Factorizations Of Functions In $H^p(T^n)$

By

Takahiko Nakazi*

* This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan

2000 Mathematics Subject Classification : 32 A 35, 46 J 15

Key words and phrases : Hardy space, polydisc, factorizatio, extreme point

Abstract. We are interested in extremal functions in a Hardy space $H^p(T^n)$ $(1 \le p \le \infty)$. For example, we study extreme points of the unit ball of $H^1(T^n)$ and give a factorization theorem. In particular, we show that any rational function can be factorized.

§1. Introduction

Let D^n be the open unit polydisc in \mathcal{C}^n and T^n be its distiguished boundary. The normalized Lebesgue measure on T^n is denoted by dm. For $0 , <math>H^p(D^n)$ is the Hardy space and $L^p(T^n)$ is the Lebesgue space on T^n . Let $N(D^n)$ denote the Nevanlinna class. Each f in $N(D^n)$ has radial limits f^* defined on T^n a.e.dm. Moreover, there is a singular measure $d\sigma_f$ on T^n determined by f such that the least harmonic majorant $u(\log |f|)$ of $\log |f|$ is given by $u(\log |f|)(z) = P_z(\log |f^*| + d\sigma_f)$ where P_z denotes Poisson integration and $z = (z_1, z_2, \dots, z_n) \in D^n$. Put $N_*(D^n) = \{f \in N(D^n) ; d\sigma_f \le 0\}$, then $H^p(D^n) \subset N_*(D^n) \subset N(D^n)$ and $H^p(D^n) = N_*(D^n) \cap L^p(T^n) \subset N(D^n) \cap L^p(T^n)$. These

facts are shown in [5, Theorem 3.3.5].

Let \mathcal{L} be a subset of $L^{\infty}(T^n)$. For a function f in H^p , put

$$\mathcal{L}_p^f = \{ \phi \in \mathcal{L} \; ; \; \phi f \in H^p \}.$$

When $\mathcal{L}_p^f \subseteq H^\infty$, f is called an \mathcal{L} -extremal function for H^p . When $\mathcal{L} = L^\infty(T^n)$, $\mathcal{L} = L^\infty_R(T^n)$ or $\mathcal{L} = L^\infty_U(T^n)$ is the set of all unimodular functions, such \mathcal{L} -extremal functions have been considered in [3]. In [3], the author studied functions which have harmonic properties (A),(B),(C). For example, the property (A) is the following : If $f \in H^p$ and $|f| \geq |g|$ a.e. on T^n , then $|f| \geq |g|$ on D^n . It is easy to see that f is an \mathcal{L} -extremal function for H^p and $\mathcal{L} = L^\infty(T^n)$ if and only if f has the property (A). The properties (B) and (C) are related to $\mathcal{L} = L^\infty_R(T^n)$ and $\mathcal{L} = L^\infty_U(T^n)$, respectively. In this paper, as \mathcal{L} we consider only the above three sets.

Definition. When f is not \mathcal{L} -extremal for H^p , if there exists a function ϕ in \mathcal{L} such that $\phi f = h$ is an \mathcal{L} -extremal function for H^p , we say that f is factorized as $f = \phi^{-1}h$.

In this paper, we are interested in when f is factorized for $\mathcal{L} = L^{\infty}(T^n)$ or $\mathcal{L} = L^{\infty}_{R}(T^n)$. The function h in $N(D^n)$ is called outer function if

$$\int_{T^n} \log |h| dm = \log \left| \int_{T^n} h dm \right| > -\infty.$$

The function q in $N_*(D^n)$ is called inner function if |q| = 1 a.e.dm on T^n . When $\mathcal{L} \subset \mathcal{L}'$, a \mathcal{L}' -extremal function is always \mathcal{L} -extremal. If f is an outer function, then f is \mathcal{L} -extremal for $\mathcal{L} = L^{\infty}(T^n)$. In fact, if ϕf is in H^p then ϕ belongs to $f^{-1}H^p$ and $f^{-1}H^p \subset N_*$. Hence if ϕ is bounded then ϕ belongs to H^{∞} because $N_* \cap L^{\infty}(T^n) = H^{\infty}$. When n = 1, f is \mathcal{L} -extremal if and only if f is an outer function. This is known because f has an inner outer factorization.

In this paper, for a subset S in L^{∞} we say that S is of finite dimension if the linear span of S is of finite dimension. We use the following notations.

 $z = (z_j, z'_j), \ z'_j = (z_1, \cdots, z_{j-1}, \ z_{j+1}, \cdots, z_n).$

 $D^n = D_j \times D'_j, \ D'_j = \prod_{\ell \neq j} D_\ell \text{ where } D^n = \prod_{\ell=1}^n D_\ell \text{ and } D_\ell = D.$ $T^n = T_j \times T'_j, \ T'_j = \prod_{\ell \neq j} T_\ell \text{ where } T^n = \prod_{\ell=1}^n T_\ell \text{ and } T_\ell = T.$ $m = m_j \times m'_j, \ m'_j = \prod_{\ell \neq j} m_\ell \text{ where } m = \prod_{\ell=1}^n m_\ell \text{ and } m_\ell \text{ is the normarized}$ Lebesgue measure on T_ℓ .

§2. $\mathcal{L} = L_R^{\infty}$

In this section, we assume that $\mathcal{L} = L_R^{\infty}$. When n = 1, any nonzero function in H^p has a L_R^{∞} -factorization in H^p by Proposition 1. Even if n > 1, we have a lot of L_R^{∞} -extremal functions for H^p .

Proposition 1. If f = qh where q is inner and h is L_R^{∞} -extremal for H^p , then f has a L_R^{∞} -factorization in H^p : $f = \phi^{-1}k$ where $\phi = q + \bar{q}$ and $k = (1+q^2)h$ is L_R^{∞} -extremal for H^p .

Proof. It is enough to show that $(1+q^2)h$ is L_R^{∞} -extremal for H^p . If $\psi \in L_R^{\infty}(T^n)$ and $\psi(1+q^2)h \in H^p$ then $\psi(1+q^2)$ belongs to H^{∞} because h is L_R^{∞} -extremal for H^p . Since $1+q^2$ is outer and so $1+q^2$ is L_R^{∞} -extremal for H^p , ψ belongs to H^{∞} . \Box

Proposition 2. Suppose f is a nonzero function in H^1 . f is L_R^{∞} -extremal for H^1 if and only if $f/||f||_1$ is an extreme point of the unit ball of H^1 . Proof. It is well known.

The degree of a monomial $z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ (where $\alpha_i \in Z_+$) is $\alpha_1 + \cdots + \alpha_n$. The degree of a polynomial P is the maximum of the degrees of the monomials which occur in P with non-zero coefficient. The degree of a rational function f = P/Q is the maximum of deg P, deg Q, provided that all common factors of positive degree have first been cancelled.

Theorem 3. Let $0 and <math>\mathcal{L} = L_R^{\infty}$. If f is a nonzero function in H^p and \mathcal{L}_p^f is of finite dimension then there exists a function ϕ in \mathcal{L} such that $f = \phi^{-1}h$ and h is \mathcal{L} -extremal for H^p .

Proof. Suppose that \mathcal{L}_p^f is of finite dimension. Then there exist s_1, s_2, \dots, s_n in L_R^∞ such that $\{s_j\}_{j=1}^n$ is a basis of \mathcal{L}_p^f , $s_1 = 1$ and $s_n^{-1} \notin L^\infty$. For if $s_n^{-1} \in L^\infty$ then there exists a real number λ such that $(s_n - \lambda)^{-1} \notin L^\infty$. Then $\{s_1, s_2, \dots, (s_n - \lambda)\}$ is also a basis.

When $\mathcal{L}_{p}^{s_n f} = R$, put $\phi = s_n$ and $h = s_n f$, then the theorem is proved. Suppose that $\mathcal{L}_{p}^{s_n f} \neq R$. If ℓ_1 is a nonconstant function in $\mathcal{L}_{p}^{s_n f}$ then $\ell_1 s_n$ is nonconstant because $s_n^{-1} \notin L^{\infty}$. We may assume that $\ell_1^{-1} \notin L^{\infty}$. When $\mathcal{L}_{p}^{\ell_1 s_n f} = R$, put $\phi = \ell_1 s_n$ and $h = \ell_1 s_n f$, then the theorem is proved. Suppose that $\mathcal{L}_{p}^{\ell_1 s_n f} \neq R$. Then there exists ℓ_2 in $\mathcal{L}_{p}^{\ell_1 s_n f}$ such that $\ell_2 \ell_1 s_n$ is nonconstant and $\ell_2^{-1} \notin L^{\infty}$. When $\mathcal{L}_{p}^{\ell_2 \ell_1 s_n f} \neq R$, we can proceed similarly. Put

$$k_{j} = \ell_{j}\ell_{j-1}\cdots\ell_{1}$$
 $(j = 1, 2, \cdots, n)$

where $\ell_i^{-1} \notin L^{\infty}$ $(1 \le i \le j)$. Suppose that $\mathcal{L}_p^{k_j s_n f} \ne R$ for $j = 1, 2, \cdots, n$. Hence

$$k_j s_n = \sum_{i=1}^n \alpha_{ij} s_i \ (j = 1, 2, \cdots, n)$$

and so for $j = 1, 2, \cdots, n$

$$\sum_{i=1}^{n-1} \alpha_{ij} s_i + (\alpha_{nj} - k_j) s_n = 0.$$

Hence

$$\begin{vmatrix} \alpha_{11} & \cdots & \alpha_{n-1} & \alpha_{n1} - k_1 \\ \alpha_{12} & \cdots & \alpha_{n-1} & \alpha_{n2} - k_2 \\ \vdots & \vdots & \vdots \\ \alpha_{1n} & \cdots & \alpha_{n-1} & \alpha_{nn} - k_n \end{vmatrix} = 0$$

and so there exist $\gamma_1, \dots, \gamma_n$ in \mathcal{C} such that

$$\gamma_1(\alpha_{n1}-k_1)+\gamma_2(\alpha_{n2}-k_2)+\cdots+\gamma_n(\alpha_{nn}-k_n)=0$$

where

$$\gamma_j = \begin{vmatrix} \alpha_{11} & \cdots & \alpha_{n-1 \ 1} \\ \cdots & & & \\ \alpha_{1 \ j-1} & \cdots & \alpha_{n-1 \ j-1} \\ \alpha_{1 \ j+1} & \cdots & \alpha_{n-1 \ j+1} \\ \cdots & & & \\ \alpha_{1n} & \cdots & \alpha_{n-1 \ n} \end{vmatrix} < j$$

Hence $\sum_{j=1}^{n} \gamma_j \alpha_{nj} = \sum_{j=1}^{n} \gamma_j k_j$. Here we need the following claim.

Claim For any $t \ (1 \le t \le n)$, if $(\delta_1, \dots, \delta_t) \ne (0, \dots, 0)$ then $\delta = \sum_{j=1}^t \delta_j k_j$ can not

be constant.

Proof. Let s be the smallest integer such that $\delta_s \neq 0$ and $1 \leq s \leq t$. Then $\delta = \sum_{i=s}^{t} \delta_j k_j$. Hence

$$\delta = \delta_s(\ell_1 \cdots \ell_s) + \cdots + \delta_t(\ell_1 \cdots \ell_s)\ell_{s+1} \cdots \ell_t.$$

If $\delta = 0$, then $0 = \delta_s + \delta_{s+1}\ell_{s+1} + \cdots + \delta_t\ell_{s+1}\cdots\ell_t$ and this contradicts that $\ell_{s+1}^{-1} \notin L^{\infty}$ because $\delta_s \neq 0$. If δ is a nonzero constant, then this contradicts that $(\ell_1 \cdots \ell_s)^{-1} \notin L^{\infty}$.

Now we will prove that the equality : $\sum_{j=1}^{n} \gamma_j \alpha_{nj} = \sum_{j=1}^{n} \gamma_j k_j$ contradicts the definition of k_j $(1 \leq j \leq n)$. If $\gamma_n = 0$, then there exist $(\delta_1, \dots, \delta_{n-1}) \neq (0, \dots, 0)$ such that

$$\delta_1(\alpha_{11}, \cdots, \alpha_{n-1 \ 1}) + \cdots + \delta_{n-1}(\alpha_{1 \ n-1}, \cdots, \alpha_{n-1 \ n-1}) = (0, \cdots, 0). \text{ Hence}$$
$$\left(\sum_{j=1}^{n-1} \delta_j \alpha_{nj}\right) s_n = \left(\sum_{j=1}^{n-1} \delta_j k_j\right) s_n$$

because $\sum_{i=1}^{n-1} \alpha_{ij} s_i + \alpha_{nj} s_n = k_j s_n$ for $j = 1, 2, \dots, n$. Hence $\sum_{j=1}^{n-1} \delta_j \alpha_{nj} = \sum_{j=1}^{n-1} \delta_j k_j$ because $|s_n| > 0$. This contradicts the claim. Hence $\gamma_n \neq 0$. Thus $(\gamma_1, \dots, \gamma_n) \neq (0, \dots, 0)$ and $\sum_{j=1}^n \gamma_j k_j$ is constant. This also contradicts the claim. Thus $\mathcal{L}^{k_n s_n f} = R$ and so the theorem is proved.

Lemma 1. Let $p \ge 1$ and f be in H^p . If $f_z(\zeta) = f(\zeta z)$ is a rational function (of one variable) of degree $\le k_0 < \infty$, for almost all $z \in T^n$ then f is a rational function (of n variables) of degree k and $k \le k_0$.

Proof. There exist a nonnegative integer $k \leq k_0$ and a closed set E_k such that $f_z(\zeta)$ is a rational function (of one variable) of degree k for all $z \in E_k$ and E_k is a nonempty interior. We will use [5, Theorem 5.2.2]. In Theorem 5.2.2 in [5], we put $\Omega = D^n$ and $E = E_k$. If $f_z(\zeta)$ is a rational function (of one variable) of degree k for all $z \in E$, then f belongs to Y in Theorem 5.2.2 in [5]. For f_z is in $H^p(D)$, $p \geq 1$ and so f_z is continuous on ∂D . Now Theorem 5.2.2 in [5] implies the lemma.

Proposition 4. Suppose $1 \le p \le \infty$. \mathcal{L}_p^f is of finite dimension if f is a rational function.

Proof. Suppose f = P/Q is a nonzero function in H^p where P and Q are polynomials. If $s \in \mathcal{L}_p^f$ then $sP/Q \in H^p$ and so $sP \in H^p$. Hence s belongs to \mathcal{L}_p^P and so $\mathcal{L}_p^f \subseteq \mathcal{L}_p^P$. It is enough to prove that \mathcal{L}_p^P is of finite dimension.

Case n = 1. We have the inner outer factorization for n = 1, that is, P = qhwhere q is a finite Blaschke product and h is an outer function in H^p . Then it is easy to see that $\mathcal{L}_p^P = \mathcal{L}_p^q$. Since $\mathcal{L}_p^q \subset \bar{q}H^p \cap q\bar{H}^p$ and $\mathcal{L}_p^q \subset L^\infty$, $\mathcal{L}_p^q \subset \bar{q}H^2 \cap q\bar{H}^2 = \bar{q}(H^2 \cap q^2\bar{H}^2) =$ $\bar{q}(H^2 \ominus q^2H_0^2)$. $H^2 \ominus q^2H_0^2$ is of finite dimension because q is a finite Blaschke product.

Case $n \neq 1$. If $s \in \mathcal{L}_p^P$ then $sP \in H^p$ and by Case n = 1 $(sP)_z(\zeta)$ is a rational function (of one variable) of degree $\leq k_0$ for almost all $z \in T^n$. By Lemma 1, sP is a rational function (of n variables) of degree k and $k \leq k_0$. This implies that \mathcal{L}_p^P is of finite dimension.

When f is a rational function in H^p , by Theorem 3 and Proposition 4 f has our factorization. The function h in $N(D^n)$ is called z_j -outer if

$$\int_{T_j \times T'_j} \log |h(z_j, z'_j)| dm = \int_{T'_j} (\log |\int_{T_j} h(z_j, z'_j) dm_j|) dm'_j > -\infty.$$

Proposition 5. Fix $1 \leq j \leq n$. If $f(z_1, \dots, z_n)$ is z_i -outer in H^p for $i \neq j$ and $1 \leq i \leq n$, then f has a factorization in H^p .

Proof. We will generalize Theorem 2 in [3]. That is, when h is z_i -outer in H^p for $i \neq j$, $\mathcal{L}_p^h = R$ if and only if the common inner divisor of $\{h_\alpha(z_j)\}_\alpha$ is constant, where

$$h_{\alpha}(z_j) = \int_{T'_j} h(z_j, z'_j) \overline{z'}_j^{\alpha} dm'_j$$

 $, \alpha = (\alpha_1, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_n)$ and $\overline{z'}_j^{\alpha} = \overline{z}_1^{\alpha_1} \cdots \overline{z}_{j-1}^{\alpha_{j-1}} \overline{z}_{j+1}^{\alpha_{j+1}} \cdots \overline{z}_n^{\alpha_n}$. Note that $h_{\alpha}(z_j)$ belongs to $H^p(T_j)$. For the proof, we use the following notation : $\mathbf{H}_{(j)}^p = \{f \in L^p(T^n); \hat{f}(m_1, \dots, m_n) = 0 \text{ if } m_i < 0 \text{ for all } i \neq j\}$ and $\mathbf{H}_{(j)}^p \cap \overline{\mathbf{H}}_{(j)}^p = \mathcal{L}_j^p$ = the Lebesgue space on T_j .

If $\phi \in \mathcal{L}_p^h$ then $g = \phi h$ and ϕ belongs to $\mathbf{H}_{(j)}^p$ because h is z_i -outer in H^p for $i \neq j$. Since ϕ is real-valued, $\phi \in \mathcal{L}_j^p$ and so $\phi = \phi(z_j)$. If the common inner divisor of $\{h_\alpha(z_j)\}_\alpha$ is constant, then for each α

$$\phi(z_j)h_{\alpha}(z_j) = \int_{T'_j} \phi(z_j)h(z_j, z'_j)\overline{z'}_j^{\alpha}dm'_j = \int_{T'_j} g(z_j, z'_j)\overline{z'}_j^{\alpha}dm'_j$$

belongs to $H^p(T_j)$ and hence $\phi \in H^{\infty}(T_j)$. Therefor ϕ is constant. This implies that $\mathcal{L}_p^h = R$. Conversely suppose that $\mathcal{L}_p^h = R$. If $\{h_{\alpha}(z_j)\}_{\alpha}$ has a non-constant common inner divisor $q(z_j)$, put $\phi(z_j, z'_j) = \overline{q(z_j)} + q(z_j)$, then $g = \phi h$ belongs to H^p . This contradiction shows the 'only if' part.

Now we will prove that f has a factorization in H^p . If $\{f_\alpha(z_j)\}_\alpha$ does not have common inner divisors, then by what was just prove $\mathcal{L}_p^f = R$ and so we need not prove. If $\{f_\alpha(z_j)\}_\alpha$ have common inner divisors, let $q(z_j)$ be the greatest common inner divisor. Put $\phi = \bar{q}(z_j) + q(z_j)$ and $h = \phi f$, then h belongs to H^p and $\mathcal{L}_p^h = R$. This completes the proof.

$\S \mathbf{3} \ \mathcal{L} = L^{\infty}$

In this section, we assume that $\mathcal{L} = L^{\infty}$. If f is a L^{∞} -extremal function for H^p then f is also a L^{∞}_R -extremal function for H^p . When n = 1, the converse is true. However this is not true for $n \neq 1$. For example, z - 2w is a L^{∞}_R -extremal function but not a L^{∞} -extremal. We can prove an analogy of Proposition 1 for L^{∞} . Let M_f be an invariant closed subspace generated by f in H^p and $\mathcal{M}(M_f)$ the set of multipliers of M_f (see [1]). Then $\mathcal{M}(M_f) = \mathcal{L}^f_p$ for $\mathcal{L} = L^{\infty}$. It is easy to see that

$$(L^{\infty})_p^f \cap \overline{(L^{\infty})_p^f} = (L_R^{\infty})_p^f + i(L_R^{\infty})_p^f.$$

It is easy to see that $(L^{\infty})_p^f$ is a weak * closed invariant subspace which contains H^{∞} . Then $(L^{\infty})_p^f/H^{\infty}$ is of infinite dimension (see [4, Theorem 1]). Thus we can not expect the analogy of Theorem 3.

Proposition 6. Let $1 \le p \le \infty$ and f a nonzero function in H^p . Suppose ϕ is in \mathcal{L}_p^f .

(1) $\mathcal{L}_p^f \supseteq \phi \mathcal{L}_p^{\phi f} \supseteq \phi H^{\infty}$. (2) ϕ^{-1} is in L^{∞} if and only if $\mathcal{L}_p^f = \phi \mathcal{L}_p^{\phi f}$. (3) If $\mathcal{L}_p^{\phi f} \supseteq \mathcal{L}_p^f$ then ϕ belongs to H^{∞} . If $\mathcal{L}_p^f \supseteq \mathcal{L}_p^{\phi f}$ and ϕ^{-1} is in L^{∞} then ϕ^{-1}

belongs to H^{∞} .

Proof. (1) If $g \in \mathcal{L}_p^{\phi f}$ then $\phi gf = g\phi f \in H^p$ and so $\phi g \in \mathcal{L}_p^f$. (2) If $\phi^{-1} \in L^{\infty}$ then $\mathcal{L}_p^{\phi f} \supseteq \phi^{-1} \mathcal{L}_p^f \supseteq \mathcal{L}_p^{\phi f}$ by (1). If $\mathcal{L}_p^f = \phi \mathcal{L}_p^{\phi f}$ then $\phi^{-1} \mathcal{L}_p^f = \mathcal{L}_p^{\phi f}$ and so $\phi^{-1} \in \mathcal{L}_p^{\phi f}$. This implies that $\phi^{-1} \in L^{\infty}$. (3) Suppose $\mathcal{L}_p^{\phi f} \supseteq \mathcal{L}_p^f$. If $k \in \mathcal{L}_p^f$ then $k \in \mathcal{L}_p^{\phi f}$ and so $k\phi f \in H^p$. Hence $\phi^2 f \in H^p$. Repeating this process, $\phi^n \in \mathcal{L}_p^f$ and so $\phi^n f \in H^p$ for all $n \ge 1$. Thus ϕ belongs to H^{∞} . If $\mathcal{L}_p^f \supseteq \mathcal{L}_p^{\phi f}$ and $\phi^{-1} \in L^{\infty}$, then ϕ^{-1} belongs to H^{∞} . For apply what was proved above for ϕ^{-1} assuming $\phi^{-1}(\phi f) = f$.

When f is a nonzero function in H^p , f is factorable in H^p if and only if there exists a nonzero function h in H^p such that $|f| \ge |h|$ a.e. on T^2 and $\mathcal{L}_p^h = H^\infty$.

Proposition 7. Let $1 \le p \le \infty$ and f be a nonzero function in H^p . Suppose ϕ is a nonzero function in \mathcal{L}_p^f .

(1) If φ⁻¹ is in L[∞] and L^{φf}_p = H[∞], then φ⁻¹ belongs to H[∞] and L^f_p = φH[∞].
(2) If L^f_p = φH[∞], then φ⁻¹ belongs to H[∞] and L^{φf}_p = H[∞].
(3) If L^f_p is the weak * closure of φH[∞] and |φ| = |h| a.e. for some function h in H[∞], then L^{φof}_p = H[∞] for some inner function φ̄₀ and so f is factorable.

(4) There exist f and ϕ such that ϕ is not the quotient of any two members of $H^{\infty}(T^n)$.

Proof. (1) By (2) of Proposition 6, $\phi \mathcal{L}_p^{\phi f} = \mathcal{L}_p^f$. Since $\mathcal{L}_p^{\phi f} = H^{\infty}$, $\phi H^{\infty} = \mathcal{L}_p^f \supset H^{\infty}$ and so ϕ^{-1} belongs to H^{∞} . (2) Since $\mathcal{L}_p^f \supseteq \phi \mathcal{L}_p^{\phi f} \supseteq \phi H^{\infty}$ by (1) of Proposition 6 and $\mathcal{L}_p^f = \phi H^{\infty}$, $\mathcal{L}_p^{\phi f} = H^{\infty}$. It is clear that $\phi^{-1} \in H^{\infty}$. (3) Since $|\phi| = |h|$ a.e., $\phi = \phi_0 h$ and $|\phi_0| = 1$ a.e.. Then $\mathcal{L}_p^f = [\phi H^{\infty}]_* = \phi_0[hH^{\infty}]_* \supset H^{\infty}$ and so ϕ_0 is an inner function where $[S]_*$ is the weak * closure of S. (4) This is a result of [6].

Proposition 8. Let $1 \le p \le \infty$. Suppose f and g are nonzero functions in H^p . (1) If $\mathcal{L}_p^f = H^\infty$ and $|f| \ge |g|$ a.e., then there exists a function ϕ in H^∞ such that $q = \phi f$.

(2) If $\mathcal{L}_p^f = H^\infty$ and |f| = |g| a.e., then there exists an inner function ϕ such that $g = \phi f$.

Proof. (1) Let $\phi = g/f$, then $\phi \in L^{\infty}$ because $|f| \ge |g|$ a.e., By (1) of Proposition 6, ϕ belongs to H^{∞} because $H^{\infty} = \mathcal{L}_{p}^{f}$. (2) follows from (1).

Proposition 9. Let $1 \leq p \leq \infty$. If f is homogeneous polynomial such that $f(z_1, \dots, z_n) = g(z, w)$ where $z = z_i$, $w = z_j$ and $i \neq j$ then f is factorable in H^p .

Proof. Since
$$f(z_1, \dots, z_n) = \sum_{j=0}^{\ell} a_j z^{\ell-j} w^j$$
, $f(z_1, \dots, z_n) = z^{\ell} \sum_{j=0}^{\ell} a_j \left(\frac{w}{z}\right)^j =$

 $c\prod_{j=0}^{\circ}(b_jw-c_jz)$ where $b_j=1$ or $c_j=1$, and $|b_j|\leq 1$, $|c_j|\leq 1$. It is easy to see that $\mathcal{L}_p^{j=0}$ $\mathcal{L}_p^f = \phi H^{\infty}$ where $\phi = \prod (\alpha z - \beta w)^{-1}$ and $(\alpha, \beta) \in (\partial D \times D) \cup (D \times \partial D)$ (cf. [2],[4]). By (2) of Proposition 7, f is factorable.

(1) For any nonzero function f in H^p , does there exists a function ϕ such that $\mathcal{L}_p^f \underset{\neq}{\supset} \mathcal{L}_p^{\phi f}$?

- (2) Describe ϕ in L^{∞} such that $\mathcal{L}_{p}^{f} \supseteq \mathcal{L}_{p}^{\phi f}$. (3) Describe ϕ in L^{∞} such that $[\phi H^{\infty}]_{* \xrightarrow{\mathcal{L}}} H^{\infty}$.

References

- 1. T.Nakazi, Certain invariant subspaces of H^2 and L^2 on a bidisc, Can.J.Math. XL(1988), 1272-1280.
- 2. T.Nakazi, Slice maps and multipliers of invariant subspaces, Can.Math.Bull. 39(1996), 219-226.
- 3. T.Nakazi, An outer function and several important functions in two variables, Arch.Math., 66(1996), 490-498.
- 4. T.Nakazi, On an invariant subspace whose common zero set is the zeros of some function, Nihonkai Math.J., 11(2000), 1-9.
- 5. W.Rudin, Function Theory in Polydisks, Benjamin, New York (1969)
- 6. W.Rudin, Invariant subspaces of H^2 on a torus, J.Funct.Anal. 61(1985), 378-384.

Takahiko Nakazi Department of Mathematics Hokkaido University Sapporo 060-0810, Japan

E-mail : nakazi @ math.sci.hokudai.ac.jp