Factorizations Of Functions In $H^{p}\left(T^{n}\right)$

By

Takahiko Nakazi*

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan

2000 Mathematics Subject Classification : 32 A 35, 46 J 15

Key words and phrases : Hardy space, polydisc, factorizatio, extreme point

[^0]
§1. Introduction

Let D^{n} be the open unit polydisc in \mathbb{C}^{n} and T^{n} be its distiguished boundary. The normalized Lebesgue measure on T^{n} is denoted by $d m$. For $0<p \leq \infty, H^{p}\left(D^{n}\right)$ is the Hardy space and $L^{p}\left(T^{n}\right)$ is the Lebesgue space on T^{n}. Let $N\left(D^{n}\right)$ denote the Nevanlinna class. Each f in $N\left(D^{n}\right)$ has radial limits f^{*} defined on T^{n} a.e.dm. Moreover, there is a singular measure $d \sigma_{f}$ on T^{n} determined by f such that the least harmonic majorant $u(\log |f|)$ of $\log |f|$ is given by $u(\log |f|)(z)=P_{z}\left(\log \left|f^{*}\right|+d \sigma_{f}\right)$ where P_{z} denotes Poisson integration and $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in D^{n}$. Put $N_{*}\left(D^{n}\right)=\left\{f \in N\left(D^{n}\right) ; d \sigma_{f} \leq 0\right\}$, then $H^{p}\left(D^{n}\right) \subset N_{*}\left(D^{n}\right) \subset N\left(D^{n}\right)$ and $H^{p}\left(D^{n}\right)=N_{*}\left(D^{n}\right) \cap L^{p}\left(T^{n}\right) \subset N\left(D^{n}\right) \cap L^{p}\left(T^{n}\right)$. These facts are shown in [5, Theorem 3.3.5].

Let \mathcal{L} be a subset of $L^{\infty}\left(T^{n}\right)$. For a function f in H^{p}, put

$$
\mathcal{L}_{p}^{f}=\left\{\phi \in \mathcal{L} ; \phi f \in H^{p}\right\} .
$$

When $\mathcal{L}_{p}^{f} \subseteq H^{\infty}, f$ is called an \mathcal{L}-extremal function for H^{p}. When $\mathcal{L}=L^{\infty}\left(T^{n}\right), \mathcal{L}=$ $L_{R}^{\infty}\left(T^{n}\right)$ or $\mathcal{L}=L_{U}^{\infty}\left(T^{n}\right)$ is the set of all unimodular functions, such \mathcal{L}-extremal functions have been considered in [3]. In [3], the author studied functions which have harmonic properties (A),(B),(C). For example, the property (A) is the following: If $f \in H^{p}$ and $|f| \geq|g|$ a.e. on T^{n}, then $|f| \geq|g|$ on D^{n}. It is easy to see that f is an \mathcal{L}-extremal function for H^{p} and $\mathcal{L}=L^{\infty}\left(T^{n}\right)$ if and only if f has the property (A). The propertis (B) and (C) are related to $\mathcal{L}=L_{R}^{\infty}\left(T^{n}\right)$ and $\mathcal{L}=L_{U}^{\infty}\left(T^{n}\right)$, respectively. In this paper, as \mathcal{L} we consider only the above three sets.

Definition. When f is not \mathcal{L}-extremal for H^{p}, if there exists a function ϕ in \mathcal{L} such that $\phi f=h$ is an \mathcal{L}-extremal function for H^{p}, we say that f is factorized as $f=\phi^{-1} h$.

In this paper, we are interested in when f is factorized for $\mathcal{L}=L^{\infty}\left(T^{n}\right)$ or $\mathcal{L}=L_{R}^{\infty}\left(T^{n}\right)$. The function h in $N\left(D^{n}\right)$ is called outer function if

$$
\int_{T^{n}} \log |h| d m=\log \left|\int_{T^{n}} h d m\right|>-\infty
$$

The function q in $N_{*}\left(D^{n}\right)$ is called inner function if $|q|=1$ a.e.dm on T^{n}. When $\mathcal{L} \subset \mathcal{L}^{\prime}$, a \mathcal{L}^{\prime}-extremal function is always \mathcal{L}-extremal. If f is an outer function, then f is \mathcal{L}-extremal for $\mathcal{L}=L^{\infty}\left(T^{n}\right)$. In fact, if ϕf is in H^{p} then ϕ belongs to $f^{-1} H^{p}$ and $f^{-1} H^{p} \subset N_{*}$. Hence if ϕ is bounded then ϕ belongs to H^{∞} because $N_{*} \cap L^{\infty}\left(T^{n}\right)=H^{\infty}$. When $n=1, f$ is \mathcal{L}-extremal if and only if f is an outer function. This is known because f has an inner outer factorization.

In this paper, for a subset S in L^{∞} we say that S is of finite dimension if the linear span of S is of finite dimension. We use the follwing notations.

$$
z=\left(z_{j}, z_{j}^{\prime}\right), z_{j}^{\prime}=\left(z_{1}, \cdots, z_{j-1}, z_{j+1}, \cdots, z_{n}\right)
$$

$D^{n}=D_{j} \times D_{j}^{\prime}, D_{j}^{\prime}=\prod_{\ell \neq j} D_{\ell}$ where $D^{n}=\prod_{\ell=1}^{n} D_{\ell}$ and $D_{\ell}=D$.
$T^{n}=T_{j} \times T_{j}^{\prime}, T_{j}^{\prime}=\prod_{\ell \neq j} T_{\ell}$ where $T^{n}=\prod_{\ell=1}^{n} T_{\ell}$ and $T_{\ell}=T$.
$m=m_{j} \times m_{j}^{\prime}, \quad m_{j}^{\prime}=\prod_{\ell \neq j} m_{\ell}$ where $m=\prod_{\ell=1}^{n} m_{\ell}$ and m_{ℓ} is the normarized Lebesgue measure on T_{ℓ}.
§2. $\mathcal{L}=L_{R}^{\infty}$
In this section, we assume that $\mathcal{L}=L_{R}^{\infty}$. When $n=1$, any nonzero function in H^{p} has a L_{R}^{∞}-factorization in H^{p} by Proposition 1. Even if $n>1$, we have a lot of L_{R}^{∞}-extremal functions for H^{p}.

Proposition 1. If $f=q h$ where q is inner and h is L_{R}^{∞}-extremal for H^{p}, then f has a L_{R}^{∞}-factorization in $H^{p}: f=\phi^{-1} k$ where $\phi=q+\bar{q}$ and $k=\left(1+q^{2}\right) h$ is L_{R}^{∞}-extremal for H^{p}.

Proof. It is enough to show that $\left(1+q^{2}\right) h$ is L_{R}^{∞}-extremal for H^{p}. If $\psi \in L_{R}^{\infty}\left(T^{n}\right)$ and $\psi\left(1+q^{2}\right) h \in H^{p}$ then $\psi\left(1+q^{2}\right)$ belongs to H^{∞} because h is L_{R}^{∞}-extremal for H^{p}. Since $1+q^{2}$ is outer and so $1+q^{2}$ is L_{R}^{∞}-extremal for H^{p}, ψ belongs to H^{∞}.

Proposition 2. Suppose f is a nonzero function in $H^{1} . f$ is L_{R}^{∞}-extremal for H^{1} if and only if $f /\|f\|_{1}$ is an extreme point of the unit ball of H^{1}.

Proof. It is well known.
The degree of a monomial $z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ (where $\alpha_{i} \in Z_{+}$) is $\alpha_{1}+\cdots+\alpha_{n}$. The degree of a polynomial P is the maximum of the degrees of the monomials which occur in P with non-zero coefficient. The degree of a rational function $f=P / Q$ is the maximum of deg $P, \operatorname{deg} Q$, provided that all common factors of positive degree have first been cancelled.

Theorem 3. Let $0<p \leq \infty$ and $\mathcal{L}=L_{R}^{\infty}$. If f is a nonzero function in H^{p} and \mathcal{L}_{p}^{f} is of finite dimension then there exists a function ϕ in \mathcal{L} such that $f=\phi^{-1} h$ and h is \mathcal{L}-extremal for H^{p}.

Proof. Suppose that \mathcal{L}_{p}^{f} is of finite dimension. Then there exist $s_{1}, s_{2}, \cdots, s_{n}$ in L_{R}^{∞} such that $\left\{s_{j}\right\}_{j=1}^{n}$ is a basis of $\mathcal{L}_{p}^{f}, s_{1}=1$ and $s_{n}^{-1} \notin L^{\infty}$. For if $s_{n}^{-1} \in L^{\infty}$ then there exists a real number λ such that $\left(s_{n}-\lambda\right)^{-1} \notin L^{\infty}$. Then $\left\{s_{1}, s_{2}, \cdots,\left(s_{n}-\lambda\right)\right\}$ is also a basis.

When $\mathcal{L}_{p}^{s_{n} f}=R$, put $\phi=s_{n}$ and $h=s_{n} f$, then the theorem is proved. Suppose that $\mathcal{L}_{p}^{s_{n} f} \neq R$. If ℓ_{1} is a nonconstant function in $\mathcal{L}_{p}^{s_{n} f}$ then $\ell_{1} s_{n}$ is nonconstant because $s_{n}^{-1} \notin L^{\infty}$. We may assume that $\ell_{1}^{-1} \notin L^{\infty}$. When $\mathcal{L}_{p}^{\ell_{1} s_{n} f}=R$, put $\phi=\ell_{1} s_{n}$ and $h=\ell_{1} s_{n} f$, then the theorem is proved. Suppose that $\mathcal{L}_{p}^{\ell_{1} s_{n} f} \neq R$. Then there exists ℓ_{2} in $\mathcal{L}_{p}^{\ell_{1} s_{n} f}$ such that $\ell_{2} \ell_{1} s_{n}$ is nonconstant and $\ell_{2}^{-1} \notin L^{\infty}$. When $\mathcal{L}_{p}^{\ell_{2} \ell_{1} s_{n} f} \neq R$, we can proceed similarly. Put

$$
k_{j}=\ell_{j} \ell_{j-1} \cdots \ell_{1} \quad(j=1,2, \cdots, n)
$$

where $\ell_{i}^{-1} \notin L^{\infty} \quad(1 \leq i \leq j)$. Suppose that $\mathcal{L}_{p}^{k_{j} s_{n} f} \neq R$ for $j=1,2, \cdots, n$. Hence

$$
k_{j} s_{n}=\sum_{i=1}^{n} \alpha_{i j} s_{i} \quad(j=1,2, \cdots, n)
$$

and so for $j=1,2, \cdots, n$

$$
\sum_{i=1}^{n-1} \alpha_{i j} s_{i}+\left(\alpha_{n j}-k_{j}\right) s_{n}=0
$$

Hence

$$
\left|\begin{array}{cccc}
\alpha_{11} & \cdots & \alpha_{n-11} & \alpha_{n 1}-k_{1} \\
\alpha_{12} & \cdots & \alpha_{n-12} & \alpha_{n 2}-k_{2} \\
\vdots & & \vdots & \vdots \\
\alpha_{1 n} & \cdots & \alpha_{n-1 n} & \alpha_{n n}-k_{n}
\end{array}\right|=0
$$

and so there exist $\gamma_{1}, \cdots, \gamma_{n}$ in \mathbb{C} such that

$$
\gamma_{1}\left(\alpha_{n 1}-k_{1}\right)+\gamma_{2}\left(\alpha_{n 2}-k_{2}\right)+\cdots+\gamma_{n}\left(\alpha_{n n}-k_{n}\right)=0
$$

where

$$
\gamma_{j}=\left|\begin{array}{lll}
\alpha_{11} & \cdots & \alpha_{n-11} \\
\cdots & & \\
\alpha_{1 j-1} & \cdots & \alpha_{n-1 j-1} \\
\alpha_{1 j+1} & \cdots & \alpha_{n-1 j+1} \\
\cdots & & \\
\alpha_{1 n} & \cdots & \alpha_{n-1 n}
\end{array}\right|<j
$$

Hence $\sum_{j=1}^{n} \gamma_{j} \alpha_{n j}=\sum_{j=1}^{n} \gamma_{j} k_{j}$. Here we need the following claim.
Claim For any $t(1 \leq t \leq n)$, if $\left(\delta_{1}, \cdots, \delta_{t}\right) \neq(0, \cdots, 0)$ then $\delta=\sum_{j=1}^{t} \delta_{j} k_{j}$ can not be constant.

Proof. Let s be the smallest integer such that $\delta_{s} \neq 0$ and $1 \leq s \leq t$. Then $\delta=\sum_{j=s}^{t} \delta_{j} k_{j}$. Hence

$$
\delta=\delta_{s}\left(\ell_{1} \cdots \ell_{s}\right)+\cdots+\delta_{t}\left(\ell_{1} \cdots \ell_{s}\right) \ell_{s+1} \cdots \ell_{t}
$$

If $\delta=0$, then $0=\delta_{s}+\delta_{s+1} \ell_{s+1}+\cdots+\delta_{t} \ell_{s+1} \cdots \ell_{t}$ and this contradicts that $\ell_{s+1}^{-1} \notin L^{\infty}$ because $\delta_{s} \neq 0$. If δ is a nonzero constant, then this contradicts that $\left(\ell_{1} \cdots \ell_{s}\right)^{-1} \notin L^{\infty}$.

Now we will prove that the equality : $\sum_{j=1}^{n} \gamma_{j} \alpha_{n j}=\sum_{j=1}^{n} \gamma_{j} k_{j}$ contradicts the definition of $k_{j}(1 \leq j \leq n)$. If $\gamma_{n}=0$, then there exist $\left(\delta_{1}, \cdots, \delta_{n-1}\right) \neq(0, \cdots, 0)$ such that
$\delta_{1}\left(\alpha_{11}, \cdots, \alpha_{n-1} 1\right)+\cdots+\delta_{n-1}\left(\alpha_{1 n_{n-1}}, \cdots, \alpha_{n-1}{ }_{n-1}\right)=(0, \cdots, 0)$. Hence

$$
\left(\sum_{j=1}^{n-1} \delta_{j} \alpha_{n j}\right) s_{n}=\left(\sum_{j=1}^{n-1} \delta_{j} k_{j}\right) s_{n}
$$

because $\sum_{i=1}^{n-1} \alpha_{i j} s_{i}+\alpha_{n j} s_{n}=k_{j} s_{n}$ for $j=1,2, \cdots, n$. Hence $\sum_{j=1}^{n-1} \delta_{j} \alpha_{n j}=\sum_{j=1}^{n-1} \delta_{j} k_{j}$ because $\left|s_{n}\right|>0$. This contradicts the claim. Hence $\gamma_{n} \neq 0$. Thus $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \neq(0, \cdots, 0)$ and $\sum_{j=1}^{n} \gamma_{j} k_{j}$ is constant. This also contradicts the claim. Thus $\mathcal{L}^{k_{n} s_{n} f}=R$ and so the theorem is proved.

Lemma 1. Let $p \geq 1$ and f be in H^{p}. If $f_{z}(\zeta)=f(\zeta z)$ is a rational function (of one variable) of degree $\leq k_{0}<\infty$, for almost all $z \in T^{n}$ then f is a rational function (of n variables) of degree k and $k \leq k_{0}$.

Proof. There exist a nonnegative integer $k \leq k_{0}$ and a closed set E_{k} such that $f_{z}(\zeta)$ is a rational function (of one variable) of degree k for all $z \in E_{k}$ and E_{k} is a nonempty interior. We will use [5, Theorem 5.2.2]. In Theorem 5.2.2 in [5], we put $\Omega=D^{n}$ and $E=E_{k}$. If $f_{z}(\zeta)$ is a rational function (of one variable) of degree k for all $z \in E$, then f belongs to Y in Theorem 5.2.2 in [5]. For f_{z} is in $H^{p}(D), p \geq 1$ and so f_{z} is continuous on ∂D. Now Theorem 5.2.2 in [5] implies the lemma.

Proposition 4. Suppose $1 \leq p \leq \infty . \mathcal{L}_{p}^{f}$ is of finite dimension if f is a rational function.

Proof. Suppose $f=P / Q$ is a nonzero function in H^{p} where P and Q are polynomials. If $s \in \mathcal{L}_{p}^{f}$ then $s P / Q \in H^{p}$ and so $s P \in H^{p}$. Hence s belongs to \mathcal{L}_{p}^{P} and so $\mathcal{L}_{p}^{f} \subseteq \mathcal{L}_{p}^{P}$. It is enough to prove that \mathcal{L}_{p}^{P} is of finite dimension.

Case $n=1$. We have the inner outer factorization for $n=1$, that is, $P=q h$ where q is a finite Blaschke product and h is an outer function in H^{p}. Then it is easy to see that $\mathcal{L}_{p}^{P}=\mathcal{L}_{p}^{q}$. Since $\mathcal{L}_{p}^{q} \subset \bar{q} H^{p} \cap q \bar{H}^{p}$ and $\mathcal{L}_{p}^{q} \subset L^{\infty}, \mathcal{L}_{p}^{q} \subset \bar{q} H^{2} \cap q \bar{H}^{2}=\bar{q}\left(H^{2} \cap q^{2} \bar{H}^{2}\right)=$ $\bar{q}\left(H^{2} \ominus q^{2} H_{0}^{2}\right) . H^{2} \ominus q^{2} H_{0}^{2}$ is of finite dimension because q is a finite Blaschke product.

Case $n \neq 1$. If $s \in \mathcal{L}_{p}^{P}$ then $s P \in H^{p}$ and by Case $n=1(s P)_{z}(\zeta)$ is a rational function (of one variable) of degree $\leq k_{0}$ for almost all $z \in T^{n}$. By Lemma 1, sP is a rational function (of n variables) of degree k and $k \leq k_{0}$. This implies that \mathcal{L}_{p}^{P} is of finite dimension.

When f is a rational function in H^{p}, by Theorem 3 and Proposition $4 f$ has our factorization. The function h in $N\left(D^{n}\right)$ is called z_{j}-outer if

$$
\int_{T_{j} \times T_{j}^{\prime}} \log \left|h\left(z_{j}, z_{j}^{\prime}\right)\right| d m=\int_{T_{j}^{\prime}}\left(\log \left|\int_{T_{j}} h\left(z_{j}, z_{j}^{\prime}\right) d m_{j}\right|\right) d m_{j}^{\prime}>-\infty .
$$

Proposition 5. Fix $1 \leq j \leq n$. If $f\left(z_{1}, \cdots, z_{n}\right)$ is z_{i}-outer in H^{p} for $i \neq j$ and $1 \leq i \leq n$, then f has a factorization in H^{p}.

Proof. We will generalize Theorem 2 in [3]. That is, when h is z_{i}-outer in H^{p} for $i \neq j, \mathcal{L}_{p}^{h}=R$ if and only if the common inner divisor of $\left\{h_{\alpha}\left(z_{j}\right)\right\}_{\alpha}$ is constant, where

$$
h_{\alpha}\left(z_{j}\right)=\int_{T_{j}^{\prime}} h\left(z_{j}, z_{j}^{\prime}\right){\overline{z^{\prime}}}_{j}^{\alpha} d m_{j}^{\prime}
$$

, $\alpha=\left(\alpha_{1}, \cdots, \alpha_{j-1}, \alpha_{j+1}, \cdots, \alpha_{n}\right)$ and ${\overline{\bar{z}^{\prime}}}_{j}^{\alpha}=\bar{z}_{1}^{\alpha_{1}} \cdots \bar{z}_{j-1}^{\alpha_{j-1}} \bar{z}_{j+1}^{\alpha_{j+1}} \cdots \bar{z}_{n}^{\alpha_{n}}$. Note that $h_{\alpha}\left(z_{j}\right)$ belongs to $H^{p}\left(T_{j}\right)$. For the proof, we use the following notation : $\mathbf{H}_{(j)}^{p}=\left\{f \in L^{p}\left(T^{n}\right)\right.$; $\hat{f}\left(m_{1}, \cdots, m_{n}\right)=0$ if $m_{i}<0$ for all $\left.i \neq j\right\}$ and $\mathbf{H}_{(j)}^{p} \cap \overline{\mathbf{H}}_{(j)}^{p}=\mathcal{L}_{j}^{p}=$ the Lebesgue space on T_{j}.

If $\phi \in \mathcal{L}_{p}^{h}$ then $g=\phi h$ and ϕ belongs to $\mathbf{H}_{(j)}^{p}$ because h is z_{i}-outer in H^{p} for $i \neq j$. Since ϕ is real-valued, $\phi \in \mathcal{L}_{j}^{p}$ and so $\phi=\phi\left(z_{j}\right)$. If the common inner divisor of $\left\{h_{\alpha}\left(z_{j}\right)\right\}_{\alpha}$ is constant, then for each α

$$
\phi\left(z_{j}\right) h_{\alpha}\left(z_{j}\right)=\int_{T_{j}^{\prime}} \phi\left(z_{j}\right) h\left(z_{j}, z_{j}^{\prime}\right) \overline{z_{j}^{\prime}} d m_{j}^{\prime}=\int_{T_{j}^{\prime}} g\left(z_{j}, z_{j}^{\prime}\right) \overline{z_{j}^{\prime}}{ }_{j}^{\alpha} d m_{j}^{\prime}
$$

belongs to $H^{p}\left(T_{j}\right)$ and hence $\phi \in H^{\infty}\left(T_{j}\right)$. Therefor ϕ is constant. This implies that $\mathcal{L}_{p}^{h}=R$. Conversely suppose that $\mathcal{L}_{p}^{h}=R$. If $\left\{h_{\alpha}\left(z_{j}\right)\right\}_{\alpha}$ has a non-constant common inner divisor $q\left(z_{j}\right)$, put $\phi\left(z_{j}, z_{j}^{\prime}\right)=\overline{q\left(z_{j}\right)}+q\left(z_{j}\right)$, then $g=\phi h$ belongs to H^{p}. This contradiction shows the 'only if' part.

Now we will prove that f has a factorization in H^{p}. If $\left\{f_{\alpha}\left(z_{j}\right)\right\}_{\alpha}$ does not have common inner divisors, then by what was just prove $\mathcal{L}_{p}^{f}=R$ and so we need not prove. If $\left\{f_{\alpha}\left(z_{j}\right)\right\}_{\alpha}$ have common inner divisors, let $q\left(z_{j}\right)$ be the greatest common inner divisor. Put $\phi=\bar{q}\left(z_{j}\right)+q\left(z_{j}\right)$ and $h=\phi f$, then h belongs to H^{p} and $\mathcal{L}_{p}^{h}=R$. This completes the proof.
$\S 3 \mathcal{L}=L^{\infty}$
In this section, we assume that $\mathcal{L}=L^{\infty}$. If f is a L^{∞}-extremal function for H^{p} then f is also a L_{R}^{∞}-extremal function for H^{p}. When $n=1$, the converse is true. However this is not true for $n \neq 1$. For example, $z-2 w$ is a L_{R}^{∞}-extremal fnction but not a L^{∞}-extremal. We can prove an analogy of Proposition 1 for L^{∞}. Let M_{f} be an invariant closed subspace generated by f in H^{p} and $\mathcal{M}\left(M_{f}\right)$ the set of multipliers of M_{f} (see [1]). Then $\mathcal{M}\left(M_{f}\right)=\mathcal{L}_{p}^{f}$ for $\mathcal{L}=L^{\infty}$. It is easy to see that

$$
\left(L^{\infty}\right)_{p}^{f} \cap \overline{\left(L^{\infty}\right)_{p}^{f}}=\left(L_{R}^{\infty}\right)_{p}^{f}+i\left(L_{R}^{\infty}\right)_{p}^{f}
$$

It is easy to see that $\left(L^{\infty}\right)_{p}^{f}$ is a weak $*$ closed invariant subspace which contains H^{∞}. Then $\left(L^{\infty}\right)_{p}^{f} / H^{\infty}$ is of infinite dimension (see [4, Theorem 1]). Thus we can not expect the analogy of Theorem 3.

Proposition 6. Let $1 \leq p \leq \infty$ and f a nonzero function in H^{p}. Suppose ϕ is in \mathcal{L}_{p}^{f}.
(1) $\mathcal{L}_{p}^{f} \supseteq \phi \mathcal{L}_{p}^{\phi f} \supseteq \phi H^{\infty}$.
(2) ϕ^{-1} is in L^{∞} if and only if $\mathcal{L}_{p}^{f}=\phi \mathcal{L}_{p}^{\phi f}$.
(3) If $\mathcal{L}_{p}^{\phi f} \supseteq \mathcal{L}_{p}^{f}$ then ϕ belongs to H^{∞}. If $\mathcal{L}_{p}^{f} \supseteq \mathcal{L}_{p}^{\phi f}$ and ϕ^{-1} is in L^{∞} then ϕ^{-1} belongs to H^{∞}.

Proof. (1) If $g \in \mathcal{L}_{p}^{\phi f}$ then $\phi g f=g \phi f \in H^{p}$ and so $\phi g \in \mathcal{L}_{p}^{f}$. (2) If $\phi^{-1} \in L^{\infty}$ then $\mathcal{L}_{p}^{\phi f} \supseteq \phi^{-1} \mathcal{L}_{p}^{f} \supseteq \mathcal{L}_{p}^{\phi f}$ by (1). If $\mathcal{L}_{p}^{f}=\phi \mathcal{L}_{p}^{\phi f}$ then $\phi^{-1} \mathcal{L}_{p}^{f}=\mathcal{L}_{p}^{\phi f}$ and so $\phi^{-1} \in \mathcal{L}_{p}^{\phi f}$. This implies that $\phi^{-1} \in L^{\infty}$. (3) Suppose $\mathcal{L}_{p}^{\phi f} \supseteq \mathcal{L}_{p}^{f}$. If $k \in \mathcal{L}_{p}^{f}$ then $k \in \mathcal{L}_{p}^{\phi f}$ and so $k \phi f \in H^{p}$. Hence $\phi^{2} f \in H^{p}$. Repeating this process, $\phi^{n} \in \mathcal{L}_{p}^{f}$ and so $\phi^{n} f \in H^{p}$ for all $n \geq 1$. Thus ϕ belongs to H^{∞}. If $\mathcal{L}_{p}^{f} \supseteq \mathcal{L}_{p}^{\phi f}$ and $\phi^{-1} \in L^{\infty}$, then ϕ^{-1} belongs to H^{∞}. For apply what was proved above for ϕ^{-1} assuming $\phi^{-1}(\phi f)=f$.

When f is a nonzero function in H^{p}, f is factorable in H^{p} if and only if there exists a nonzero function h in H^{p} such that $|f| \geq|h|$ a.e. on T^{2} and $\mathcal{L}_{p}^{h}=H^{\infty}$.

Proposition 7. Let $1 \leq p \leq \infty$ and f be a nonzero function in H^{p}. Suppose ϕ is a nonzero function in \mathcal{L}_{p}^{f}.
(1) If ϕ^{-1} is in L^{∞} and $\mathcal{L}_{p}^{\phi f}=H^{\infty}$, then ϕ^{-1} belongs to H^{∞} and $\mathcal{L}_{p}^{f}=\phi H^{\infty}$.
(2) If $\mathcal{L}_{p}^{f}=\phi H^{\infty}$, then ϕ^{-1} belongs to H^{∞} and $\mathcal{L}_{p}^{\phi f}=H^{\infty}$.
(3) If \mathcal{L}_{p}^{f} is the weak $*$ closure of ϕH^{∞} and $|\phi|=|h|$ a.e. for some function h in H^{∞}, then $\mathcal{L}_{p}^{\phi_{0} f}=H^{\infty}$ for some inner function $\bar{\phi}_{0}$ and so f is factorable.
(4) There exist f and ϕ such that ϕ is not the quotient of any two menbers of $H^{\infty}\left(T^{n}\right)$.

Proof. (1) By (2) of Proposition 6, $\phi \mathcal{L}_{p}^{\phi f}=\mathcal{L}_{p}^{f}$. Since $\mathcal{L}_{p}^{\phi f}=H^{\infty}, \phi H^{\infty}=\mathcal{L}_{p}^{f} \supset$ H^{∞} and so ϕ^{-1} belongs to H^{∞}. (2) Since $\mathcal{L}_{p}^{f} \supseteq \phi \mathcal{L}_{p}^{\phi f} \supseteq \phi H^{\infty}$ by (1) of Proposition 6 and $\mathcal{L}_{p}^{f}=\phi H^{\infty}, \mathcal{L}_{p}^{\phi f}=H^{\infty}$. It is clear that $\phi^{-1} \in H^{\infty}$. (3) Since $|\phi|=|h|$ a.e., $\phi=\phi_{0} h$ and $\left|\phi_{0}\right|=1$ a.e.. Then $\mathcal{L}_{p}^{f}=\left[\phi H^{\infty}\right]_{*}=\phi_{0}\left[h H^{\infty}\right]_{*} \supset H^{\infty}$ and so $\bar{\phi}_{0}$ is an inner function where $[S]_{*}$ is the weak $*$ closure of S. (4) This is a result of $[6]$.

Proposition 8. Let $1 \leq p \leq \infty$. Suppose f and g are nonzero functions in H^{p}.
(1) If $\mathcal{L}_{p}^{f}=H^{\infty}$ and $|f| \geq|g|$ a.e., then there exists a function ϕ in H^{∞} such that $g=\phi f$.
(2) If $\mathcal{L}_{p}^{f}=H^{\infty}$ and $|f|=|g|$ a.e., then there exists an inner function ϕ such that $g=\phi f$.

Proof. (1) Let $\phi=g / f$, then $\phi \in L^{\infty}$ because $|f| \geq|g|$ a.e.. By (1) of Proposition 6, ϕ belongs to H^{∞} because $H^{\infty}=\mathcal{L}_{p}^{f}$. (2) follows from (1).

Proposition 9. Let $1 \leq p \leq \infty$. If f is homogeneous polynomial such that $f\left(z_{1}, \cdots, z_{n}\right)=g(z, w)$ where $z=z_{i}, w=z_{j}$ and $i \neq j$ then f is factorable in H^{p}.

Proof. Since $f\left(z_{1}, \cdots, z_{n}\right)=\sum_{j=0}^{\ell} a_{j} z^{\ell-j} w^{j}, f\left(z_{1}, \cdots, z_{n}\right)=z^{\ell} \sum_{j=0}^{\ell} a_{j}\left(\frac{w}{z}\right)^{j}=$
$c \prod_{j=0}^{\ell}\left(b_{j} w-c_{j} z\right)$ where $b_{j}=1$ or $c_{j}=1$, and $\left|b_{j}\right| \leq 1,\left|c_{j}\right| \leq 1$. It is easy to see that $\mathcal{L}_{p}^{f}=\phi H^{\infty}$ where $\phi=\Pi(\alpha z-\beta w)^{-1}$ and $(\alpha, \beta) \in(\partial D \times D) \cup(D \times \partial D)(c f .[2],[4])$. By (2) of Proposition 7, f is factorable.

Question

(1) For any nonzero function f in H^{p}, does there exists a function ϕ such that $\mathcal{L}_{p}^{f} \underset{\nmid}{ } \mathcal{L}_{p}^{\phi f} ?$
(2) Describe ϕ in L^{∞} such that $\mathcal{L}_{p}^{f} \supset \mathcal{L}_{p}^{\phi f}$.
(3) Describe ϕ in L^{∞} such that $\left[\phi H^{\infty}\right]_{*} \supset_{\not} H^{\infty}$.

References

1. T.Nakazi, Certain invariant subspaces of H^{2} and L^{2} on a bidisc, Can.J.Math. XL(1988), 1272-1280.
2. T.Nakazi, Slice maps and multipliers of invariant subspaces, Can.Math.Bull. 39(1996), 219-226.
3. T.Nakazi, An outer function and several important functions in two variables, Arch.Math., 66(1996), 490-498.
4. T.Nakazi, On an invariant subspace whose common zero set is the zeros of some function, Nihonkai Math.J., 11(2000), 1-9.
5. W.Rudin, Function Theory in Polydisks, Benjamin, New York (1969)
6. W.Rudin, Invariant subspaces of H^{2} on a torus, J.Funct.Anal. 61(1985), 378-384.

Takahiko Nakazi
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail : nakazi @ math.sci.hokudai.ac.jp

[^0]: Abstract. We are interested in extremal functions in a Hardy space $H^{p}\left(T^{n}\right)(1 \leq$ $p \leq \infty)$. For example, we study extreme points of the unit ball of $H^{1}\left(T^{n}\right)$ and give a factorization theorem. In particular, we show that any rational function can be factorized.

