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1 Introduction

Let Ω be a bounded domain in RN (1 ≤ N < +∞) with smooth boundary Γ := ∂Ω
and q be a fixed number with 2 ≤ q < +∞. Then, for each s ≥ 0 let us consider
the following double obstacle problem (P)s: Find functions u ∈ C([s, +∞); L2(Ω)) and
θ ∈ L2

loc((s, +∞); L2(Ω)) such that

(P)s

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′(t) − div(|∇u(t)|q−2∇u(t)) − g(u(t)) = θ(t, x) in Qs := [s, +∞) × Ω;

0 ≤ θ(t, x) ≤ h(t, u(t, x)) a.e. on (s, +∞) × Ω;

u(t) = l(t) a.e. on (s, +∞) × Γ;

u(s) = u0 in Ω.

Where g(·), h(·, ·), l(·) are given functions. Here we note that (P)s with q = 2 is a
regional economic growth model, in which the unknown function u represents a stock of
available capital, the unknown function θ is a rate of investment and −g(u) is a recursive
depreciation of capital.

In the case that q = 2 and the boundary condition l(t) ≡ 0 for any t > 0, the existence
of solution for (P)s was proved in [2, 9] and Papageorgiou [9] studied the optimal control
problem. Unfortunately, by given double obstacles, (P)s loses the uniqueness of solutions
for a given initial value. Recently, from the viewpoint of attractors Kapustian and Valero
[6] considered the asymptotic behaviour of solutions for (P)s without uniqueness in the
case that q = 2 and time-independent given functions h(t, ·) ≡ h(·), l(t) ≡ 0 for any t ≥ 0.
Namely they constructed the global attractor for the multivalued autonomous dynamical
system associated with (P)s.

In the general case 2 ≤ q < +∞, the existence of solution for (P)s was proved in [12].
Moreover, assuming that the given functions h(t, ·) and l(t) converge to time-independent
ones h∞(·) and l∞ as t → +∞ in appropriate senses, the author [12] constructed the global
attractor for (P)s and discussed the relationship to the one for the limiting autonomous
system of (P)s.

In this paper for a given period T0 > 0 let us consider an asymptotically T0-periodic
problem (AP)s for (P)s. Namely we assume that h(t, ·)− hp(t, ·) → 0, l(t, ·) − lp(t, ·) → 0
in appropriate senses as t → +∞, where hp(t, ·) and lp(t) are T0-periodic in time, i.e.

hp(t, ·) = hp(t + T0, ·), lp(t) = lp(t + T0), ∀t ∈ R+ := [0,+∞).

Then, by the above asymptotically T0-periodic stability conditions we have a limiting
non-autonomous T0-periodic double obstacle problem (PP)T0

of (AP)s as follows: Find
functions u ∈ C([0,+∞); L2(Ω)) and θ ∈ L2

loc((0, +∞); L2(Ω)) such that

(PP)T0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′(t) − div(|∇u(t)|q−2∇u(t)) − g(u(t)) = θ(t, x) in Q0 = [0,+∞) × Ω;

0 ≤ θ(t, x) ≤ hp(t, u(t, x)) a.e. on (0,+∞) × Ω;

u(t) = lp(t) a.e. on (0,+∞) × Γ;

u(0) = u0 in Ω.

The main object of this paper is to investigate the large-time behaviour of solutions
for (AP)s and (PP)T0

without uniqueness from the viewpoint of attractors. In fact, we
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shall show the existence of attractors for (AP)s and (PP)T0
and discuss the relationship

between them.
Throughout this paper, | · |Lq(Ω) (resp. | · |W 1,q(Ω)) is a standard norm of Lq(Ω) (resp.

W 1,q(Ω)) for each q ≥ 2. For the subset A of L2(Ω), A denotes the closure of A in L2(Ω).
For two sets A and B in L2(Ω), we define the so-called Hausdorff semi-distance

distL2(Ω)(A, B) := sup inf
x∈A y∈B

|x − y|L2(Ω).

2 Assumptions and weak formulation

In this paper we consider the asymptotically T0-periodic double obstacle problem (AP)s

under the following assumptions:

(A1) g(·) is a Lipschitz continuous function on R satisfying the following property:

min

{
lim inf
z→−∞

−g(z)

z
, lim inf

z→+∞
−g(z)

z

}
=: g0 > 0;

(A2) h(·, ·) and hp(·, ·) are non-negative continuous functions on R+ × R. hp(t, z) is T0-

periodic in t for each z ∈ R. And there exists a positive constant L with 0 < L <
g0

2
such that

|h(t, z1) − h(t, z2)| ≤ L|z1 − z2|, ∀t ∈ R+, zi ∈ R (i = 1, 2),

|hp(t, z1) − hp(t, z2)| ≤ L|z1 − z2|, ∀t ∈ R+, zi ∈ R (i = 1, 2).

Moreover, for any z ∈ R, sup
t∈[0,T0]

|h(mT0 + t, z) − hp(t, z)| −→ 0 as m → +∞;

(A3) l, lp ∈ L∞(R+;W 1,q(Ω)) with sup
t∈R+

|l′|L2(t,t+1;W1,q(Ω)) + sup
t∈R+

|l′p|L2(t,t+1;W1,q(Ω)) < +∞.

Moreover lp is T0-periodic in time and

Jm := sup
t∈[0,T0]

|l(mT0 + t) − lp(t)|W 1,q(Ω) −→ 0 as m → +∞;

Now we give weak formulations of (AP)s and (PP)T0
. To do so, we define a closed

convex subset K(t) of W 1,q(Ω) for each t ∈ R+ by

K(t) := {z ∈ W 1,q(Ω) ; z = l(t) a.e. on Γ }. (2.1)

Also the set Kp(t) is also defined by replacing l by lp(t) in (2.1).
Definition 2.1. (i) For each s ≥ 0 and u0 ∈ L2(Ω), a couple of functions {u, θ}
is called a solution of (AP)s if u ∈ C([s, +∞); L2(Ω)) ∩ L2

loc((s, +∞); W 1,q(Ω)), u′ ∈
L2

loc((s, +∞); L2(Ω)), θ ∈ L2
loc((s, +∞); L2(Ω)), u(0) = u0 in L2(Ω),

u(t) ∈ K(t) for a.e. t ≥ s,

0 ≤ θ(t, x) ≤ h(t, u(t, x)) a.e. on (s, +∞) × Ω,
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and ∫
Ω
(u′(t, x) − θ(t, x) − g(u(t, x)))(u(t, x) − z(x))dx

+
∫
Ω
|∇u(t, x)|q−2∇u(t, x) · (∇u(t, x) −∇z(x))dx = 0

for any z ∈ K(t) and a.e. t ≥ s.

(ii) A solution of (PP)T0
is similarly defined by replacing h(t), l(t), K(t) by hp(t), lp(t),

Kp(t) in (i).

3 Existence of global solutions

In this section we shall show the existence and global boundedness of solutions for (AP)s

and (PP)T0
.

By the same argument in [11, 12], we can get the following the result.

Theorem 3.1. (cf. [11, 12]) Assume that (A1)-(A3) hold. Then, for each s ≥ 0 and
u0 ∈ K(s) the double obstacle problem (AP)s has at least one solution {u, θ} with initial
value u(s) = u0. Moreover, for each δ > 0 and the bounded set B ⊂ L2(Ω) there is a
positive constant Nδ such that

sup
t≥s

|u(t)|2L2(Ω) + sup
t≥0

∫ t+1

t
|∇u(τ )|qLq(Ω)dτ

+ sup
t≥s+δ

|u′|2L2(t,t+1;L2(Ω)) + sup
t≥s+δ

|∇u(t)|qLq(Ω) ≤ Nδ

for all s ≥ 0 and u0 ∈ K(s) ∩ B.

In fact, by applying the abstract theory of nonlinear evolution equations governed by
time-dependent subdifferential of convex functions, we can prove Theorem 3.1. For detail
proofs, see [11, 12].

Here note that the limiting T0-periodic double obstacle problem (PP)T0
can be consid-

ered as the special case of (AP)s by taking hp(t, ·) and lp(t) as h(t, ·) and l(t). Therefore,
by Theorem 3.1 we can get the similar result on the existence and global boundedness of
solutions for (PP)T0

on [0,+∞).

4 Attractor for the limiting periodic problem

In this section we shall construct a global attractor for the limiting T0-periodic double
obstacle problem (PP)T0

. To do so, let us define a solution operator for (PP)T0
. In fact,

by Theorem 3.1 we can define a family {U(t, s); 0 ≤ s ≤ t < +∞} of solution operators.
But we cannot get the uniqueness of solution for (PP)T0

. Hence the solution operator
U(t, s) from Kp(s) into Kp(t) is multivalued. Namely, for each s, t ∈ R+ with s ≤ t,
U(t, s) assigns to any u0 ∈ Kp(s) the set

U(t, s)u0 :=

⎧⎪⎨⎪⎩
There is a solution {u, θ} of (PP)T0

z ∈ Kp(t) such that
u(s) = u0 and u(t) = z.

⎫⎪⎬⎪⎭ .
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Then, it is easy to check the following properties of {U(t, s)}:
(U1) U(s, s) = I on Kp(s) for any s ∈ R+;

(U2) U(t2, s)z = U(t2, t1)U(t1, s)z for any 0 ≤ s ≤ t1 ≤ t2 < +∞ and z ∈ Kp(s);

(U3) U(t + T0, s + T0) = U(t, s) for any 0 ≤ s ≤ t < +∞, that is, U is T0-periodic.

(U4) {U(t, s)} has the following demiclosedness:

• If 0 ≤ sn ≤ tn < +∞, sn → s, tn → t, zn ∈ Kp(sn), z ∈ Kp(s), zn → z in
L2(Ω) and a element wn ∈ U(tn, sn)zn converges to some element w ∈ L2(Ω)
as n → +∞, then w ∈ U(t, s)z

Therefore {U(t, s)} forms a multivalued T0-periodic dynamical process. For some prop-
erties of the multivalued mapping, see [1], for instance.

Clearly, the limiting T0-periodic obstacle problem (PP)T0
can be reformulated as an

evolution equation

(E)T0
u′(t) + ∂ϕt

p(u(t)) + Gp(t, u(t)) � 0 in L2(Ω), t > s,

where ϕt
p is a T0-periodic proper lower semicontinuous convex functions on L2(Ω) defined

by

ϕt
p(z) =

⎧⎪⎨⎪⎩
1

q

∫
Ω
|∇z|qdx if z ∈ Kp(t),

+∞ if z ∈ L2(Ω) \ Kp(t).

Also, Gp(t, ·) is a T0-periodic multivalued operator in L2(Ω) defined by

Gp(t, z) :=

⎧⎨⎩w ∈ L2(Ω);
w = −g(z) − v in L2(Ω)

0 ≤ v(x) ≤ hp(t, z(x)) a.e. on Ω

⎫⎬⎭ .

The author [13] showed the existence of T0-periodic attractor for (E)T0
. So, by applying

the abstract results to (PP)T0
, we can get the T0-periodic stability results for (PP)T0

as
follows:

Theorem 4.1. (cf. [13]) Suppose (A1)-(A3). For each τ ≥ 0, we define the T0-step
mapping Uτ := U(τ + T0, τ) and Uk

τ := U(τ + kT0, τ) for each k ∈ N . Then, there exists
a subset Aτ of Kp(τ) such that

(i) Aτ is non-empty and compact in L2(Ω);

(ii) for each bounded set B in L2(Ω) and each number ε > 0 there exists a positive number
NB,ε ∈ N such that

distL2(Ω)(U
k
τ z,Aτ ) < ε for all z ∈ Kp(τ) ∩ B and all k ≥ NB,ε;

(iii) Uk
τ Aτ = Aτ for any k ∈ N .
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In fact, we can construct the compact absorbing set B0,τ for the discrete multivalued

dynamical system Uτ . Here, we define the set Aτ :=
⋂

n∈Z+

⋃
k≥n

Uk
τ B0,τ where Z+ := N∪{0}.

Then we see that the set Aτ has the properties (i)-(iii) in Theorem 4.1. For detail proofs,
see [13].

Theorem 4.2. (cf. [13]) Suppose (A1)-(A3). Let As and Aτ be the global attractors of
Us and Uτ , with 0 ≤ s ≤ τ ≤ T0, respectively. Then, we have Aτ = U(τ, s)As.

Theorem 4.3. (cf. [13]) Under the assumptions (A1)-(A3), let Aτ be the global attractor
of Uτ for each τ ≥ 0. We put the set A :=

⋃
0≤τ≤T0

Aτ . Then, A has the following properties:

(i) A is non-empty and compact in L2(Ω);

(ii) for each bounded set B in L2(Ω) and each number ε > 0 there exists a finite time
TB,ε > 0 such that

distL2(Ω)(U(t + τ, τ)z,A) < ε

for all τ ∈ R+, all z ∈ Kp(τ) ∩ B and all t ≥ TB,ε.

5 Attractor of asymptotically periodic problems

In this section we shall construct a global attractor for the asymptotically T0-periodic
double obstacle problems (AP)s.

In section 3 we see that (AP)s has at least one solution on [s, +∞). So we can define
a solution operator E(t, s) (0 ≤ s ≤ t < +∞) for (AP)s. But we cannot show the
uniqueness of solutions for (AP)s on [s, +∞). Therefore E(t, s) is multivalued, that is,
E(t, s) (0 ≤ s ≤ t < +∞) is the operator from K(s) into K(t) which assigns to each
u0 ∈ K(s) the set

E(t, s)u0 :=

⎧⎪⎨⎪⎩
There is a solution {u, θ} of (AP)s on [s, +∞)

z ∈ L2(Ω) such that
u(s) = u0 and u(t) = z.

⎫⎪⎬⎪⎭ .

Then we easily see that {E(t, s) ; 0 ≤ s ≤ t < +∞} satisfies the following evolution
properties :

(E1) E(s, s) = I on K(s) for any s ≥ 0.

(E2) E(t2, s)z = E(t2, t1)E(t1, s)z for any 0 ≤ s ≤ t1 ≤ t2 < +∞ and z ∈ K(s).

(E3) E(t, s) has the following demiclosedness:

• Assume that sn, s, tn, t ∈ R+ with sn → s and tn → t, u0n ∈ K(sn), u0 ∈ K(s)
with u0n → u0 in L2(Ω) and a element zn ∈ E(tn + sn, sn)u0n converges to
some element z in L2(Ω) as n → +∞. Then, z ∈ E(t + s, s)u0.
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In order to construct a global attractor for {E(t, s) ; 0 ≤ s ≤ t < +∞} associated
with (AP)s, we give a definition of a discrete ω-limit set under E(t, s).

Definition 5.1. (Discrete ω-limit set for E(·, ·)) Let B(L2(Ω)) be a family of bounded
subsets of L2(Ω). Let τ ∈ R+ be fixed. Then for each B ∈ B(L2(Ω)), the set

ωτ (B) :=
⋂

n∈Z+

⋃
k≥n,m∈Z+

E(kT0 + mT0 + τ,mT0 + τ)(K(mT0 + τ) ∩ B)

is called the discrete ω-limit set of B under E(·, ·).

Remark 5.1. By definition of the discrete ω-limit set ωτ (B), it is easy to see that x ∈
ωτ (B) if and only if there exist sequences {kn} ⊂ Z+ with kn ↑ +∞, {mn} ⊂ Z+, {zn} ⊂ B
with zn ∈ K(mnT0 + τ) and {xn} ⊂ L2(Ω) with xn ∈ E(knT0 + mnT0 + τ,mnT0 + τ)zn

such that xn −→ x in L2(Ω) as n → +∞.

Now let us mention main theorems in this paper.
Theorem 5.1. (Discrete attractors of (AP)τ) Suppose the conditions (A1)-(A3). For
each τ ∈ R+, let Aτ be the global attractor of T0-periodic dynamical systems Uτ , which is
obtained in section 4. Here we put

A∗
τ :=

⋃
B∈B(L2(Ω))

ωτ (B). (5.1)

Then, we have

(i) A∗
τ (⊂ Kp(τ)) is non-empty and compact in L2(Ω);

(ii) for each bounded set B ∈ B(L2(Ω)) and each number ε > 0 there exists a positive
number NB,ε ∈ N such that

distL2(Ω)(E(kT0 + τ, τ)z,A∗
τ ) < ε

for all z ∈ K(τ) ∩ B and all k ≥ NB,ε;

(iii) A∗
τ ⊂ U i

τA∗
τ ⊂ Aτ for any i ∈ N .

Remark 5.2. By the definition of ωτ (B) and A∗
τ , we easily see that A∗

τ = A∗
τ+nT0

for any
number n ∈ N. Hence A∗

τ is T0-periodic in time.

Our second main theorem gives a relationship between global attractors A∗
s and A∗

τ .

Theorem 5.2. Suppose the conditions (A1)-(A3). Let A∗
s and A∗

τ be discrete attractors
for E(·, s) and E(·, τ) with 0 ≤ s ≤ τ < +∞, respectively. Then, we have A∗

τ ⊂ U(τ, s)A∗
s,

where U(τ, s) is the T0-periodic process given in section 4.

By Theorems 5.1 and 5.2, we can construct the attractor for asymptotic T0-periodic
problems (AP)τ .
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Theorem 5.3. (Global attractor of (AP)τ) Assume (A1)-(A3). For any τ ∈ R+, let A∗
τ

be the discrete attractors for E(·, τ) obtained in Theorem 5.1. Here we put

A∗ :=
⋃

τ∈[0,T0]

A∗
τ . (5.2)

Then, for any bounded set B ∈ B(H),

ωE(B) :=
⋂
s≥0

⋃
t≥s,τ∈R+

E(t + τ, τ)(K(τ) ∩ B) ⊂ A∗. (5.3)

By Theorem 5.3, we can say that the set A∗ can be called the attractor of (AP)τ .
In order to prove Theorems 5.1-5.3, we prepare some lemmas.

Lemma 5.1. If {sn} ⊂ R+, {τn} ⊂ R+, s ∈ R+, τ ∈ R+, sn → s, τn → τ , {mn} ⊂ Z+

with mn → +∞, zn ∈ K(mnT0 + sn), z ∈ Kp(s), zn → z in L2(Ω) and a element
wn ∈ E(mnT0 + τn + sn,mnT0 + sn)zn converges to some element w ∈ L2(Ω) as n → +∞,
then w ∈ U(τ + s, s)z

Proof. Since τn → τ , we may assume that {τn} ⊂ [0, T ] for some T > 0.
By wn ∈ E(mnT0+τn+sn,mnT0+sn)zn, there exists a solution {vn, θn} of (AP)mnT0+sn

such that
vn(mnT0 + τn + sn) = wn and vn(mnT0 + sn) = zn.

Here we put un(t) := vn(t + mnT0 + sn). Then, we easily see that the function un is the
solution for

(AP)0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′
n(t) − div(|∇un(t)|q−2∇un(t)) − g(un(t)) = θn(t + mnT0 + sn, x) in Q0;

0 ≤ θn(t + mnT0 + sn, x) ≤ h(t + mnT0 + sn, un(t, x)) a.e. on (0,+∞) × Ω;

un(t) = l(t + mnT0 + sn) a.e. on (0,+∞) × Γ;

un(0) = zn in Ω.

Let δ ∈ (0, 1) be fixed. Since zn → z in L2(Ω) as n → +∞, {zn} is bounded in L2(Ω).
Therefore, by Theorem 3.1 there exists a positive constant Nδ > 0 such that

sup
t≥δ

|un(t)|2L2(Ω) + sup
t≥δ

∫ t+1

t
|∇un(τ)|qLq(Ω)dτ

+ sup
t≥δ

|u′
n|2L2(t,t+1;L2(Ω)) + sup

t≥δ
|∇un(t)|qLq(Ω) ≤ Nδ.

(5.4)

Here it follows from the convergence assumption (A2), (A3) and (5.4) that (by taking a
subsequence of {n}, if necessary) there are functions uδ and θδ such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′
δ(t) − div(|∇uδ(t)|q−2∇uδ(t)) − g(uδ(t)) = θδ(t + s, x) in [δ,+∞) × Ω;

0 ≤ θδ(t + s, x) ≤ hp(t + s, uδ(t, x)) a.e. on (δ, +∞) × Ω;

uδ(t) = lp(t + s) a.e. on (δ, +∞) × Γ.

8



By the standard diagonal process, we can get the solution {u, θ} for (PP)T0
such that

(PP)T0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′(t) − div(|∇u(t)|q−2∇u(t)) − g(u(t)) = θ(t + s, x) in Q0;

0 ≤ θ(t + s, x) ≤ hp(t + s, u(t, x)) a.e. on (0,+∞) × Ω;

u(t) = lp(t + s) a.e. on (0,+∞) × Γ;

u(0) = z

and
un −→ u in C([0, T ];H) as n → +∞. (5.5)

Therefore, it follows from (5.5) and un(τn) = wn that u(τ) = w. Hence we have w ∈
U(τ + s, s)z. ♦

Lemma 5.2. Let τ ∈ R+ and B0,τ be the compact absorbing set for Uτ . Then

ωτ (B) ⊂ B0,τ , ∀B ∈ B(L2(Ω)). (5.6)

Proof. For simplicity, at first let us consider the case of τ ∈ [0, T0]. Let us fix a bounded
subset B ∈ B (L2(Ω)). By the global boundedness result obtained in Theorem 3.1, there
is a constant NB > 0 such that

sup
t≥s

|u(t)|2L2(Ω) + sup
t≥0

∫ t+1

t
|∇u(τ )|qLq(Ω)dτ

+ sup
t≥s+T0

|u′|2L2(t,t+1;L2(Ω)) + sup
t≥s+T0

|∇u(t)|qLq(Ω) ≤ NB ,
(5.7)

for the solution u of (AP)s on [s, +∞) with initial value z as long as s ≥ 0 and z ∈ K(s)∩B.
Here for each m ∈ Z+, τ ∈ [0, T0], n ∈ N , z ∈ K(mT0 + τ) ∩ B and w ∈ E(nT0 +

mT0 + τ,mT0 + τ)z, we put w̃ := w − l(nT0 + mT0 + τ) + lp(τ). Then w̃ ∈ Kp(τ) and

|w̃ − w|L2(Ω) ≤ C1Jm+n,

(hence |w̃|L2(Ω) ≤
√

NB + C1Jm+n)
(5.8)

and

|∇w̃|Lq(Ω) ≤ N
1
q

B + Jm+n, (5.9)

where C1 := meas.(Ω)
q−2
2q .

Since Jk converges to 0 as k → +∞, there exists a positive number N0 ∈ N such that

Jk ≤ 1, ∀k > N0.

Here we put J0 := 1 + sup
1≤k≤N0

Jk < +∞.

Now, we denote the set B̃τ by

B̃τ := {z ∈ L2(Ω); |z|L2(Ω) ≤
√

NB + C1J0} ∩ Kp(τ) (5.10)

Since B0,τ is the absorbing set for Uτ , there is a positive number Ñ ∈ N such that

U l
τ B̃τ ⊂ B0,τ , ∀l ≥ Ñ . (5.11)
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Now, let us prove (5.6). Let x be any element of ωτ (B). Then, by Remark 5.1 we
see that there exist sequences {kn} ⊂ Z+ with kn ↑ +∞, {mn} ⊂ Z+, {zn} ⊂ B with
zn ∈ K(mnT0 + τ) and {xn} ⊂ L2(Ω) with xn ∈ E(knT0 + mnT0 + τ,mnT0 + τ)zn such
that

xn −→ x in L2(Ω) as n → +∞. (5.12)

Let Ñ be the positive number obtained in (5.11). It follows from (E2) that

xn ∈ E(knT0 + mnT0 + τ, knT0 + mnT0 + τ − ÑT0)

◦E(knT0 + mnT0 + τ − ÑT0,mnT0 + τ)zn (5.13)

for any n with kn ≥ Ñ + 1.

By (5.13) there is a element yn ∈ E(knT0 + mnT0 + τ − ÑT0,mnT0 + τ)zn such that

xn ∈ E(knT0 + mnT0 + τ, knT0 + mnT0 + τ − ÑT0)yn. (5.14)

Here we note that

|yn|2L2(Ω) ≤ NB and |∇yn|qLq(Ω) ≤ NB for any n with kn ≥ Ñ + 1,

where NB is the same positive constant in (5.7).
It follows from (5.8)-(5.9) that for yn ∈ E(knT0 + mnT0 + τ − ÑT0,mnT0 + τ)zn we

can take ỹn := yn − l(knT0 + mnT0 + τ − ÑT0) + lp(τ) ∈ Kp(τ) satisfying

|ỹn|L2(Ω) ≤
√

NB + C1Jkn+mn−Ñ
and |∇ỹn|Lq(Ω) ≤ N

1
q

B + J
kn+mn−Ñ

.

Clearly, {ỹn ∈ Kp(τ) ; n ∈ N with kn ≥ Ñ + 1}(⊂ B̃τ ) is relatively compact in L2(Ω),
hence we may assume that

ỹn −→ ỹ∞ in L2(Ω) as n → +∞
for some ỹ∞ ∈ L2(Ω); it is easily see that ỹ∞ ∈ B̃τ and

yn −→ ỹ∞ in L2(Ω) as n → +∞. (5.15)

Here, applying Lemma 5.1, it follows from (5.12)-(5.15) that

x ∈ U(ÑT0 + τ, τ)ỹ∞ ⊂ U(ÑT0 + τ, τ)B̃τ = U Ñ
τ B̃τ ⊂ B0,τ .

Therefore we observe that ωτ (B) ⊂ B0,τ .
For the general case of τ ∈ R+ there are positive numbers iτ ∈ N and τ0 ∈ [0, T0] such

that τ = τ0 + iτT0. Therefore, by the same argument as above, we can prove (5.6). ♦

Proof of Theorem 5.1. By Lemma 5.2 we easily see that A∗
τ ⊂ B0,τ , hence, Theorem

5.1 (i) holds. Also, it follows from (5.1) and Remark 5.1 that Theorem 5.1 (ii) holds.
Now, let us prove Theorem 5.1 (iii). At first, we show that A∗

τ ⊂ U i
τA∗

τ for any i ∈ N .
To do so, let x be any element of A∗

τ . By the definition of A∗
τ , we may assume that there

exist sequences {Bn} ⊂ B(L2(Ω)) and {xn} ⊂ L2(Ω) with xn ∈ ωτ (Bn) such that

xn −→ x in L2(Ω) as n → +∞. (5.16)
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It follows from Remark 5.1 that for each n, there exist sequences {kn,j} ⊂ Z+ with
kn,j → +∞, {mn,j} ⊂ Z+, {zn,j} ⊂ Bn with zn,j ∈ K(mn,jT0 + τ) and {vn,j} ⊂ L2(Ω)
with vn,j ∈ E(kn,jT0 + mn,jT0 + τ, mn,jT0 + τ)zn,j such that

vn,j −→ xn in L2(Ω) as j → +∞. (5.17)

Let i be any number in N . We note that

vn,j ∈ E(kn,jT0 + mn,jT0 + τ, kn,jT0 + mn,jT0 + τ − iT0)

◦E(kn,jT0 + mn,jT0 + τ − iT0, mn,jT0 + τ)zn,j

for j with kn,j ≥ i+1. Hence there is a wn,j ∈ E(kn,jT0 +mn,jT0 +τ − iT0, mn,jT0 +τ)zn,j

such that
vn,j ∈ E(kn,jT0 + mn,jT0 + τ, kn,jT0 + mn,jT0 + τ − iT0)wn,j. (5.18)

For each n, by Theorem 3.1, the set {wn,j ∈ L2(Ω) ; j ∈ N with kn,j ≥ i + 1} is
relatively compact in L2(Ω). So, we may assume that the element wn,j converges to some
element w̃n,∞ ∈ L2(Ω) as j → +∞. Clearly, w̃n,∞ ∈ ωτ (Bn). Moreover, from Lemma 5.1
and (5.17)-(5.18), we observe that

xn ∈ U(iT0 + τ, τ)w̃n,∞ ⊂ U(iT0 + τ, τ)ωτ (Bn),

which implies that
xn ∈ ⋃

n≥1

U i
τωτ (Bn), ∀n ≥ 1. (5.19)

Moreover, by the closedness of U(·, ·), we observe that for each subset X of B0,τ ,

U i
τX ⊂ U i

τX, ∀i ∈ N. (5.20)

Since Lemma 5.2, (5.16), (5.19) and (5.20), we see that

x ∈ ⋃
n≥1

U i
τωτ (Bn) = U i

τ

⋃
n≥1

ωτ (Bn) ⊂ U i
τ

⋃
n≥1

ωτ (Bn) ⊂ U i
τA∗

τ .

Hence we observe that A∗
τ is semi-invariant under the T0-periodic dynamical systems Uτ ,

namely
A∗

τ ⊂ U i
τA∗

τ , ∀i ∈ N. (5.21)

Next we shall show that U i
τA∗

τ ⊂ Aτ for any i ∈ N . By (5.21), for each i ∈ N

U i
τA∗

τ ⊂ U i
τU

n
τ A∗

τ = U i+n
τ A∗

τ , ∀n ∈ N. (5.22)

Since A∗
τ ⊂ B0,τ , from (5.22) and the attractive property of Aτ it follows that

U i
τA∗

τ ⊂ Aτ , ∀i ∈ N,

hence we conclude that A∗
τ ⊂ U i

τA∗
τ ⊂ Aτ for any i ∈ N. ♦
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Proof of Theorem 5.2. Let x be any element of A∗
τ . Then by (5.1), we see that there

exist sequences {Bn} ⊂ B(L2(Ω)) and {xn} ⊂ L2(Ω) with xn ∈ ωτ (Bn) such that

xn −→ x in L2(Ω) as n → +∞. (5.23)

It follows from Remark 5.1 that for each n, there exist sequences {kn,j} ⊂ Z+ with
kn,j → +∞, {mn,j} ⊂ Z+, {zn,j} ⊂ Bn with zn,j ∈ K(mn,jT0 + τ) and {vn,j} ⊂ L2(Ω)
with vn,j ∈ E(kn,jT0 + mn,jT0 + τ, mn,jT0 + τ)zn,j such that

vn,j −→ xn in L2(Ω) as j → +∞. (5.24)

Note that for given s, τ ∈ R+ with s ≤ τ , we can take a positive number is ∈ N
satisfying

s ≤ τ ≤ s + isT0.

From (E2) it follows that

vn,j ∈ E(kn,jT0 + mn,jT0 + τ, kn,jT0 + mn,jT0 + s)

◦E(kn,jT0 + mn,jT0 + s, isT0 + mn,jT0 + s + T0)

◦E(isT0 + mn,jT0 + s + T0, mn,jT0 + τ)zn,j

for any j ∈ Z+ with kn,j ≥ is + 2. So, there are element wn,j ∈ L2(Ω) and yn,j ∈ L2(Ω)
such that

vn,j ∈ E(kn,jT0 + mn,jT0 + τ, kn,jT0 + mn,jT0 + s)wn,j, (5.25)

wn,j ∈ E(kn,jT0 + mn,jT0 + s, isT0 + mn,jT0 + s + T0)yn,j (5.26)

and
yn,j ∈ E(isT0 + mn,jT0 + s + T0, mn,jT0 + τ)zn,j. (5.27)

Since {zn,j} ⊂ Bn, it follows from the global boundedness results in Theorem 3.1 that
there is a positive constant Cn := Cn(Bn) > 0 satisfying

|yn,j|L2(Ω) ≤ Cn, ∀yn,j ∈ E(isT0 + mn,jT0 + s + T0, mn,jT0 + τ)zn,j. (5.28)

By (5.28) and Theorem 3.1, the set⎧⎨⎩wn,j ∈ L2(Ω) ;
wn,j ∈ E(kn,jT0 + mn,jT0 + s, isT0 + mn,jT0 + s + T0)yn,j

for any j ∈ Z+ with kn,j ≥ is + 2

⎫⎬⎭
is relatively compact in L2(Ω). So, we may assume that the element wn,j converges to
some element w̃n,∞ ∈ L2(Ω) as j → +∞. Clearly, w̃n,∞ ∈ ωs(BCn), where BCn := {b ∈
L2(Ω) ; |b|L2(Ω) ≤ Cn}. Moreover, by Lemma 5.2, we see that

ωs(BCn) ⊂ B0,s ⊂ Kp(s),

where B0,s is the compact absorbing set for Us. Also, by Lemma 5.1 and (5.24)-(5.25) we
have

xn ∈ U(τ, s)w̃n,∞ ⊂ U(τ, s)ωs(BCn), ∀n ≥ 1,
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which implies that
xn ∈ ⋃

n≥1

U(τ, s)ωs(BCn), ∀n ≥ 1. (5.29)

Moreover, by the closedness of U(·, ·), we observe that for each subset X of B0,s,

U(τ, s)X ⊂ U(τ, s)X. (5.30)

Since Lemma 5.2, (5.23), (5.29) and (5.30), we see that

x ∈ ⋃
n≥1

U(τ, s)ωs(BCn) = U(τ, s)
⋃
n≥1

ωs(BCn) ⊂ U(τ, s)
⋃
n≥1

ωs(BCn) ⊂ U(τ, s)A∗
s.

Hence we observe that A∗
τ is the subset of U(τ, s)A∗

s, namely A∗
τ ⊂ U(τ, s)A∗

s. ♦

Proof of Theorem 5.3. For any B ∈ B(L2(Ω)), let z0 be any element of ωE(B). Then
there exist sequences {tn} ⊂ R+ with tn ↑ +∞, {τn} ⊂ R+, {yn} ⊂ B with yn ∈ K(τn)
and {zn} ⊂ L2(Ω) with zn ∈ E(tn + τn, τn)yn such that

tn := knT0 + t′n, kn ∈ Z+, kn ↗ +∞, t′n ∈ [T0, 2T0], t′n → t′0,

τn := inT0 + τ ′
n, in ∈ Z+, τ ′

n ∈ [0, T0], τ ′
n → τ ′

0

and
zn −→ z0 in L2(Ω) (5.31)

as n → +∞; we may assume further that

(a) t′n + τ ′
n ↗ t′0 + τ ′

0 or (b) t′n + τ ′
n ↘ t′0 + τ ′

0.

Assume that (a) holds. Let us consider the semiflow

vn ∈ E(1 + knT0 + inT0 + t′0 + τ ′
0, knT0 + inT0 + t′n + τ ′

n)zn. (5.32)

Then, there exists functions un and θn such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
n(t) − div(|∇un(t)|q−2∇un(t)) − g(un(t)) = θn(t, x) in [0,+∞) × Ω,

0 ≤ θn(t, x) ≤ h(t + knT0 + inT0 + t′n + τ ′
n, un(t, x)) a.e. on (0,+∞) × Ω,

un(t) = l(t + knT0 + inT0 + t′n + τ ′
n) a.e. on (0,+∞) × Γ,

un(0) = zn in Ω,

un(1 + t′0 + τ ′
0 − t′n − τ ′

n) = vn.

Since zn → z0 in L2(Ω), {zn} is bounded in L2(Ω), hence we see that⎧⎨⎩vn ∈ L2(Ω);
vn ∈ E(1 + knT0 + inT0 + t′0 + τ ′

0, knT0 + inT0 + t′n + τ ′
n)zn

for any n ∈ N

⎫⎬⎭
is relatively compact in L2(Ω). So we may assume that

vn −→ v in L2(Ω) for some v ∈ L2(Ω). (5.33)
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Therefore, by Lemma 5.1 and (5.31)-(5.33), we have

v ∈ U(1 + t′0 + τ ′
0, t′0 + τ ′

0)z0,

more precisely, (taking the subsequence of {n} if necessary) there are functions u and θ
such that

(PP)T0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′(t) − div(|∇u(t)|q−2∇u(t)) − g(u(t)) = θ(t, x) in [0,+∞) × Ω,

0 ≤ θ(t, x) ≤ hp(t + t′0 + τ ′
0, u(t, x)) a.e. on (0,+∞) × Ω,

u(t) = lp(t + t′0 + τ ′
0) a.e. on (0,+∞) × Γ,

u(0) = z0 in Ω,

u(1) = v.

and
un −→ u in C([0, 2];L2(Ω)) as n → +∞. (5.34)

By (5.34), we easily observe that

un(t′0 + τ ′
0 − t′n − τ ′

n) −→ z0 as n → +∞. (5.35)

Here, we note that

un(t′0 + τ ′
0 − t′n − τ ′

n)

∈ E(knT0 + inT0 + t′0 + τ ′
0, knT0 + inT0 + t′n + τ ′

n)zn

= E(knT0 + inT0 + t′0 + τ ′
0, inT0 + t′0 + τ ′

0)E(inT0 + t′0 + τ ′
0, inT0 + τ ′

n)yn,

hence there is a element xn ∈ E(inT0 + t′0 + τ ′
0, inT0 + τ ′

n)yn such that

un(t′0 + τ ′
0 − t′n − τ ′

n) ∈ E(knT0 + inT0 + t′0 + τ ′
0, inT0 + t′0 + τ ′

0)xn. (5.36)

Clearly, by the global estimate of solutions, {xn} is bounded, i.e.

{xn} ⊂ B̃ for some B̃ ∈ B(L2(Ω)). (5.37)

Hence it follows from (5.35)-(5.37) and Remark 5.2 that

z0 ∈ ωt′0+τ ′
0
(B̃) ⊂ A∗

t′0+τ ′
0
⊂ A∗.

Thus (5.3) holds. Assuming that (b) holds, we similarly get (5.3). ♦

Theorem 5.1 says that the attracting set A∗
τ for (AP)s is semi-invariant under Uτ

associated with the limiting T0-periodic problem (PP)T0
, in general. Moreover, in Theorem

5.2 we see that A∗
τ ⊂ U(τ, s)A∗

s.
In order to get the invariance of A∗

τ under Uτ and A∗
τ = U(τ, s)A∗

s, we have to assume
the additional conditions for l and h.

Theorem 5.4 Suppose all conditions (A1)-(A3). Let A∗
s and A∗

τ be discrete attractors
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for E(·, s) and E(·, τ), with 0 ≤ s ≤ τ < +∞, respectively. Furthermore we assume that
the boundary condition l(t) for (AP)s coincides with lp(t), namely l(t) ≡ lp(t) on Γ for
any t ≥ 0. And we suppose that hp(t, z) ≤ h(t, z) for any 0 ≤ t < +∞ and z ∈ R. Then,
(i) A∗

τ = U(τ, s)A∗
s for any 0 ≤ s ≤ τ < +∞.

(ii) A∗
τ = Aτ for any τ ∈ R+, where Aτ is the discrete attractor of Uτ for (PP)T0

.

Proof. Let us show (i). By taking account of Theorem 5.2, we have only to show that
U(τ, s)A∗

s ⊂ A∗
τ . To do so, let x be any element of U(τ, s)A∗

s.
At first, we note that for each n ∈ N

Un
τ U(τ, s)A∗

s = U(nT0 + τ, τ)U(τ, s)A∗
s

= U(nT0 + τ, nT0 + s)U (nT0 + s, s)A∗
s

= U(τ, s)Un
s A∗

s

⊃ U(τ, s)A∗
s.

(5.38)

By (5.38), there is a element yn ∈ A∗
s such that

x ∈ Un
τ U(τ, s)yn = U(nT0 + τ, s)yn.

Therefore, there is a solution {u, θ} of (PP)T0
on [s, +∞) such that u(nT0 + τ) = x and

u(s) = yn.
Let {kn} ⊂ N be a sequence with kn → +∞ as n → +∞. Here, we put

un(σ, · ) := u(σ − knT0, · ) and θn(σ, · ) := θ(σ − knT0, · )

for any σ ≥ knT0 + s. Then, by the assumptions of Theorem 5.4 we see that

un(σ) = u(σ − knT0) = lp(σ − knT0) = lp(σ) = l(σ) on Γ

and

0 ≤ θn(σ, x) = θ(σ − knT0, x) ≤ hp(σ − knT0, u(σ − knT0, x))

= hp(σ, un(σ, x)) ≤ h(σ, un(σ, x))

for any σ ≥ knT0 +s and x ∈ Ω. Therefore, the pair of functions {un, θn} is the solution of
(AP)knT0+s such that un(nT0 + knT0 + τ) = u(nT0 + τ) = x and un(knT0 + s) = u(s) = yn,
which implies that x ∈ E(nT0 + knT0 + τ, knT0 + s)yn for any n ≥ 1. By (E2), we see that

x ∈ E(nT0 + knT0 + τ, knT0 + s)yn

= E(nT0 + knT0 + τ, T0 + knT0 + τ)E(T0 + knT0 + τ, knT0 + s)yn.

Hence there is an element zn ∈ E(T0 + knT0 + τ, knT0 + s)yn such that

x ∈ E(nT0 + knT0 + τ, T0 + knT0 + τ)zn. (5.39)

Since {yn} ⊂ A∗
s and the global estimate obtained in Theorem 3.1, we see that {zn} is

bounded in L2(Ω), namely {zn} ⊂ B̃ for some B̃ ∈ B(L2(Ω)). The above fact (5.39)
implies (cf. Remark 5.1) that x ∈ ωτ (B̃) ⊂ A∗

τ . Thus U(τ, s)A∗
s ⊂ A∗

τ , which implies that
(i) of Theorem 5.4 holds.

Since Aτ is invariant under Uτ (cf. Theorem 4.1 (iii)), by the same argument in (i),
we can show (ii). Therefore, Theorem 5.4 has been completed. ♦
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