbols

Corollary 1 was proved in the previous paper [7, Theorem 1]. Corollary 2 was proved for $p \ge 2$ in [7, Theorem 3]. Corollaries 1 and 2 are just the generalizations of a theorem of Brown and Halmos (cf. [2, Proposition 7.19]). Theorem 2 for p = 2 was proved in [7, (1) of Theorem 2]. I.Spitkovsky [10] showed that the set of all weights Wfor which $\sigma(T_{\phi}^W) = \sigma(T_{\phi})$ for any ϕ in L^{∞} does not depend on p. Hence Theorem 2 for 1 follows. We give another proof.

Theorem 1. Suppose W satisfies the condition $(A_p) \cap (A_q)$ where 1and <math>1/p + 1/q = 1, and $t = \frac{\pi}{2} \left(1 - \frac{2}{\max(p,q)} \right) + \frac{2}{p} t_W$. If ϕ is a function in L^{∞} , then $\mathcal{R}(\phi) \subseteq \sigma(T_{\phi}^{W,p}) \subseteq h^t(\mathcal{R}(\phi)).$

Proof. By Theorem WDR, it is clear that $\mathcal{R}(\phi) \subseteq \sigma(T_{\phi}^{W,p})$. We will show that $\sigma(T_{\phi}^{W,p}) \subseteq h^t(\mathcal{R}(\phi))$. Suppose $\lambda \notin h^t(\mathcal{R}(\phi))$. Then by definition $\lambda \in \cup\{(\mathcal{E}_{\alpha\beta}^{\ell m})^0 ; \mathcal{E}_{\alpha\beta}^{ij} \supseteq \mathcal{R}(\phi)$ and $\ell = -i, \ m = -j, \ |\theta(\alpha, \beta)| = \pi - 2t\}$. Then $(\phi - \lambda)/|\phi - \lambda| = e^{is_{\lambda}}$ where $0 \leq s_{\lambda} \leq \pi - 2t - 2\varepsilon$ a.e. or $-\pi + 2t + 2\varepsilon \leq s_{\lambda} \leq 0$ a.e. for some $\varepsilon > 0$ Hence $|s_{\lambda} - \frac{\pi}{2} + t + \varepsilon| \leq \frac{\pi}{2} - t - \varepsilon$ a.e. or $|s_{\lambda} + \frac{\pi}{2} - t - \varepsilon| \leq \frac{\pi}{2} - t - \varepsilon$ a.e. Let $W = |h|^p$ and $h^p = \exp(u + \tilde{v} + i(\tilde{u} - v))$. Then

$$\frac{\phi - \lambda}{|\phi - \lambda|} \,\frac{\bar{h}}{h} = \exp i(s_{\lambda} + \frac{2}{p}(v - \tilde{u}))$$

and

$$||s_{\lambda} + \frac{2}{p}(v - \tilde{u})||'$$

= $||s_{\lambda} + \frac{2}{p}v||' \le \frac{\pi}{2} - t - \varepsilon + \frac{2}{p}||v||'$
= $\frac{\pi}{2} - \frac{\pi}{2}(1 - \frac{2}{\max(p,q)}) - \frac{2}{p}t_{W} - \varepsilon + \frac{2}{p}t_{W} = \frac{\pi}{\max(p,q)} - \varepsilon$

By Theorem K, $T^p_{\frac{\phi-\lambda}{|\phi-\lambda|}\frac{\bar{h}}{\bar{h}}}$ is invertible and so by Theorem WDR $T^{W,p}_{\phi-\lambda}$ is invertible. Thus $\lambda \notin \sigma(T^{W,p}_{\phi})$.

Corollary 1. Suppose $W = e^{u+\tilde{v}}$ is a Helson-Szegő weight and $t = t_W$. If ϕ is a function in L^{∞} , then $\mathcal{R}(\phi) \subseteq \sigma(T_{\phi}^{W,2}) \subseteq h^t(\mathcal{R}(\phi))$.

Corollary 2. Suppose $W \equiv 1$, 1 and <math>1/p + 1/q = 1 and $t = |p-2|\pi/2p$. If ϕ is a function in L^{∞} , then $\mathcal{R}(\phi) \subseteq \sigma(T^p_{\phi}) \subseteq h^t(\mathcal{R}(\phi))$.

Proof. Since
$$W \equiv 1$$
, $t = \frac{\pi}{2} \left(1 - \frac{2}{\max(p,q)} \right)$. If $p \ge 2$, then $t = \frac{\pi}{2} \left(1 - \frac{2}{p} \right) = \frac{\pi(p-2)}{2p}$. If $1 , then $t = \frac{\pi}{2} \left(1 - \frac{2}{q} \right) = \frac{\pi(2-p)}{2p}$ because $q = \frac{p}{p-1}$.$

Theorem 2. Suppose W satisfies the condition (A_p) for some p with 1 . $Then, <math>t_W = 0$ if and only if $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^p)$ for any ϕ in L^{∞} . Proof. Suppose that $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^p)$ for any ϕ in L^{∞} . If $\phi = \bar{h}_0/h_0$ and h_0 is

Proof. Suppose that $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^{p})$ for any ϕ in L^{∞} . If $\phi = \bar{h}_{0}/h_{0}$ and h_{0} is an outer function with $|h_{0}|^{p} \in (A_{p})$, then T_{ϕ}^{p} is invertible and so $T_{\phi}^{W,p}$ is invertible. Put $h_{0} = \exp \frac{1}{p}(u_{0} + \tilde{v}_{0} + i(\tilde{u}_{0} - v_{0}))$ where $u_{0} \in L_{R}^{\infty}$ and $v_{0} \in L_{R}^{\infty}$. Then

$$\phi = \frac{\bar{h}_0}{h_0} = \exp i\frac{2}{p}(v_0 - \tilde{u}_0).$$

Since $T_{\phi}^{W,p}$ is invertible, by Theorem WDR $W|h_0|^p = W \exp(\tilde{v}_0 + u_0)$ belongs to (A_p) . Thus $W(A_p) \subseteq (A_p)$ and so by [4, Theorem 2.12] $t_W = 0$.

Conversely if $t_W = 0$ then $\log W$ belongs to the closure of L^{∞} in BMO. Hence $W(A_p) = (A_p)$ by [4, Theorem 2.12]. Let $W = |h|^p$ and h an outer function in H^p . By Theorem WDR in Introduction, $T_{\phi}^{W,p}$ is invertible if and only if $T_{\phi/|\phi|}^{W,p}$ is invertible and ϕ is invertible in L^{∞} . If $T_{\phi/|\phi|}^{W,p}$ is invertible then by Theorem WDR

$$\frac{\phi}{|\phi|} = \frac{h}{\bar{h}} \frac{h_0}{h_0}$$

for some outer function h_0 with $|h_0|^p \in (A_p)$. Since $W(A_p) = (A_p)$, $|h_0|^p |h|^{-p} \in (A_p)$ and $\phi = \overline{h_0 h^{-1}} / h_0 h^{-1}$. This implies that $T^p_{\phi/|\phi|}$ is invertible. Thus $\sigma(T^{W,p}_{\phi}) \supseteq \sigma(T^p_{\phi})$ for any ϕ in L^{∞} . If $T^p_{\phi/|\phi|}$ is invertible then $\phi/|\phi| = \overline{h_1}/h_1$ for some outer function h_1 with $|h_1|^p \in (A_p)$. Since $W(A_p) = (A_p)$, $|h|^p |h_1|^p \in (A_p)$ and so

$$\frac{\phi}{|\phi|} = \frac{h}{\bar{h}} \cdot \frac{\overline{h_1 h}}{h_1 h} \quad .$$

Hence $T^{W,p}_{\phi/|\phi|}$ is invertible. Thus $\sigma(T^{W,p}_{\phi}) \subseteq \sigma(T^p_{\phi})$ for any ϕ in L^{∞} . Therefore $\sigma(T^{W,p}_{\phi}) = \sigma(T^p_{\phi})$ for any ϕ in L^{∞} .

§3. Special symbols

In this section, we study the spectrum of a Toeplitz operator whose symbol is continuous, real-valued or the quotient of two inner functions. Theorem 3 generalizes (3) of Theorem 3 in the previous paper [7]. Theorem 4 generalizes (2) of Theorem 1 in [7]. Theorem 5 generalizes and improves Corollary 1 in [7]. Corollary 3 improves (3) of Theorem 1 in [7].

Theorem 3. Let $1 . If <math>\phi$ is a continuous function on T then

$$\sigma(T_{\phi}^{W,p}) = \mathcal{R}(\phi) \cup \{\lambda \in \mathscr{O} \ ; \ i_t(\phi,\lambda) \neq 0\}$$

for any W in (A_p) , where $i_t(\phi, \lambda)$ is the winding number of the curve determined by ϕ with respect to λ .

Proof. If $\lambda \notin \mathcal{R}(\phi)$ and $i_t(\phi, \lambda) = 0$ then $(\phi - \lambda)/|\phi - \lambda| = e^{is_\lambda}$ where $s_\lambda \in C$ and so $W \exp \frac{p}{2}(-\tilde{s}_\lambda)$ belongs to (A_p) . By Theorem WDR this implies that $\lambda \notin \sigma(T_{\phi}^{W,p})$. Conversely if $\lambda \notin \sigma(T_{\phi}^{W,p})$ then $\lambda \notin \mathcal{R}(\phi)$. Hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} = z^{\ell} e^{is_{\lambda}}$$

where ℓ is an integer and $s_{\lambda} \in C$. Since $T_{\phi-\lambda}^{W,p}$ is invertible, by Theorem WDR there exists an outer function h_1 such that

$$\frac{\phi - \lambda}{|\phi - \lambda|} = \frac{h}{\bar{h}} \frac{h_1}{h_1}$$

where $|h_1|^p \in (A_p)$ and $W = |h|^p \in (A_p)$ and h is an outer function. Then $|h|^{-q} \in (A_q)$ where 1/p + 1/q = 1 and so $f = h^{-1}h_1$ belongs to H^t for some t > 1. Put $g^2 = \exp(-s_{\lambda} + is_{\lambda})$ then $g \in \bigcap_{1 \leq s < \infty} H^s$ and so gf belongs to H^1 . Similarly we can show that $(gf)^{-1}$ belongs to H^1 . Then if $\ell \geq 0$ then $z^{\ell}gf = \overline{gf}$ and $z^{\ell}(gf)^2$ is nonnegative in $H^{1/2}$. Hence $\ell = 0$ because $H^{1/2}$ does not contain any nonconstant nonnegative functions. If $\ell \leq 0$ then $\overline{z}^{\ell}(gf)^{-2}$ is nonnegative in $H^{1/2}$ and so $\ell = 0$. Thus $(\phi - \lambda)/|\phi - \lambda| = e^{is_{\lambda}}$ and so $\lambda \notin \sigma(T_{\phi}^p)$ because $e^{is_{\lambda}} = g/\overline{g}$ and $|g^{-1}|^p \in (A_p)$.

Theorem 4. Suppose W satisfies the condition $(A_p) \cap (A_q)$ where 1and <math>1/p + 1/q = 1, and $t = \frac{\pi}{2} \left(1 - \frac{2}{\max(p,q)} \right) + \frac{2}{p} t_W$. If ϕ is real valued, $a = \text{ess inf } \phi$ and $b = \text{ess sup } \phi$, then

$$\mathcal{R}(\phi) \subseteq \sigma(T_{\phi}^{W,p}) \subseteq \triangle(c,r) \cap \triangle(\bar{c},r)$$

where $c = \frac{a+b}{2} - i\frac{a-b}{2}\cos 2t$ and $r = -\frac{a-b}{2\sin 2t}$. If $t_W = 0$ then $[a,b] \subseteq \sigma(T_{\phi}^{W,p})$. Proof. By Theorem 1, $\sigma(T_{\phi}^{W,p}) \subseteq h^t(\mathcal{R}(\phi)) \subseteq h^t([a,b])$ for $t = \frac{\pi}{2}\left(1 - \frac{2}{\max(p,q)}\right)$ $+ \frac{2}{p}t_W$. It is elementary to see that $h^t([a,b]) \subseteq \Delta(c,r) \cap \Delta(\bar{c},r)$. Suppose $t_W = 0$. Then $t = \frac{\pi}{2} \left(1 - \frac{2}{\max(p,q)} \right)$ and by Theorem 2 $\sigma(T_{\phi}^{W,p}) = \sigma(T_{\phi}^{p})$. We will show that $[a,b] \subseteq \sigma(T_{\phi}^{p})$. Suppose $\lambda \in [a,b]$ and $\lambda \notin \mathcal{R}(\phi)$, then $\psi = (\phi - \lambda)/|\phi - \lambda| = 2\chi_{E} - 1$ for some measurable set E in ∂D . If $\lambda \notin \sigma(T_{\phi}^{p})$, then by Theorem WDR there exists an outer function h_{1} in H^{p} with h_{1}^{-1} in H^{q} such that $\psi = \bar{h}_{1}/h_{1}$. Since $T_{\psi}^{q} = T_{\psi}^{q}$ is also invertible, there exists an outer function h_{2} in H^{q} with h_{2}^{-1} in H^{p} such that $\psi = \bar{h}_{2}/h_{2}$. Hence

$$\frac{\bar{h}_1}{\bar{h}_1} = \frac{\bar{h}_1}{\bar{h}_1} = \frac{\bar{h}_2}{\bar{h}_2} = \frac{\bar{h}_2}{\bar{h}_2}$$

because ψ is a real valued function. Hence $h_1^2 = \bar{h}_1^2 \in H^{p/2}$ and $h_2^2 = \bar{h}_2^2 \in H^{q/2}$. Therefore h_1 or h_2 is constant because $\max(p/2, q/2) \ge 1$ and the only real function in H^1 is constant. Thus ψ is constant and this contradicts that ϕ is not constant. Thus $[a, b] \subseteq \sigma(T_{\phi}^p)$.

For a weight W in (A_p) and a measurable set E, put

$$\gamma_+(E, W, p) = \sup\{t > 0 ; W \exp(t\tilde{\chi}_E) \text{ satisfies } (A_p)\}$$

and

$$\gamma_{-}(E, W, p) = \inf\{t < 0 ; W \exp(t\tilde{\chi}_E) \text{ satisfies } (A_p)\}$$

Theorem 5. Let W satisfy the condition (A_p) and $1 . Suppose <math>\phi = a\chi_E + b\chi_{E^c}$ where a, b are real numbers and E is measurable set in ∂D with $0 < d\theta(E) < 2\pi$. Then

$$\sigma(T_{\phi}^{W,p}) = \{\lambda \in \mathscr{L} ; \pi \ge \operatorname{Arg} \frac{a-\lambda}{b-\lambda} \ge \frac{2}{p}\gamma_{+}(E,W,p)$$

or $-\pi \le \operatorname{Arg} \frac{a-\lambda}{b-\lambda} \le \frac{2}{p}\gamma_{-}(E,W,p)\}$

where $-\pi \leq \operatorname{Arg} z \leq \pi$. In particular, $\sigma(T_{\phi}^{W,p}) \supseteq [a,b]$. Proof. If $\lambda \neq a, b$, and λ is a real number then

$$\frac{\phi - \lambda}{|\phi - \lambda|} = \frac{a - \lambda}{|a - \lambda|} \chi_E + \frac{b - \lambda}{|b - \lambda|} \chi_{E^c}.$$

There exist $a(\lambda)$ and $b(\lambda)$ such that $-\pi \leq a(\lambda)$, $b(\lambda) \leq \pi$ and

$$\frac{a-\lambda}{|a-\lambda|} = e^{ia(\lambda)}, \ \frac{b-\lambda}{|b-\lambda|} = e^{ib(\lambda)}.$$

Hence

$$\frac{\phi - \lambda}{|\phi - \lambda|} = \exp i\{(a(\lambda) - b(\lambda))\chi_E + b(\lambda)\}$$

where $0 \le a(\lambda) - b(\lambda) \le \pi$ or $-\pi \le a(\lambda) - b(\lambda) \le 0$. If $\lambda \notin \sigma(T_{\phi}^{W,p})$, then by Theorem WDR $W \exp\left\{\frac{p}{2}(a(\lambda) - b(\lambda))\tilde{\chi}_E\right\}$ belongs to (A_p) . Hence

$$\sigma(T_{\phi}^{W,p}) \subseteq \left\{ \lambda \in \mathscr{Q} \; ; \; \pi \ge a(\lambda) - b(\lambda) \ge \frac{2}{p} \gamma_{+}(E,W,p) \right\}$$
$$\bigcup \left\{ \lambda \in \mathscr{Q} \; ; \; \frac{2}{p} \gamma_{-}(E,W,p) \ge a(\lambda) - b(\lambda) \ge -\pi \right\}.$$

If $\pi \ge a(\lambda) - b(\lambda) > \frac{2}{p}\gamma_+(E, W, p)$ or $-\pi \le a(\lambda) - b(\lambda) < \frac{2}{p}\gamma_-(E, W, p)$, then $W \exp\left\{\frac{p}{2}(a(\lambda) - b(\lambda))\tilde{\chi}_E\right\}$ does not belong to (A_p) and so $\lambda \in \sigma(T_{\phi}^{W, p})$. Since $\sigma(T_{\phi}^{W, p})$ is closed,

$$\sigma(T_{\phi}^{W,p}) = \left\{ \lambda \in \mathscr{C} \; ; \; \pi \ge a(\lambda) - b(\lambda) \ge \frac{2}{p} \gamma_{+}(E, W, p) \right\}$$
$$\bigcap \left\{ \lambda \in \mathscr{C} \; ; \; \frac{2}{p} \gamma_{-}(E, W, p) \ge a(\lambda) - b(\lambda) \ge -\pi \right\}.$$

Lemma 1. For a measurable set E in T with 0 < m(E) < 1, $||\pi\chi_E - v||' \ge \pi/2$ for any v in L^{∞}_R with $||v||_{\infty} < \pi/2$.

Proof. Suppose $\phi = a\chi_E + b\chi_{E^c}$ where a and b are real numbers, $a \neq b$ and 0 < m(E) < 1. For $W = e^{u+\tilde{v}}$ where $u, v \in L_R^{\infty}$ and $\|v\|_{\infty} < \pi/2$, $\sigma(T_{\phi}^{W,2}) \supseteq [a, b]$ if and only if $\|\pi\chi_E - v\|' \ge \pi/2$. This is proved in [7, Corollary 1]. Now Theorem 5 shows Lemma 1.

Corollary 3. Suppose W satisfies the condition (A_2) . If ϕ is real valued, $a = ess \inf \phi$ and $b = ess \sup \phi$ then $[a, b] \subseteq \sigma(T_{\phi}^{W,2})$. Proof. Since $W \in (A_2)$, $W = e^{u+\tilde{v}}$ where $u, v \in L_R^{\infty}$ and $\|v\|_{\infty} < \pi/2$. For

Proof. Since $W \in (A_2)$, $W = e^{u+\tilde{v}}$ where $u, v \in L_R^{\infty}$ and $||v||_{\infty} < \pi/2$. For $\lambda \in [a,b] \cap \mathcal{R}(\phi)^c$, $\frac{\phi-\lambda}{|\phi-\lambda|} = e^{i\ell}$ and $\ell = \pi(1-\chi_E)$ for some measurable set E in T with 0 < m(E) < 1. Then, in [7, (3) of Theorem 1], it is proved that $\lambda \in \sigma(T_{\phi}^{W,2})$ if and only if $||\pi\chi_E - v||' \ge \pi/2$. Now Lemma 1 implies this corollary.

Lemma 2. If q_1 and q_2 are inner functions and $\bar{q}_1q_2 = f/|f| = |g|/g$ where both f and g are in $\bigcap_{p>1/2} H^p$, then $\operatorname{sing} q_1 \neq \operatorname{sing} q_2$. Proof. See the proof of [8, Corollary 5].

Theorem 6. Suppose W satisfies the condition (A_p) where $1 . If <math>\phi = \bar{q}_1 q_2$ where q_1 and q_2 are inner functions with $\operatorname{sing} q_1 \neq \operatorname{sing} q_2$ then $\sigma(T_{\phi}^{W,p}) = \bar{D}$. Proof. Suppose $W = |h|^p$ for some outer function in H^p . If $\lambda \in D$ then

$$\bar{q}_1q_2 - \lambda = \bar{q}_1(q_2 - \lambda q_1) = \bar{q}_1q_3k$$

where q_3 is inner and k is invertible in H^{∞} . By the proof of [8, Theorem 2(2)] $\bar{q}_2q_3 = \frac{f}{|f|} = \frac{|g|}{g}$ where both f and g are in H^1 . By Lemma 2 sing $q_2 = \text{sing}q_3$ and so sing $q_1 \neq \text{sing}q_3$. If $\lambda \notin \sigma(T^{W,p}_{\bar{q}_1q_2})$ then $0 \notin \sigma(T^{W,p}_{\bar{q}_1q_3})$ because k is invertible in H^{∞} . By Theorem WDR

$$\bar{q}_1 q_3 = \frac{h}{\bar{h}} \frac{\bar{h}_0}{h_0}$$

where h_0 is an outer function in H^p with $|h_0|^p \in (A_p)$. Hence $\bar{q}_1 q_3 = f/|f| = |g|/g$ where $f = (h/h_0)^2$ and $g = (h_0/h)^2$. Since $|h|^p$ and $|h_0|^p$ are in (A_p) , both f and g belong to $H^{1/2}$. This contradicts Lemma 2. Hence $\lambda \in \sigma(T^{W,p}_{\bar{q}_1q_2})$ and so $\sigma(T^{W,p}_{\bar{q}_2}) = \bar{D}$.

Acknowledgement

I should like to thank Professor Kazuya Tachizawa for helpful comments on the paper of R.Johnson and C.J.Neugebauer.

References

- 1. A.Böttcher and B.Silbermann, Analysis Of Toeplitz Operators, Springer-Verlag
- 2. R.G.Douglas, Banach Algebra Techniques In Operator Theory (Academic Press, New York, 1972)
- 3. J.B.Garnett, Bounded analytic functions. Academic Press, New York, 1981.
- 4. R.Johnson and C.J.Neugebauer, Homeomorphisms preserving A_p , Revista Math. Iberoamericana 3(1987), 249-273.
- 5. M.Lee and D.E.Sarason, The spectra of some Toeplitz operators, J.Math.Anal.Appl. 33(1971), 529-543.
- T.Nakazi, Toeplitz operators and weighted norm inequalities, Acta Sci. Math. (Szeged) 58(1993), 443-452.
- T.Nakazi, Brown-Halmos type theorems of weighted Toeplitz operators, Canad.Math. Bull. 41(1998), 196-206.
- 8. T.Nakazi, The spectra of Toeplitz operators with unimodular symbols, Proc. Edinburgh Math.Soc. 41(1998), 133-139.
- R.Rochberg, Toeplitz operators on weighted H^p spaces, Indiana Univ.Math.J. 26(1977), 291-298.
- 10. I.Spitkovsky, Multipliers that do not influence factorability, Math.Notes 27(1980), 145-149.
- 11. H.Widom, Toeplitz operators on H_p , Pacific J.Math. 19(1966), 573-582.

Takahiko Nakazi Department of Mathematics Hokkaido University Sapporo 060-0810, Japan

nakazi@math.sci.hokudai.ac.jp