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Abstract. We are interested in extremal functions in a Hardy space H?(T™) (1 <
p < o0). For example, we study extreme points of the unit ball of H'(T™) and give a
factorization theorem. In particular, we show that any rational function can be factorized.



§1. Introduction

Let D™ be the open unit polydisc in ™ and T™ be its distiguished boundary. The
normalized Lebesgue measure on 7" is denoted by dm. For 0 < p < oo, HP(D") is the
Hardy space and LP(T™) is the Lebesgue space on T™. Let N(D™) denote the Nevanlinna
class. Each f in N(D™) has radial limits f* defined on 7" a.e.dm. Moreover, there is
a singular measure doy on 1" determined by f such that the least harmonic majorant
u(log | f]) of log|f] is given by u(log |f|)(2) = P.(log|f*| + doy) where P, denotes Poisson
integration and z = (21, 22, -+, 2,) € D". Put N, (D") = {f € N(D") ; doy < 0}, then
HP(D"™) C N.(D") C N(D") and H?(D™) = N.(D™) N LP(T”)gN(D") N LP(T™). These

facts are shown in [5, Theorem 3.3.5].
Let £ be a subset of L>*(T™). For a function f in H?, put

Lh={peL; ¢f € H"}.

When £ C H®, f is called an L-extremal function for H?. When £ = L*(T"), L =
LE(T™) or L = Lgp(T™) is the set of all unimodular functions, such L-extremal functions
have been considered in [3]. In [3], the author studied functions which have harmonic
properties (A),(B),(C). For example, the property (A) is the following : If f € H? and
|f] > lg| a.e. on T" then |f| > |g| on D". It is easy to see that f is an L-extremal
function for H? and £ = L*>°(T™") if and only if f has the property (A). The propertis (B)
and (C) are related to £ = LE(T™) and L = Lg(T™), respectively. In this paper, as £
we consider only the above three sets.

Definition. When f is not L-extremal for HP, if there exists a function ¢ in
L such that ¢f = h is an L-extremal function for HP, we say that f is factorized as

f=0""h

In this paper, we are interested in when f is factorized for £ = L*(T") or
L= LF(T"). The function h in N(D™) is called outer function if

/ log |h|dm = log
Tn

/ hdm‘ > —o0.
Tn

The function ¢ in N,(D™) is called inner function if |¢| = 1 a.e.dm on T™. When £ C L', a
L'-extremal function is always L-extremal. If f is an outer function, then f is L-extremal
for £L = L>®(T™). In fact, if ¢f is in HP then ¢ belongs to f~'HP? and f~'H? C N,. Hence
if ¢ is bounded then ¢ belongs to H> because N, N L>*(T™) = H>*. When n =1, f is
L-extremal if and only if f is an outer function. This is known because f has an inner
outer factorization.

In this paper, for a subset S in L*> we say that S is of finite dimension if the
linear span of S is of finite dimension. We use the follwing notations.

2= (2,2), 7= (21,7, 2-1, Zj41,7 "5 Zn)-



D" = D; x D, D} = [1pz; De where D" = [[;_; Dy and Dy = D.

T =T; x T}, T; = [lsz; Ty where T" =T[,_, Ty and T, = T'.

m = my; x mj, m; = [lsz; me where m = [[;_; my; and my is the normarized
Lebesgue measure on 7Tj.

§2. L =LY

In this section, we assume that £ = L%. When n = 1, any nonzero function
in H? has a L% -factorization in H? by Proposition 1. Even if n > 1, we have a lot of
L% -extremal functions for HP?.

Proposition 1. If f = gh where q is inner and h is Ly -extremal for H?, then f
has a LS5 -factorization in HP : f = ¢~ 'k where ¢ = q+q and k = (1+q?)h is LY -extremal
for HP.

Proof. It is enough to show that (1+¢?)h is L$s-extremal for H?. If ¢ € L35 (T™)
and ¥ (1 + ¢*)h € HP then (1 + ¢?) belongs to H>® because h is L -extremal for HP.
Since 1 + ¢ is outer and so 1 + ¢* is L-extremal for HP, 1) belongs to H*™. a

Proposition 2. Suppose [ is a nonzero function in H'. f is LY-extremal for
H' if and only if f/| fll1 is an extreme point of the unit ball of H'.
Proof. It is well known. a

The degree of a monomial 2{* - - - 28" (where ay; € Z) is ag+- - -+a,,. The degree
of a polynomial P is the maximum of the degrees of the monomials which occur in P with
non-zero coefficient. The degree of a rational function f = P/Q is the maximum of deg

P, deg @, provided that all common factors of positive degree have first been cancelled.

Theorem 3. Let 0 < p < oo and L =LY¥. If f is a nonzero function in H? and
EIJ; is of finite dimension then there exists a function ¢ in L such that f = ¢~ h and h is
L-extremal for HP.

Proof. Suppose that Eg is of finite dimension. Then there exist si, Sg, -+, S, In
% such that {s;}7_, is a basis of £, s; =1 and s;' ¢ L>. For if s, € L* then there
exists a real number A such that (s, — A)™' ¢ L>®. Then {sy, s, -, (s, — A)} is also a

basis.

When Ef,"f = R, put ¢ = s, and h = s, f, then the theorem is proved. Suppose
that E;"f # R. If /1 is a nonconstant function in Eznf then ¢;s,, is nonconstant because
s,t ¢ L>*. We may assume that ;' ¢ L. When LI/ = R, put ¢ = {5, and
h = {1s,f, then the theorem is proved. Suppose that Lf}snf # R. Then there exists /5 in
Ef;s"f such that ¢3¢, s,, is nonconstant and /5 ! ¢ L. When Efles"f # R, we can proceed

similarly. Put
ki=04li---4 (j=1,2,---.n)



where ;' ¢ L™ (1 <14 < j). Suppose that E’;js"f # Rfor j =1,2,---,n. Hence

kan:ZCYijSZ‘ (j: 1,27"',71)

i=1
and so for j =1,2,--- ' n
n—1
Z aijsi + (Oénj — kj)Sn = 0.
i=1
Hence
a1t Qo1 0y — Ry
Qry cc Qpo1o Opg — ko
. . =0
Ay 0 Op—1n Opp — kn

and so there exist vy, -+, 7, in ¢ such that

’yl(anl - kl) + '72(05712 - k2) +oeee f}/n(ann - kn) =0

where
an o Qpo11
a1 -1 " Qp_1j-1 .
Vi = L I,
a1 41 Ap—1 j+1
A1n T Qp_1n

Hence Z VO = Zvjkj. Here we need the following claim.
j=1 j=1

t
Claim For any t (1 <t <n), if (01, --,6) # (0,---,0) then § = d;k; can not
j=1
be constant.
Proof. Let s be the smallest integer such that s # 0 and 1 < s < t. Then

t
6 = 0;k;. Hence

j=s
6= 0g(ly - ly) 4o+ 0,0y L) lyyr - Ly

If 6 =0, then 0 = d5 4+ 05110541 + -+ + 0lsy1 - - - 4 and this contradicts that Es_jl ¢ L™
because &, # 0. If § is a nonzero constant, then this contradicts that (¢, ---£¢,)~" ¢ L.

Now we will prove that the equality : Z VO = ZW k; contradicts the definition
j=1 j=1
of kj (1 < j < mn). If 5, = 0, then there exist (d1,---,0,-1) # (0,---,0) such that



51<0411a S 7o | 1) + - +5n—1(a1 n—1," ", 0p—_1 n—l) = (Oa e 70) Hence

n—1 n—1
Z 5joznj Sn — Z 5jkj Sn
i=1 i=1

n—1 n—1 n—1
because Zaijsi + sy = kjsy, for j = 1,2,---,n. Hence Zéjanj = Zéjkj because
im1 j=1 j=1

|sp] > 0. This contradicts the claim. Hence 7, # 0. Thus (y1,--+,7,) # (0,---,0) and

> v;k; is constant. This also contradicts the claim. Thus £***/ = R and so the theorem
j=1
is proved.

Lemma 1. Letp > 1 and f be in H?. If f,(C) = f(Cz) is a rational function (of
one variable) of degree < kg < oo, for almost all z € T™ then f is a rational function (of
n variables) of degree k and k < k.

Proof. There exist a nonnegative integer £ < ko and a closed set E} such that
f-(C) is a rational function (of one variable) of degree k for all z € Ej, and Ej, is a nonempty
interior. We will use [5, Theorem 5.2.2]. In Theorem 5.2.2 in [5], we put Q@ = D™ and
E = Ey. If f.(¢) is a rational function (of one variable) of degree k for all z € F, then f
belongs to Y in Theorem 5.2.2 in [5]. For f, is in H?(D), p > 1 and so f, is continuous
on 0D. Now Theorem 5.2.2 in [5] implies the lemma. O

Proposition 4. Suppose 1 < p < oo. Eg 1s of finite dimension if f is a rational
function.

Proof. Suppose f = P/Q is a nonzero function in H? where P and @ are
polynomials. If s € /JZJ: then sP/Q € HP and so sP € HP. Hence s belongs to Ef and so
ﬁg C E; . It is enough to prove that CZI; is of finite dimension.

Case n = 1. We have the inner outer factorization for n = 1, that is, P = qh
where q is a finite Blaschke product and h is an outer function in HP. Then it is easy to see
that EII: = L. Since LI C gHP N qH? and LI CL>*, L1C qH*NqH? = G(H?> N ¢*H?) =
q(H* © ¢*HF). H* © ¢*HE is of finite dimension because q is a finite Blaschke product.

Case n # 1. If s € L then sP € H? and by Case n =1 (sP).(C) is a rational
function (of one variable) of degree < ko for almost all z € T". By Lemma 1, sP is a
rational function (of n variables) of degree k and k < ko. This implies that Ef; s of finite
dimension. a

When f is a rational function in H?, by Theorem 3 and Proposition 4 f has our
factorization. The function h in N(D") is called z;-outer if

J

/TxT; lOglh(zj,z})|dm:/T]{(log|/Tj h(z;, 23)dm;|)dm), > —co.



Proposition 5. Fiz 1 < j <n. If f(z1,---,2,) is z;-outer in H? for i # j and
1 <i<mn, then [ has a factorization in HP.

Proof. We will generalize Theorem 2 in [3]. That is, when & is z;-outer in H? for
i # j, L = R if and only if the common inner divisor of {hq(2;)}q is constant, where

ha(zj) = /T{ h(zj, 25)2"5 dm)|

o —x =01 _Oéj71 _Oé]'+1 —
a0 = (a1, e, ) and 2y = 222 2 Note that b (25)

belongs to H?(T}). For the proof, we use the following notation : H{;) = {f € LP(T™) ;
flmy, -, my) =0if m; <0 forall i # j} and H€j) ﬂI:I@.) = L% = the Lebesgue space on
T;.

If ¢ € LZ then g = ¢h and ¢ belongs to Hf'j) because h is z;-outer in H? for i # j.
Since ¢ is real-valued, ¢ € LY and so ¢ = ¢(z;). If the common inner divisor of {hq(2;)}a
is constant, then for each «

Oz halz) = [ 60z, )5 dm] = [ gl ) dm;

belongs to HP(T};) and hence ¢ € H*(Tj). Therefor ¢ is constant. This implies that
Ll = R. Conversely suppose that £ = R. If {ha(z;)}a has a non-constant common

inner divisor q(z;), put ¢(2;,2;) = q(2;) + q(z;), then g = ¢h belongs to HP. This
contradiction shows the ‘only if’ part.

Now we will prove that f has a factorization in HP. If {f,(2;)}, does not have
common inner divisors, then by what was just prove /Jg = R and so we need not prove.
If {fa(2j)}a have common inner divisors, let g(z;) be the greatest common inner divisor.
Put ¢ = q(2;) +q(z;) and h = ¢f, then h belongs to H? and EZ = R. This completes the
proof.

§3 L= L

In this section, we assume that £ = L*>. If f is a L*-extremal function for H”
then f is also a L%-extremal function for H?. When n = 1, the converse is true. However
this is not true for n # 1. For example, z — 2w is a Lf-extremal fnction but not a
L*>-extremal. We can prove an analogy of Proposition 1 for L*. Let My be an invariant
closed subspace generated by f in H? and M(Mjy) the set of multipliers of M; (see [1]).
Then M(Mjy) = L] for £ = L>. Tt is easy to see that

(L)) N (L)) = (L)) +i(LF)L.

It is easy to see that (Loo)g is a weak * closed invariant subspace which contains H*.
Then (L>)J/H> is of infinite dimension (see [4, Theorem 1]). Thus we can not expect
the analogy of Theorem 3.



Proposition 6. Let 1 < p < oo and f a nonzero function in HP. Suppose ¢ is
in L.

(1) £} 2 687 2 pH™.

(2) ¢~ is in L™ if and only if LI = ¢LI7.

(3) If Cgf ) Eg then ¢ belongs to H>. If ﬁg D) Eg’f and ¢t is in L then ¢!
belongs to H™.

Proof. (1) If g € LY then ¢gf = gpf € H? and so g € L. (2) If p~! € L™
then £57 2 ¢~' LS D L3 by (1). If L] = ¢L2) then ¢~ LS = L7 and so ¢ € LI, This
implies that ¢~ € L*>. (3) Suppose Lﬁg’f ) Eg. If k e E}: then k € E]‘ff and so kof € HP.
Hence ¢?f € HP. Repeating this process, ¢" € ££ and so ¢"f € HP for all n > 1. Thus
¢ belongs to H>®. If L] O L7 and ¢! € L™, then ¢! belongs to H>. For apply what
was proved above for ¢! assuming ¢~ (¢ f) = f.

When f is a nonzero function in H?, f is factorable in H? if and only if there
exists a nonzero function h in H? such that |f| > |h| a.e. on T? and L} = H*.

Proposition 7. Let 1 < p < oo and f be a nonzero function in H?. Suppose ¢
s a nonzero function in Eg.

(1) If ¢~ is in L™ and LT = H*™, then ¢~' belongs to H* and L = ¢H™.

(2) If LI = ¢H>, then ¢~ belongs to H® and L3 = H>.

(3) If L] is the weak x closure of pH™ and |¢| = |h| a.e. for some function h in
H*> then Efj(’f = H® for some inner function ¢g and so f is factorable.

(4) There exist f and ¢ such that ¢ is not the quotient of any two menbers of
H>(Tm).

Proof. (1) By (2) of Proposition 6, ¢£5" = L]. Since LI/ = H®, ¢H>® = L D
H> and so ¢! belongs to H>*. (2) Since LI 2 ¢ L7 O ¢H> by (1) of Proposition 6
and L] = gH™>, L = H®. It is clear that ¢~ € H*™. (3) Since |¢| = |h| a.e., ¢ = doh
and |¢o| =1 a.e.. Then L = [pH™], = ¢o[hH>®], D H* and so ¢y is an inner function
where [S]. is the weak * closure of S. (4) This is a result of [6].

Proposition 8. Let 1 < p < oco. Suppose f and g are nonzero functions in HP.

(1) If L5 = H*> and |f| > |g| a.e., then there exists a function ¢ in H* such
that g = ¢ f.

(2) If LI = H>® and |f| = |g| a.e., then there exists an inner function ¢ such
that g = of.

Proof. (1) Let ¢ = g/ f, then ¢ € L™ because |f| > |g| a.e.. By (1) of Proposition
6, ¢ belongs to H>™ because H* = LI. (2) follows from (1).

Proposition 9. Let 1 < p < oo. If f is homogeneous polynomial such that
f(z1, -+, 2n) = g(2,w) where z = z;, w=z; and i # j then f is factorable in HP.

g . . E ‘]
Proof. Since f(z1,--,2,) = Zajzzijwj’ flzreesz) = ZEZ i (w) -
‘ ; z
3=0 §=0



¢
c[J(bjw — ¢jz) where b; = 1 or ¢; = 1, and |b;| < 1, |¢;| < 1. It is easy to see that
=0
L] = ¢H> where ¢ = [[(az — fw) ™" and («, §) € (0D x D) U (D x dD) (cf. [2],[4]). By
(2) of Proposition 7, f is factorable.

Question
(1) For any nonzero function f in HP, does there exists a function ¢ such that
f of
£p3£p ?

(2) Describe ¢ in L such that Eg;ﬁﬁf.
(8) Describe ¢ in L™ such that [(bHOO]*?HOO.
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