PONTRYAGIN CLASSES OF TOPOLOGICAL MANIFOLDS

MICHEL HILSUM

1. CHARACTERISTIC CLASSES OF SMOOTH MANIFOLDS

There are various definitions of characteristic classes on smooth manifolds.

1.1. Pontryagin's pioneering work. Let V be a smooth manifold and $f: V \rightarrow BO$ the classifying map of the tangent bundle, and p_k the canonical generator of $H^{4k}(BO)$. Then by definition :

(1.1)
$$p_k(V) = f^*(p_k)$$

1.2. Submanifolds with trivial normal bundle. It is useful to consider \mathcal{L} -classes which are universal polynomials in Pontryagin classes. Independently in late 50's, Rohlin-Svac and Thom showed that \mathcal{L} -classes could be defined using inverse images of regular values of maps $f : V \to S^k$ and at the same time extended the definition to PL-manifolds.

1.3. Index theorem. Signature operator gives rise to a class $\Sigma(V)$ in the K-homology group $K_0(V)$, which maps to $H_*(V, \mathbf{Q})$ by the Chern character, and by Atiyah-Singer index theorem, one has

(1.2)
$$\operatorname{ch}(\Sigma(V)) = \mathcal{L}(V)$$

1.4. Curvature of connection. Characteristic classes in $H^*(V, \mathbf{R})$ may be obtained by universal polynomials of the curvature of a connection on TV.

2. TOPOLOGICAL MANIFOLDS

Novikov's theorem states that rational Pontryagin classes are topological invariants.

2.1. Classifying spaces. The space BTop classifies topological microbundles, and $H^{4k}(BTop, \mathbf{Q}) \simeq H^{4k}(BO) \otimes \mathbf{Q}) = p_k \mathbf{Q}$. Thus if $f: V \to BTop$ is the classifying map of a topological manifold, then equation (1.1) works.

MICHEL HILSUM

2.2. **Regular points of maps** $V \to S^k$. It has been worked out by N. Teleman by means of the signature operator on topological manifolds and transversality theorems of Marin, Kirby-Siebenmann.

2.3. **K-homology.** In 1980's, D. Sullivan proved that every manifold of dimension $\neq 4$ can be endowed with a Lipschitz structure, unique up isotopy.

Signature operator has be defined for non-smooth manifolds :

- (1) Combinatorial manifolds (N. Teleman 1978)
- (2) Lipschitz manifolds (N. Teleman 1982, M.H. 1983)
- (3) Quasiconformal manifolds even dimensional (Connes-Sullivan-Teleman)
- (4) L^{p} -manifolds (M.H. 1997)

An index theorem holds, and more generally signature operator defines a class $\Sigma(V) \in K_0(V)$, and formula (1.2) remains valid.

Moreover, this operator allows to define a functor in the category of topological manifold which generalizes Gysin maps ; the smooth case has been worked out by A. Connes and G. Skandalis. To an oriented map $f: V \to W$ of topological manifolds corresponds a homomorphism of K-theory groups :

$$\Sigma(f): K^*(V) \otimes \mathbf{Z}[\frac{1}{2}] \to K^*(W) \otimes \mathbf{Z}[\frac{1}{2}]$$

It enjoys the following properties :

- (1) $\Sigma(g \circ f) = \Sigma(g) \circ \Sigma(f)$
- (2) $\Sigma(V \rightarrow .) = \Sigma(V)$
- (3) Σ (immersion) is K-orientation of microbundle.

This construction uses basically Kasparov's bivariant K-theory.

3. GROMOV'S CLASSES FOR TOPOLOGICAL MANIFOLDS

Here is a purely topological definition, which does not require transversality hypothesis. Evidently, characteristic classes obtained by this device are topological invariants.

Let V be a topological manifold of dimension 4k + 1, h a homology class in $H_{4k}(V)$ and E a flat symplectic vector bundle on V : there is a quadratic form $(\alpha, \beta) \rightarrow < \alpha \cup \beta$, h >on $H_{2k}(V, E)$, and denote its signature by :

Signature(V, E, h)

There exists a flat symplectic vector bundle X on a riemann surface B such that $\text{Signature}(B, X) = s \neq 0$ (W. Goldman).

Let V be a closed topological manifold of dimension 4k + 2l + 1 and $f: V \to S^{2l+1}$ be a map representing a homology class $z \in H_{4k}(V, \mathbf{Q})$, *i.e.* $f^*([S^{2l+1}]^{co}) = \mathcal{P}z$ (such a map exists by Serre's finiteness theorem).

Let $j : B \to S^{2l+1}$ be an imbedding with tubular neighbourhood $U \simeq B^l \times \mathbf{R}$ and $\tilde{X}^l \to U$ the pull-back of X^l . Let $h \in H_{4k+2}(V)$ the homology class the Poincare dual of which is the pull back by f of the Poincare dual of B^l in $H_{2l}(U)$.

Then there exists a unique class $\tilde{L}^{4k}(V) \in H^{4k}(V, \mathbf{Q})$ such that :

(3.1)
$$\langle \tilde{\mathcal{L}}^{4k}(V), z \rangle = \text{Signature}(f^{-1}(U), f^*(\tilde{X}^l), h)$$

It is not difficult to see that this definition agrees with previous ones for a smooth manifold. However, the question remained unsolved for topological manifolds.

Theorem 3.1. Let V be a closed oriented topological manifold, then :

$$\mathcal{L}(V) = \tilde{\mathcal{L}}(V)$$

Proof. One shows that $ch(\Sigma(V)) = \tilde{\mathcal{L}}(V)$.

4. PSEUDOMANIFOLDS

Intersection \mathcal{L} -classes were defined for admissible PL pseudomanifolds by M. Goresky and R. Mac Pherson, using intersection homology theory. Also a signature operator has been constructed by J. Cheeger.

Intersection homology is a topological invariant and is well defined for topological pseudomanifolds.

Gromov's construction can be extended to topological pseudomanifolds. This would establish topological invariance of intersection \mathcal{L} -classes, as well as their generalization to the topological context.

INSTITUT DE MATHÉMATIQUES DE JUSSIEU, C.N.R.S., 175 RUE DU CHEVALERET, 75 013 PARIS (FRANCE)