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DUALITY OF CUSP SINGULARITIRS

By Iku NAKAMURA

INTRODUCTION

Arnold introduced the notion of modality of an
isolated singularity (roughly the number of moduli)
and classified isolated singularities of small mo-
dality. Zero-modal hypersurface isolated singulari-

ties are Kleinian singularities A, D_, E6’ E, and

n

E One-modal (unimodular) hypersurface isolated

g
singularities are simple elliptic singularities EG’
ﬁ7, EB’ 14 exceptional singularities and cusp singu-:

larities Tp q,z with (1/p)+(1/9)+(1l/r)<1l. Moreover
14 r

he reported that there is a strange duality of the

14 exceptional singularities, which was made clearer

later by Pinkham [3]. The purpose of this note is

to show that there are similar phenomena for the re-
maining unimodular singularities. See [5],([6],1[7].
§1 THE STRANGE DUALITY OF ARNOLD
We consider the following germs S and S' of iso-
lated singularities at the origins;
S:x22+y3+z4=0 , S' :x3+y8+zz=0.
§ and S' are among the 14 exceptional unimodular singu-

larities. Let f = xzz + y3 + z4, g = x3 + y8 + 22.
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Let St = £ T (t), St =g “(t) (t # 0). Then b2(St) = 10,

b2(S£) = 14 and there are bases e and f£,,°°",

1" "%10 1’
] 3 1 -
fl4 of H2(St,Z ) and HZ(St’ Z ) such that their inter

section diagrams are T + H, T + H where

3,3,4 2,3,9
H= ({0 1
1 0
3 4
T3,3,4 : o—o]$—o—o-o
3 o
2 2 _
T2,3,9 : o-g—o—o—o—o-o—o—o—o .
390
e}

We call therefore (3,3,4) and (2,3,9) the Gabrielov num-
bers of S and S' and write Gab(S) = (3,3,4) etc. On the
other hand we have resolutions of S and S' with excep-

tional sets consisting of 4 nonsingular rational curves

as below;

-2 -3 =9 -3 -3 -4
where each line denotes a nonsingular rational curve, a
negative integer beside it denotes the self intersection
number of the curve. We call therefore (2,3,9) and (3,
3,4) the Dolgatchev numbers of S and $' respectively and

(2,3,9) etc. So we have

we write Dolg(S)

Gab (S) Dolg(S'), Dolg(S) = Gab(s').
For a Dolgatchev triple (p,q,r) of an exceptional singu-
larity U we define A(U) = pgr-pg-gr-rp. Then we have
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A(S) = A(S").

This is part of the strange duality of Arnold.

We denote by T a germ of an isolated singular-

P,4d,r
ity
P + y3 4+ 2" - xyz =0
at the origin. Here 1l/p + 1/g + 1/r < 1. We define

= p+q+ i = (p-1,g9-1,r-
deg(Tp’q’r) pta+r, lndex(Tp'q,r) (p-1,g9-1,r-1),

= - - - = * =
A ) pgr-pg-qr-rp. Let T T3’4'4, T T2,5,6'

T
p/q,r
First we resolve the singularities. Their exceptional
sets in their minimal resolutions are cycles C = Cl+C2’
c* = C1+C§+C§ of nonsingular rational curves with self-
intersection numbers described below,

T T*
* *
1 €3
€1 € -2 -3
-3 -4
/ * N\
CZ
-3
By blowing up the former once we obtain a cycle C'
= Ci+Ci+Cé of nonsingular rational curves with Ciz = -1,
Céz = -4, Céz = =5 where Cé and Cé are proper transforms
of C1 and C2. Now we define cycle(T) = (1,4,5) and
cycle(T*) = (2,3,3). Then the first duality of T and
T* is
- 3 -
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index(T) = cycle(T*), cycle(T) = index(T*).
The second is

deg(T) + deg(T*) = 24
although it is still unclear why this is part of the dua
lity. The third is

A(T) = A(T*).

The intersection matrices of C and C* are
)

(CiCj) = -3 27, (C;C;) = 1-2 1 1
2 —4) 1 -3 1
1 1-3

whose determinants are equal to A(T) or A(T*) up to
sign. Next we consider continued fraction expansions.

Let w = [[3,4]]. By definition

W= 3 = ——————— =3 - ——— = (3+/6) /2.

Elks

Then 1/w = [[1,2,3,2,3]]. Sinc.:e (2,3,3) and (3,2,3) are
identified by the cyclic permutation of the irreducible
components Cg, we may identify (2,3,3)‘and (3,2,3).
Conversely if we start with w* = [[3,2,3]] for instance,
then we obtain 1/w* = [[1,2,4,3]]. This is the fourth
duality of T and T*. Finally we reconsider the excep-
tional sets in the minimal resolutions. The cycles C

and C* are so-called fundamental divisors of the
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singularities T and T*. So we define Deg(T) = —Cz,

Deg (T*) = —(C*)z. Then Deg(T) = 3 and Deg(T*) = 2. The
fifth duality is

Deg(T) = the number of irreducible components of C*,

Deg(T*) = the number of irreducible components of C.
The duality shown above looks like the strange duality
of Arnold very much. In fact (3,4,4) and (2,5,6) are
Gabrielov and Dolgatchev numbers of one of the 14 excep-
tional singularities. By interpreting the above duality

suitably we can see a similar kind of duality for

T2'3'6,T2'4’4,T3'3,3 and H2,2,2'2 (in other words Eg,
E7r Bgr Dg)-
§3 DUALITY THEOREM

Let I be a germ of an isolated singularity

Pr9,¥,8
X +wE = yz, y¥+ 25 = xw

at the origin where p,q,r,s are integers > 2, at least

We define deg(T) ptgtr+s,

one > 3. Let T =1 .
= pP.g,xr,s

index(T) = (p,qg,r,s), A(T) = pgrs - (p+r) (g+s). Let %he

be the exceptional set (the fundamental divisor) of T irh
minimal resolution of T. C is a cycle of rational

curves. We define Deg(T) = —C2, lepgth(T) = the number
of irreducible components of C. We define length(Tp'q'r)

in the same way.
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THEOREM 1. ©Let S be the set of all T and
e pP.q,r

np,q,r,s with length less than 5. Then there is a bi-
jection i of S onto itself such that for any T of S

0) i(i(T™)) = T,

1) index(T) = cycle(i(T)), cycle(T) = index(i(T)),

2) deg(T) + deg(i(T)) = 24,

3) A(T) = A(i(T)),

4) an assertion about continuedfractionexpansions,

5) Deg(T) = length(i(T)), length(T) = Deg (i(T)).
By suitable extensions of the above definitions we ob-
tain Duality Theorem of cusp singularities in the general
case. We notice that #(S) = 38 and i(Tp,q,r) = Ts,t,u

iff (p,q,r) and (s,t,u) are Gabrielov and Dolgatchev

numbers of one of the exceptional singularities.

§4 INOUE-HIRZEBRUCH SURFACES

Let K be a real quadratic field with ( )' the con-
jugation, M a complete module in K, i.e. a free module
in X of rank two. Let U+(M) = {aeK; aM = M, >0, a'>0},
V be a subgroup of U+(M) of finite index. It is known
that U+(M) is infinite cyclic. Let H be the upper half
plane {z¢C; Im(z) > 0}. Define the actions of M and
u*(M) on € x H by

. . L}
m : (zl,zz) > (zl+m,z +m')

2
- L]
o 3 (21'22) -+ (azl,a zz) .
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Let G(M,V) be the group generated by the actions of M
and Von € x H as above. The action of G{M,V) on T x H
is free and properly discontinuous so that we have a
quotient complex space X'(M,V) := CxH/G(M,V). By adding
to X'(M,V) an ideal point = called a cusp and endowing
the union of « and X'(M,V) with a suitable topology and
a suitable structure as a ringed space, we obtain a nor-
mal complex space X(M,V). Let w be a real quadratic
irrationality with w>1>w'>0. Let l/w = [[fl,---,fh,

el,---,ek]], and set w* = [[el,--~,ek]].

LEMMA 1. There exists B in K such that

BB' = -1, B(Z + Zw) = Z + Zw*.

Let M = Z+ Zw, N = Z+Zw*. Then U (M) = Ut (N).
Let V be a subgroup of U+(M) of finite index. Let (zl,zz)
and (wl,wz) be the coordinates of X(M,V) and X(N,V) with
cusps deleted respectively. Then by identifying them
by the relation wy = le, W, = B'zz, we can form a com-

pact complex space Y = Y(M,V) with cusp singularities.
THEOREM 2 (Inoue [2]). The minimal model S(M,V) of
Y(M,V) has bl =1, b2 > 0 and no meromorphic functions
except constants.
We call S(M,V) an Inoue-Hirzebruch surface (associ-
ated with (M,V)) and Y(M,V) a singular Inoue-Hirzebruch

surface (with two cusps). Let p and g be the cusps of
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X{(M,V) and X(N,V) and we denote by the same p and g the
cusps of Y = Y(M,V).

We notice that any of T and Il is iso-
plqlr plqlrls

morphic to (Y,p) for some Mand V. If T(eS) is isomorphic
to the germ of Y at p (Y,p), then i(T) is isomorphic to
(¥,q). And then A(T) = #(the torsion parttnyl(FiX H/
G(M,V),%Z )) where RxH/G(M,V) is a subset of X(M,V) by
the natural inclusion of RxH into € x H. Since it is a
subset of X(N,V) too, this explains THEOREM 1 3). The
relation between M and N is well described by the fol-
lowing

LEMMA 2 (Keniji Ueno) There exists a totally posi-
tive y such that N = v (M*)' where M* = {xeK; tr(xy) ¢ Z
for any y in M}, (M¥)' = {x'; X« M*}. 1In particular
X(N,V) is isomorphic to X{(M*)"',V).

THECREM 3. Assume that (Y,p) and (Y,q) belong to
S. Then Def(¥Y) (:= the deformation functor of Y) is non-
obstructed and Def (Y) = Def(y,p) xDef(Y,q), ¥ is smooth-
able by flat deformation. Any smooth deformation of Y
ig a minimal K3 surface.

THEOREM 4. Assume that (Y,p) and (Y,q) belong to
3. Let Z be Y with g resolved (i.e. with g replaced by
a cycle C* of rational curves). Then Z is smoothable
by flat deformation with C* preserved. Any smooth de-

formation Z, of % with C* preserved is the projective
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plane Pz blown up along finitely many points lying on

a rational cubic curve with a node and KZ (:= the cano-
t

nical line bundle of Zt) = -C*, Moreover H(Y,p) :=

{aeHz(Zt,Z ); aC§ = 0 for any irreducible component Cg

2

of C*} has a % -base in R{Y,p):= {aeH(Y,p): a“ = -2}

whose intersection diagram (Dynkin diagram) is Tp a.r
s

or I corresponding to the type of the singularity
p,9,r,s

(Y,p).

The above two theorems were studied by J. Wahl and

E. Looijenga too, but in more detail.

By an elliptic deformation Zt (or Ut) of 2 (or (Y,

p)) we mean a fibre of m : Z = D (or f£: U - D) such that

= _ 1.3 N _ 1,5
ZO = 7 (or UO = (Y,p)) and h (Zt,OZt )y =1 (or h (Ut,
Oﬁ } = 1) where Zt (or Gt) is the nonsingular model of
t
Zt (or Ut).

THEOREM 5 There exists a proper flat family £ : X%

+ B such that xo = % and f is versal for both elliptic

deformations of Z and elliptic deformations of (Y,p).

Nonsingular models of ¥, are surfaces with bl = 1 and

t
global spherical shells.

For simplicity we assume Deg(Y,p) > 5.

THEQREM 5 (CONTINUED) Define the "Dynkin diagram"
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of Z or (¥,p) as follows,

To,q,r if index(Y,p) = (p-1,9-1,r-1)

Ts,q,r,s if index(Y,p) = (p,q,r,s)

Mo, q,r,8,t if index(Y,p) = (p,q,r,s,t)
where index(Y,p) := cycle(Y,qg) which is the sequence of

(-1) times selfintersection numbers of the exceptional
rational curves. (See [6].) Then the singularities of
elliptic deformations Xt of Z are in one to one corre-

spondence with proper subdiagrams containing one of

Ty,3,6'T2,4,47"3,3,3'12,2,2,2,2 ad Wy 5 4 ;1 (inother

words ﬁg,ﬁ7,ﬁ6,55,i4). In particular the singularities
of Xt are simple elliptic singularities, cusp singular-
ities or rational double singularities Ak’

K Ly T

T W
P,4q,Tr P,49,X,s p,q,xr,s,t

By THEOREM 4 there exists a proper flat family f :
Y - D ‘such that VO = 2 (= a singular Inoue-Hirzebruch

surface with one cusp) and Y, (t#0) is a rational sur-

t
face. We notice that Z is by no means an algebraic

surface. It is also remarkable to notice
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THEOREM 6 (T. Oda [8]) There exists a proper flat

family £ : X* > D such that x3 = a rational surfacewith
a double curve and X; (t#0) is a nonsingular Inoue-

Hirzebruch surface.

§5 COHN'S SUPPORT POLYGONS

Let M be a complete module in a real quadratic
field K. We embed M into Iﬁgby the mapping x > (x,x").
By this mapping we identify M as a subset ofim% We
define M := {xeM; x>0, x'>0}, M := {xeM; x>0, x'>0}
which we view as subsets of R%. We let I'(M) and I (M)
be the convex hulls of M+ and M~ respectively. Then
Ei(M) is a convex set bounded by infinitely many line
segments connecting two points of Mi. Let BZi(M)lxathe
boundary of Zi(M). We number Bzi(M)nM consecutively.
If M= 2Z+2%Zwy and w is a totally positive quadratic ir-
rationality with w>1>w' >0 (i.e. reduced), then we may
assume 8Z+(M)nM = {nj; JeZ }, 8L (M)nM = {ng; je® }, n,
=1, nl = w, na (w=1) /w*, nfl = w-1. U+(M) acts on
M* therefore on 35 (M)aM. #(3I" (M)n M mod UT(M)) is

finite. There exist positive integers aj and ag (> 2)

such that
= * * = L 2%% .1 5
nj—l + nj+1 ajnj, nj_1 + nj+1 ajnj (jeZ )
+ _ .
Let Dec’ = {{0}, ]R+nj, IR+nj_l + ]R+nj (jez )}
Dec” = {{0}, R, n¥, R,n¥, + R, n* (jeZ)].
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Then evidently Dec’ and Dec are cone decompositions of
]R+>< ]R+ and 1R+>< R_ respectively. By the general theory
of torus embeddings we can construct complex algebraic
varieties locally of finite type Temb (Dec+) and Temb (Dec ).
The groups U+(M) and V act upon both of them freely aﬁd
properly discontinuously. The gquotient surfaces
Temb(Deci)/V are naturally minimal resolutions of (Y,p)
and (Y,q) ([8]) where Y = Y(M,V). By THEOREM 1 (or by
definition in the general case) index(Y,p) = (agr; j=1,
+++,8) (= the representatives<3fa§ mod V) and index(Y,q)
= (a.: j=1,+++,t) (= the representatives of aj mod V)

]
if s > 3 or t > 3 respectively.

§6 FOURIER-JACOBI SERIES

Let X'(M,V) be the natural image of HxH in X(M,V),
XO(M,V) the union of X'(M,V) and the unique cusp of
X(M,V). Clearly XO(M,V) is an open neighborhood of the
| cusp . For a totally positive m in M* we can define a
convergent power series Fm(zl,z2) on XO(M,V) by

— 3 1 '
Fm(zl,z2) = 7 eXp(Zﬂl(Vle+V m zz)).
veV

Let n§ (j=1,+++,s) be the representatives of 3% (M)nM
mod V. We notice that mZm* mod V implies Fo = Froxe
On the other hand THEOREM 1 says s = Deg((X(M,V),®)).

Let w be a totally positive reduced quadratic irrationality

- 12 -
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(i.e.

phism f of Konto Kby £ (x)

L a bijection of M with (mx) T

THEOREM 7-1 Assume
. s
bedded into T~ by Ff(na‘)
THEOREM 7-2 Assume
. 3
bedded into T~ by Ff(na‘)
+ ns.
THEOREM 7-3 Assume
. 3
bedded into T~ by Ff(na.‘)
* * * - *
nZp * Bgr NIy T Rl1y2

w>l>w'>0), M= Z + Zuw.

= (x/(w-w"))"'.

We define a Z homomor-

This £ induces

where M* = M'/(w-w"').

s > 3. Then (X{(M,V),®) is em-

(j=l,'°'ls).

s = 2. Then (X(M,V),®) is em-

(j=-1/2,0,1) where n*_l/2 = nf_l

s = 1. Then (X(M,V),») is em-

(j=-1/4,-1/2,-1) where ntl/2 =
+ na.

THEOREM 7 was proved also by Ueno.

The above choices of na.‘ in the cases s =

1 and 2

match the definitions of cycle(T) which seemto be rath-

er artificial.

Let us check this by the example in §2.

Let w = [[314]]lw*=[[31213]]r M=%Z+%Zw, N=2%Z
+@u*, v = U (M). Then (X(M,V),®) T, , , and (X(N,V),
' r
w) = T2 5 6° Temb(Dec+) and Temb (Dec ) are minimal re-
’ I

solutions of (X(M,V),») and (X(N,V),>~) respectively.

Then the support polygon is as follows.

- 13 -

b1




representatives

n,,n

01

+

Let n =n + n Then we have

2k-(1/2) 2k-1 2k*

+ n, = 4n + n

N_y ¥ g = Dy/0r P10 1 o’ Mo 3/2
Recall cycle(T (1,4,5) and this was defined by

= Snl.
3,4,4)
blowing up once. By the general theory of torus embed-
dings any equivariant blowing-up of Temb(Dec+) corre-

sponds to the subdivision of pect. Let fj = Ff(n*)
3

(j=0,1,2), g. = F(

5 (j=-1/2,0,1).

(w*-l)nj/(w*-w*'))'
Then we can show that
4 .3

4 _ .
f0+fl+f2—foflf2 = formal power series of fo,fl,f2

(terms of higher degree in some sense)

2 5, 6 _ .
g—l/2+gO+gl_g—l/2gOg1 = formal power series of 9-1/2’90'91

(terms of higher degree in some sense).
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We notice that (aa,a*,aﬁ) = (3,2,3) and (ao,al) = (3,4)
so the triple defined newly is (1,4,5). Similar facts
are seen for all T and I . For the detail

P/ad,xr P.9q,x,s
see [7].

- 15 -

1




(2]

(3]

[4]

[51]

[6]

[7]

[8]

[91]

BIBLIOGRAPHY

Arnold, V.I. : Critical points of smooth functions,
Proc. of Intern. Cong. Math., Vancouver (1974) 19-39.
Inoue, M. : New surfaces with no meromorphic functions
II, Complex Analysis and Algebraic Geometry, Iwanami
Shoten Publ. and Cambridge Univ. (1977) 91-106.
Karras, U. : Deformations of cusp singularities,
Proc. of Symp. in Pure Math. vol.30 (1977) 37-44.
Laufer, H. : Versal deformations for two dimensional
pseudo-convex manifolds, (preprint).

Looijenga, E. :

Nakamura, I. : Inoue-Hirzebruch surfaces and a duality
of hyperbolic unimodular singularities I. (to appear
in Math. Ann.).

Nakamura, I. : II. (in preparation)

Miyake, K. &0da, T. : Torus embeddings and applica-
tions, Tata Inst. Lecture Notes, Bombay (1978).
Pinkham, H. : Singularités exceptionelles, la dualité
étrange d'Arnold et les surfaces K-3, C. R. Acad.

Sci. Paris, t. 284 (1977) Série A, 615-618.

[10] Wahl, J. : Smoothings of normal surface singularities,

(preprint).

Iku NAKAMURA
Hokkaido University

- 16 -

12



